几种天然生物纤维增强摩擦材料的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究瞄准汽车摩擦制动材料的现状和发展趋势,考虑到黄麻纤维、竹纤维和羊毛纤维性能各有其优点,并兼顾到材料的性能和经济性,采用纤维表面改性方法,开发一种绿色、节能的天然生物纤维增强摩擦材料,为高性能汽车制动摩擦材料制品研制奠定技术基础。本文对黄麻纤维、竹纤维和羊毛的表面进行了改性处理。利用单因素试验设计方法,对天然生物纤维增强摩擦材料进行摩擦磨损试验,得到了摩擦材料的摩擦因数和磨损率的变化规律,并对摩擦材料的磨损形貌进行了观察分析。
     通过对黄麻纤维、竹纤维和羊毛纤维结构观察分析发现,黄麻纤维具有内层中空结构,可以减低摩擦材料表面的磨粒磨损。在抱合力的作用下,竹纤维集合体中纤维相互纠缠、粘结、钩挂而抱成一团,不易松散。羊毛纤维具有天然卷曲,整体外观为覆盖有鳞片状结构的圆柱体。这种特殊结构使得羊毛纤维可以和其他的填料充分混合。
     对天然生物纤维增强摩擦材料进行摩擦磨损试验。结果表明,在升温条件下,不同含量的黄麻纤维和羊毛纤维增强摩擦材料摩擦因数均高于无黄麻纤维和羊毛纤维增强摩擦材料的摩擦因数。不同含量的竹纤维增强摩擦材料摩擦因数均低于无竹纤维增强摩擦材料的摩擦因数。在降温条件下,黄麻纤维、竹纤维和羊毛纤维增强摩擦材料的摩擦因数是随着温度降低而呈下降趋势。在250℃左右,三种纤维增强摩擦材料的摩擦因数均出现不同程度的波动,12wt.%黄麻纤维增强摩擦材料,12wt.%竹纤维,0wt.%和4wt.%的羊毛纤维增强摩擦材料的磨损率最大。
     对三种天然生物增强摩擦材料的磨损率和摩擦因数进行对比,结果表明在350℃条件下,9wt.%黄麻纤维增强摩擦材料、3wt.%竹纤维增强摩擦材料和3wt.%羊毛纤维增强摩擦材料均具有相对较好的摩擦性能,3wt.%羊毛纤维增强摩擦材料的磨损率最低为0.4938331×10-7cm3N-1m-1。
     对上述三种天然生物纤维增强摩擦材料的表面形貌和磨损机理进行了分析后发现,天然生物纤维增强摩擦材料的磨损形式主要是黏着磨损和磨粒磨损。在天然生物纤维增强摩擦材料的磨损表面存在着孔隙,表面孔隙使摩擦表面材料与空气中的氧气接触较多,碳质材料与氧气发生固-气相反应。孔隙越多,氧气分子越容易扩散进去,产生的磨粒更容易被氧化。同时减小了摩擦表面的磨粒数量,降低了磨损率。
     对盘式制动摩擦材料制动过程进行了温度场模拟分析。结果表明,汽车制动过程是将动能与势能转化为热能而耗散的过程,对偶件接触面的热应力分布不均,在滑动摩擦过程中,接触面相当于接受定热源作用,接触区温度逐渐上升,最高温度在接触面中线附近并向外扩展,温度从接触面向四周呈递减趋势,且温度梯度越来越小。而且接触压力分布和温度分布是相互耦合的。压力分布影响对偶件的温度分布,而对偶件的温度分布的局部特征又反过来影响到界面的压力分布。这是导致制动器的磨损以及产生摩擦噪声的主要原因。如果由于制动器的设计不合理,使得热应力无法均匀作用在摩擦块上,严重时很容易导致摩擦块磨损和断裂。
According to the situation and development trend of friction materials, taking into account properties, merits and the economy of the jute fiber, bamboo fiber and wool fiber of the material, a green, energy-efficient natural biological fibers reinforced friction materials for automotive brake friction materials was investigated by fibers’surface modification in order to establish technological foundation of high-performance products.
     Friction and wear tests of the natural bio-fiber reinforced friction materials were carried out by using single-factor experiment design friction coefficient and wear rate were measured. The worn morphology of the friction materials were observed and analyzed by scanning electron microscope.
     The structures of jute fibers, bamboo fibers and wool fibers were observed. Jute fibers with the inner hollow structure can improve the abrasive wear on the surface of the friction materials. Bamboo fibers assembly are entangled, adhesive, hook and hold together and not easy to loose for the role of the cohesion. Wool fibers have a natural curl and are cylinder covered by scales. This made that the process of mixing with other fillers can be fully mixed and entangled and wool fibers are difficult to pull the wool fibers in the friction and wear. The surface layer of the wool fiber is consist of keratinocytes scale-like cell. The wool fibers were evenly distributed among the friction materials and are very good for the combination of fillers and resin.
     Friction and wear test were done on the samples with natural biological fibers reinforced friction materials. The results showed that the friction coefficients of friction materials reinforced by jute fibers were higher than those of friction materials with free-reinforced by jute fibers during the temperature increase. Jute fiber reinforced friction coefficient of friction material was lower than non-Ma fiber reinforced friction material when the temperature decrease. In the cooling conditions, friction coefficients of friction materials reinforced by the jute fibers, bamboo fibers or wool fibers reduced as the temperature decreased. At about 250℃, the friction coefficients are different degrees of volatility. The wear rates of reinforced friction materials containg 12wt.% jute fibers, 12wt.% bamboo fiber, 0wt.% or 4wt.% the wool fibers were the highest.
     Wear rate and friction coefficient of friction are compared. under the conditions of 350℃,the results showed that 9wt.% jute fiber reinforced friction material, 3wt.% bamboo fiber reinforced friction materials and 3wt.% wool fiber reinforced friction materials are relatively good friction properties, wear rate of 3wt.% wool fiber reinforced friction material as low as 0.4938331×10-7cm3N-1m-1.
     Wear mechanism of natural biological fibers reinforced friction materials was analyzed by surface worn morphology obtained by scanning electron microscopy. For the natural biological fiber reinforced friction materials the main wear mechanism is adhesive wear and abrasive wear. Porosity presented in the natural biological fiber-reinforced wear surface of friction materials and pore surface can make the friction surface material contact with more oxygen in the air. Carbon materials act with oxygen in the form of solid-gas phase reaction. The more pores, the easier diffusion of oxygen into the molecule, produced grain more easily oxidized. While the amount of friction abrasive surface reduces, so do the wear rate.
     The temperature field simulation was carried out by ANSYS finite element for disc brake friction materials during braking. Brake is the process of changing kinetic and potential energy into heat and consumption. Thermal stress on the contact surface of the dual pieces is uneven distribution during the sliding friction process, the contact surface is equivalent to accept the role given heat source, the temperature gradually increased contact area. The highest temperature in the vicinity of the contact surface and the outward expansion of the center line, the temperature for four weeks from exposure showed a decreasing trend, and the temperature gradient smaller and smaller. And the contact pressure distribution and temperature distribution is coupled with each other under. Dual pieces of the pressure distribution of the temperature distribution, and even parts of the local characteristics of temperature distribution in turn affect the interface pressure distribution. This is the result of wear and friction brake vibration and noise of the important reasons. If the brake design is unreasonable, not even making the role of thermal stress on the friction block, severe heat can easily lead to severe wear and fracture of friction block phenomenon.
引文
[1]申荣华,何林.摩擦材料及其制品生产技术[M]。北京:北京大学出版社,2010.
    [2]中国汽车摩擦材料市场动态分析与投资战略研究报告2010-2012年. 2011.
    [3]鲁博,张林文,曾竟成.天然纤维复合材料[M].北京:化学工业出版社, 2005.
    [4]许瑞.麻纤维复合材料高性能化的研究[D].四川大学博士论文,四川大学,2002.
    [5]中华人民共和国国家统计局编.2010国际统计年鉴[M].中国统计出版社.2010
    [6]王丽娜.世界羊毛生产与贸易的经济分析[D].浙江大学.2004.
    [7] Bijwe J. Composites as friction materials: Recent development in non-asbestos fiber reinforced friction materials—a review. Polymer Composites 1997;18(3): 378–396.
    [8] U.S. Hong, S.L. Jung, K.H. Cho, M.H. Cho, S.J. Kim, H. Jang. Wear mechanism of multiphase brake materials with different phenolic resin matrices[J]. Wear, 2009,266(7-8),739-744.
    [9] K.W. Hee, P. Filip. Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings[J] .Wear,2005,259(7-12), 1088-1096.
    [10] Seong J K, Ho J. Friction and Wear of Friction Materials containing Two Different Phenolic Resins reinforced with Aramid Pulp[J]. Tribology International, 2000, (33): 477-484
    [11]任增茂,叶润喜.苯胺改性酚醛树脂胶粘剂的研究[J].中国胶粘剂,1993,3(4):31-34
    [12]曹献坤.1-2-3型制动摩擦材料及其摩擦磨损性能研究[D].武汉工业大学博士学位,武汉工业大学,1999
    [13]吴培熙.摩擦材料用树脂性能评述[J].塑料科技,1999,133(5):27-31
    [14]吴培熙,张留城.聚合物共混改性[J].北京:中国轻工业出版社,1996.346-348
    [15]裴顶峰,顾宜,江璐霞等.高性能酚醛树脂的合成和改性[J].化工新型材料,1994,(10):12-17
    [16]吴培熙.塑料填充改性[M].北京:中国轻工业出版社,1998
    [17] Varenberg M. Halperin G, Etsion I. Different aspects of the role of wear debris in fretting Wear [J]. Wear, 2002, 252, 902-910.
    [18] B. Suresha , KunigalShivaKumar , S.Seetharamuc, P.SampathKumaran c Friction and dry sliding wear behavior of carbon and glass fabric reinforced vinyl ester composites[J].. Tribology International ,2010,43, 602–609.
    [19] P. Gopal et al. Fade and wear characteristics of a glass-fiber-reinforced phenolic friction material [J]. Wear, 1994, 174: 119-127
    [20]王海庆,王成国,庄光山等.提速列车制动闸片的研制[J].新型炭材料,2002, 17 (2): 29-34
    [21] Norio Iwashita, Eleni Psomiadou, Yoshihiro Sawada. Effect of coupling treatment of carbon fiber surface on mechanical properties of carbon fiber reinforced carbon composites [J]. Composites Part A, 1998, 29A: 965-972
    [22] S. R. Dhakate, P. BahI, P. D. Sahare. Oxidation behavior of PAN based carbon fiber reinforced phenolic resin matrix composites [J]. Journal of Materials Science Letters, 2000, 19: 1959-1961
    [23] Seong Jin Kim, Ho Jang. Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp [J]. Tribology International, 2000, 33: 477-484
    [24] S. J. Kim, M. H. Cho, D. S. Lim et al. Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material [J]. Wear, 2001, 251: 1484-1491
    [25] N.S.M. El-Tayeb. A study on the potential of sugarcane fibers/polyester composite for tribological applications .Wear 2008;265(1-2):223-235.
    [26] T.P. Mohan, K. Kanny.Water barrier properties of nanoclay filled sisal fibre reinforced epoxy composites. Composites: Part A 2011;42 (4) :385–393.
    [27] Q. Liu, M. Hughes.The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites. Composites: Part A 2008;39 (10) :1644–1652.
    [28]郭洪涛,张佐光,仲伟虹等.碳纤维/芳纶浆粕摩阻复合材料初步研究[J].复合材料学报,2001,18 (2): 50-53
    [29] Hasim P?ht?l?, Nihat Tosun. Effect of load and speed on the wear behaviour of woven glass fabrics and aramid fibre-reinforced composites [J]. Wear, 2002, 252: 979-984
    [30] Mukesh Kumar,JayashreeBijwe Role of different metallic fillers in non-asbestos organic(NAO)friction composites for controlling sensitivity of coefficient of friction to load and speed Tribology International 43 (2010) 965–974
    [31]庄光山,王成国,王海庆.纤维在聚合物基摩擦材料中的应用[J].材料/工艺/设备,2002, (10): 27-29
    [32] Bijwe J, Indumathi J, Ghosh A K. On the Abrasive Wear Behaviour of Fabric-reinforced Polyetherimide Composites[J]. Wear, 2002, (253): 768-777
    [33]朱普应.含橡胶的摩阻材料之摩擦机理浅谈[J].固体润滑,1989,9(2):95-99
    [34]弗雷特利PK,佩恩AR著.杜成泽译.橡胶在工程中应用的理论与实践[M].北京:化学工业出版社,1985
    [35]朱玉俊.弹性体的力学改性[M].北京:北京科学技术出版社,1991.
    [36]张元民,汤希庆译.摩擦材料最近进展[M].北京:中国建筑工业出版社,1986
    [37]贾贤,周本濂,陈永潭.半金属摩擦材料与灰铸铁滑动摩擦表面层特性的分析研究[J].摩擦学学报,1995,15(2):171-176
    [38] Scieszka S F. A Study of Tribological Phenomena in Friction Couple: Brake Composite Material-steel[J]. ASLE Transactions,1982, 25(3): 337-345
    [39] Day A J. Analysis of Speed Temperature and Performance Characteristics of Automotive Drum Brake[J]. Transactions of the ASME, 1988, 110(1): 298-303
    [40]翟玉生,张金中,李安,等.无石棉自增强摩擦材料的研制与性能研究[J].摩擦学学报,1996,16(3):221-225
    [41] Zhao Q, Bahadur S. The Mechanism of Filler Action and the Criterion of Filler Selection for Reducing Wear[J], Wear, 1999, (225-229): 660-668.
    [42] Kazuya Okubo, Toru Fujii, Yuzo Yamamoto,development of bamboo-based polymer composites and their mechanical[J]. properties.Composites: Part A, 2004,35:377–383.
    [43] Seung-Hwan Lee, Siqun Wang.Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent[J].Composites: Part A, 2006,37:80–91.
    [44] Nele Defoirdt, Subhankar Biswas, Linde De Vriese, Le Quan Ngoc Tran, Joris Van Acker,Qumrul Ahsan, Larissa Gorbatikh, Aart Van Vuure, Ignaas Verpoest。Assessment of the tensile properties of coir, bamboo and jute fibre[J] .Composites: Part A,2010 ,41: 588-595.
    [45] Flexural modulus of the unidirectional and random composites made from biodegradable resin and bamboo and kenaf fibres.Shinichi Shibata, Yong Cao, Isao Fukumoto[J].Composites: Part A,2008, 39:640–646.
    [46] Hongyan Chen, Menghe Miao, Xin Ding.Influence of moisture absorption on the interfacial strength of bamboo/vinylester composites[J].Composites: Part A,2009 ,40: 2013-2019.
    [47] H. Liu, Q. Wua, G. Han , F. Yao , Y. Kojima , S. Suzuki.Compatibilizing and toughening bamboo flour-filled HDPE composites:Mechanical properties and morphologies[J].Composites: Part A,2008, 39:1891-1900.
    [48]刘丽妍.亚麻非织造织物增强复合材料的研究[D].天津工业大学硕士论文.2003.
    [49]杨亚洲.仿生哑铃型黄麻纤维增强摩擦材料[D].吉林大学博士论文.2006.
    [50] Maya Jacob, Sabu Thomas, K.T. Varughese.Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites[J]. Composites Science and Technology.2004.64:955-965.
    [51] Xu Xin, Cheng Guang Xu, Liu Fei Qing.Friction properties of sisal fibre reinforced resin brake composites[J]. Wear, 2007,262:736–741.
    [52] F. Corrales, F. Vilaseca, M. Llop, J. Giron`es, J.A. M′endez, P. Mutj`e.Chemicalmodification of jute fibers for the production of green-composites[J].Journal of Hazardous Materials, 2007,144:730–735.
    [53] Prosenjit Saha , Suvendu Manna , Sougata Roy Chowdhury , Ramkrishna Sen,Debasis Roy, Basudam Adhikari Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment[J]..Bioresource Technology, 2010,101:3182–3187.
    [54] C. Alves , P.M.C. Ferra?o , A.J. Silva , L.G. Reis , M. Freitas , L.B. Rodrigues , D.E. Alves .Ecodesign of automotive components making use of natural jute fiber composites[J]..Journal of Cleaner Production,2010, 18 :313-327.
    [55] C.M.Tian,Z.H.Shi,H.Y.Zhang.J.Z.Xu,J.R.Shi. Study on the thermal stability of wool treated with flame-retardant reagents[J]..Thermochimica Acta,1995, 284:43-439.
    [56]汤希庆,司万宝,王铁山.摩擦材料使用生产技术[M].中国摩擦密封材料协会.
    [57]滕新荣.表面物理化学[M].北京:化学工业出版社2009.8.
    [58]张美珍.聚合物研究方法[M].北京:中国轻工业出版社,2000.6.
    [59]许瑞.麻纤维复合材料高性能化的研究[D].四川大学博士论文,四川大学,2002.
    [60]杨亚洲,佟金,马云海,徐杰.改性黄麻纤维和酚醛树脂复合材料的力学性能吉林农业大学学报[J].2009,31(6):788-792.
    [61] Hanafi Ismail , M.R. Edyham , B. Wirjosentono .Bamboo fibre filled natural rubber composites: the effects of filler loading and bonding agent[J]. Polymer Testing, 2002,21: 139–144.
    [62]张世源.竹纤维及其产品加工技术[M].北京:中国纺织出版社,2008.
    [63]姜怀,邬福麟,梁洁,韩丽云.纺织材料学[M].北京:中国纺织出版社,2007.
    [64]王洪燕.羊毛碱有机溶液细化研究[D].青岛大学硕士论文,青岛大学, 2009.
    [65]刘建华.国产拉伸羊毛性能研究及产品加工[J].毛纺科技.2008,11:46-50.
    [66] ANSYS,lnc. ANSYS热分析指南.
    [67] De Almeida Agurto, Danilo, Gerges, Samir N. Y., Arenas, Jorge P, MIRE-IL methodology applied to measuring the noise attenuation of earmuff hearing protectors [J].Applied Acoustics, 2011,72:451-457.
    [68] X. G. Hua, Z. Q, Ni Chen, Y. Q. Ko, J. M, Flutter analysis of long-span bridges using ANSYS[J], Wind and Structures, 2007,10:61-82.
    [69] J. l. Zhao, K. R. Chen, Research on ANSYS slope model automatic generation based on GIS[J],Advanced Materials Research, 2011,168-170:1245-1250.
    [70] H. X. Zhang, F. S. Zhu, F. C. Wang, Numerical simulation of bond-slip relationship between FRP bars and concrete based on ANSYS, Journal of Shenyang Jianzhu University[J], 2007,23:231-234.
    [71] G. Chen, X. F. Li, D. W. Zuo, H. Y. Wang, Y. Jiang, Simulation study of the temperaturefield for squashed presetting laser cladding based on ANSYS[J], Key Engineering Materials,2011,458:319-324.
    [72] A.Tadamasa,Numerical prediction of wind turbine noise[J],Renewable Energy,2011,36:1902-1912.
    [73] Kartal, Murat Emre, Basaga, Hasan Basri, Bayraktar, Alemdar,Probabilistic nonlinear analysis of CFR dams by MCS using Response Surface Method[J].Applied Mathematical Modelling, 2011 , 35:2752-2770.
    [74] X. D. Zhang, J. Long, Z. M. Guo, Analysis on friction seal field of mechanical face seals using simulaition[J].Machinery Design & Manufacture, 2008, 2:63-64 .
    [75] A. P. Amosov, A. F. Fedotov, Finite Element Plane, Model of Thermal Conditio ns in Self Progragating High,Temperature Synthesis of Blanks in a Friable Shell [J] .Journal of Eng ineering Physics and Thermophysics, 2001 ,74:503-516.
    [76] J. Dr escher, R. Schmidt, H. Jardtke, nite Ele, Modellierung und Simulation Des Menschlichen Trommelfells[J].HNO, 1998,46: 129-134.
    [77] Y. H. Mu, N. P. Hung, K. A. Ngoi, Optimisation Design of a Piezoelectric Micropump Int Adv[J]. Manuf Technol ,1999, 15:573-576.
    [78] S. Yilmaz, FEM Untersuchung des thermodynamisch,en und thermomechnischen Verhaltens bei der Erstar ,rung Von einem Stahlgubteil, Forschung im Ingenieur ,wesen, 2002, 67; 117-122.
    [79] M. S. Kim, J. C. Choi,Y. H. Kim,G. J. Huh,C.Kim, An automated Pro cess Planning and Die Design[J].System for Quasi Ax isymmetric Cold Forging Products, 2002 , 20:201-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700