介质阻挡放电对纺织品的表面改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迄今为止纤维改性主要采用化学方法,这种方法对纤维基质有损伤、环境污染严重。低温等离子体技术不仅对环境负载小,而且等离子体的作用渗透入表皮下面的深度不超过10纳米,不会影响纤维的整体性能,因此运用等离子体对纤维表面改性具有重要意义。
     介质阻挡放电是常压下产生均匀等离子体的有效方法,它摆脱了真空条件的限制,易于进行连续化的工业处理,具有极其广阔的应用前景,已经成为低温等离子体这一研究领域中的热点。在国外,一些主要发达国家正在开展介质阻挡放电应用于大规模工业生产的研究,而国内在该领域的研究深度和广度,以及在连续工业生产中的开发应用急待加强。
     本文运用课题组自制的介质阻挡放电连续处理装置,在大气压下产生高能高密度均匀低温等离子体,对涤纶织物、羊毛毛条和可染改性细旦丙纶织物分别进行了表面改性研究。实验中针对不同的纺织材料的特点,使用了更为合理有效的处理方法。对于羊毛条的处理,运用了吹气法获得了能量适宜而均匀的常压等离子体;同时借助于密度测试这一新颖而简便的方法,表征羊毛毛条的毡缩性。
     涤纶织物由于吸湿性和抗静电性能较差等缺陷,一定程度上限制了它的广泛应用。本文使用在大气压下易放电产生均匀等离子体的氩
The fiber modifications are mainly done by chemical treatments up to now which are mostly harmful to environment and usually damage fiber substrates. The low-temperature plasma treatment is an environmentally friendly technique, and it doesn't alter the properties of fiber bulk due to the penetration within 10nm. Therefore, it is meaningful for us to achieve fiber surface modification using plasma treatment.Dielectric barrier discharge is effective in producing homogeneous plasma. Getting rid of the vacuum devices, it is especially suitable for using in modern continuous massive production, and hence has a broad prospect. Therefore, it has been the central concern in the field of low-temperature plasma. Some developed countries have made great efforts to carry out research on application of dielectric barrier discharge in the process of massive production, while the depth and scope of the
    study must be enforced in China.This paper focused on the study of surface modification of the fabrics of polyester and dyeable modified fine polypropylene as well wool tops treated by atmospheric low-temperature plasma by means of dielectric barrier discharge (DBD) designed and developed by our research group. In the experiment, we used more reasonable and effective methods according to the properties of the textiles. For example, we applied 'the blow method' to produce homogeneous plasma in the wool top treatment, and the relative felt ball density was used to test the felt-shrinkage property of wool tops.Polyester is being widely used due to its excellent properties, but it shows some inherent shortcomings such as its poor wettability and static performance. After atmospheric pressure plasma treatment in argon the wettability and the antistatic property of polyester were markedly increased and the breaking strength decreased a little. The wettability of polyester fabrics just obtained by plasma treatment was declining with increasing storage time. Fortunately, it could be improved permanently by glycerol-1-allylether (GAE) grafting using argon plasma treatment. The results showed that the suitable dosage for GAE grafting was 5%.The wool fiber is a good natural fiber and has felt-shrinkage property due to its scale structure so that its application on textile is limited. The level of anti-felt shrinkage of wool top obtained with DBD
    treatment could be significantly enhanced and the felt ball tests clearly revealed it by means of the measurement of relative felt ball density. And the fiber-to-metal friction measurements showed that the atmospheric pressure plasma treatment reduced the directional frictional effect of wool fibers, which may thus provide an anti-felt shrinkage effect to the wool fibers. At the same time, after the atmospheric pressure plasma treatment in argon the breaking strength and extension at break of wool fibers declined slowly with the treatment time.Fine polypropylene fibers which are improved in some kinds of performance are still hard to be dyed. The plasma processing at atmospheric pressure using a DBD in the mixed gas of argon and oxygen could impart evidently the effect of deeper hue of the dyeable modified fine polypropylene, and the effect didn't fall with the time. SEM photos confirmed that there were much more corrosion on the surface of the dyeable modified fine polypropylene after plasma treatment.
引文
[1] 葛丽波,于伟东.等离了体在纺织材料上应用现状的探析(上).高分子材料科学与工程,1999,15(5):22~24
    [2] Yasuda H. Plasma Chemistry of Polymer. New York: Marcel Dkker, INC, 1976: 15~52
    [3] Pavlath. E. Plasma Treatment of Natural Materials. New York: Marcel Dkker, INC, 1976: 149~173
    [4] Bradley·RH. Oxygen Plasma Modification of Wool Fiber Surface. Journal of Chemical and Biotechnology, 1993, (53): 3
    [5] 周其凤,胡汉杰等.高分了化学.北京:化学工业出版社,2001,(10)
    [6] 孙丹梅 译.等离子体技术与织物处理.国外纺织技术,2001(12):17~18
    [7] 宋心远,沈煜如.新型染整技术.北京:中国纺织出版社,1999.11
    [8] 王建明.等离子体技术及其在纺织行业的应用.国际纺织导报,1999,(3):84~86
    [9] 赵化侨.等离子体化学与工艺.中国科学技术大学出版社,1993
    [10] 傅科杰,张旺笋等.等离子体技术在纺织工业中应用及其最新进展.上海丝绸,2002(2):7~11
    [11] 陈苏.等离了体在纺织工业中的应用.纺织导报,1999,(5):80~83
    [12] 蔡兵.等离子体处理对非织造布表面润湿性的效应.非织造布,1998,(4):20~22
    [13] 陈杰瑢,低温等离子体对纤维的表面改性,纺织高校基础科学学报,1996年12月,第9卷第4期,307~313
    [14] Ioan I. Negulescu, Simona Despa, Jonathan Chen and Billie J. Collier, Characterizing polyester fabrics treated in electrical discharges of radio-frequency plasma, T. R. J., 2000, Vol. 70, No. 1, I~7
    [15] D. R. Liole, Handbook of Chemistry and Physics, CRC Press, 1994
    [16] 戴瑾瑾,等离了体技术在纺织加工这的应用,纺织学报,1996,Vol.17,No.6,60
    [17] Roshan Paul, Prakash D. Pardeshi and Sujata G. Manjrekar, Plasma treatment-an effective tool for polymer surface modification, Synthetic Fibres, 2001, Vol. 30, No. 4, 5~11
    [18] Yasuda. Plasma Polymerization. Florida, Academic. 1985
    [19] Tan K L, Kang E T et al. Macromolecules, 1993, 26
    [20] Hsiue G H, Wang C C J. Polym. Sci. Part A: Polym Chem, 1993, 31
    [21] Johnson K, Kirkhorn S. et al. J. Appl. Polym. Sci. 1996, 59
    [22] Hirotsu T, Arita A. J. Appl. Polym. Sci. 1991, 42
    [23] Gao Yahai, et al. Appl. Polym. Sci. 1999(73)
    [24] 张庆,杨国荣等.低温等离了体对聚酷织物改性效果研究.合成纤维工业,1997,23(3):5~8
    [25] 王雪燕,陈杰瑢等.低温等离子体接枝聚合用于涤纶织物改性.印染,1997,23(3):5~8
    [26] N. V. BHAT AND Y. N. BENJAMIN. Surface Resistivity Behavior of Plasma Treated and Plasma Grafted Cotton and Polyester Fabrics. Textile Research Journal, 2001, 69 (1): 38~42
    [27] A. Majid Sarmadi et. al. Improved water repellency and surface dyeing of polyester by plasma treatment. T. C. C., 1993, 25(12): 33~40
    [28] M. G.. McCord, Y. J. Hwang etc. Modifying Nylon and Polypropylene Fabrics with Atmospheric Pressure Plasma. Textile Rec. J., 2002, 72(6): 491~498
    [29] Tomiji W, Munchenl Lee. Dyeing properties of oxygen low-temperature plasma-treated wool and nylon 6 fibers with acid and basic dyes [J]. JSDC, 1996, 112(9): 233~238
    [30] C. W. KAN, K. CHAN, AND C. W. M. YUEN. Low Temperature Plasma on Wool Substrates: The Effect of the Nature of the Gas. Textile Research Journal, 2001, 69(6): 407~416
    [31] P. ERRA, R. MOLINA, D. Jocic, AND M. R. JULIA. Shrinkage Properties of Wool Treated with Low Temperature Plasma and Chitosan Biopolymer. Textile Research Journal, 2001, 69(11): 811~815
    [32] Jian Zhiwei, Chen Guang, Yuan Junhua, Miao Menghe. FTIR spectroscopic study of low temperature plasma treated wool fabric. Journal of China Textile University, English Edition 1997, 14(3): 34~40
    [33] R Indu Shekar, S K Bajpai. Effect of oxygen plasma on woollen fabric properties. Indian Journal of Fibre&Textile Research, 2000, 25(3): 229~231
    [34] Jian Zhiwei, Chen Guang, Yuan Jinhua. Plasma modification of wool: the effect of plasma gas on the properties of the wool fabric. Journal of China Textile University, English Edition 1998, 15(3): 5~10
    [35] Tahara Mitsuru, Takatsuka Tadashi, Kimura Hirokazu, Takagishi, Toru Seni Kikai Gakkai Shi. Shrinkage of wool fabrics treated with low temperature plasma and enzymes. Joumal of the Textile Machinery Society of Japan, 1997, 50(12): 77~82
    [36] 金郡潮,戴瑾瑾.等离子体处理羊毛织物防毡缩性能的研究.毛纺技术,2001,(6):19~23
    [37] 王妮译.羊毛织物的新型防毡缩处理—低温等离了体与壳聚糖沉积两步法,染整科技,2001,(1):58~61
    [38] 王秀玲译.羊毛和棉织物用低温等离了体和酶处理的机械性能和染色性能.印染译丛,1999,(3):69~75
    [39] M_(IN) S_(UN) K_(IM) A_(ND) T_(AE) J_(IN) K_(ANO). Dimensional and Surface Properties of Plasma and Silicone Treated Wool Fabrics. Textiles Res. J. 2002, 72(12): 113-120
    [40] D. Jocic. et. al. The effect of low-temperature plasma treatment on wool printing. T. C, C. & A. D. R., 2000(4): 55~59
    [41] P. R. Pearson, H. M. Lamberton. IEEEE J. Quant. Electron. 1972, QE 8: 145
    [42] R. S. Taylor. Appl. Phys. 1986, B 41: 1
    [43] B. Lacour, C. Vannier. J. Appi. Phys. 1987, 62: 754
    [44] R. Riva, M. Legentil, S. Pasquiers, V Puech. J. Phys. D: Appl. Phys. 1995, 28: 856
    [45] D. Braun, V Gibalov, G. Pietsch. Plasma Sources Sci. Technol. 1992, 1: 166
    [46] B. Elianson, U. Kogelschatz. IEEEE Trans. Plasma Sci. 1991, 19(2): 309
    [47] J. Salge. Surf. Coat. Technoi. 1996, 80: 1
    [48] L. A. Rosocha, G. K. Anderson, L. A. Bechtold, J. J. Coogan, H. G. Heck, M. Kang, W. H. McCulla, R. A. Tennant, P J. Wantuck, in: B. M. Penetrante, S. E. Schultheis (Eds.). Non-Thermal Plasma Techniques for Pollution Control, NATO ASI Series, Part B vol. G34, Springer-Verlag, Berlin-Heidelberg. 1993: 281
    [49] O. Wolf, S. Listl, M. Neiger, in: J. Janca(Ed.), Proceedings of the International Symposium on High Pressure Low Temperature Plasma Chemistry(Hakone V), Milovy, Czech Republic. 1996: 324
    [50] S. Broer, Th. Hammer, T. Kishimoto, in: G. Babucke(Ed), Proceedings of the 12th International Conference on Gas Discharges and their Applications, Greifswald, Germany. 1997: 192
    [51] S. Muler, J. Swartz, J. Ehlbeck, T. Doerk, J. Uhlenbush, in: G. Babucke (Ed.), Proceedings of the 12th International Conference on Gas Discharges and their Applications, Greifswald, Germany. 1997: 196
    [52] K. Pochner, W Nef, R. Lebert. Surf. Coat. Technol. 1995, 74-75: 394
    [53] K. Pochner, Plasmabehandlung-Funkenregen reinigt Folienober-flachen, Neue Verpackung, Huthig, Heidlberg. 1993: 4
    [54] J. F. Benhke, H. Lange, P Michel, T. Opaplinska, H. Stefen, H. E. Wagner, in: J. Janca(Ed.), Proceedings of the International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone V), Milovy, Czech Republic. 1996: 138
    [55] Engel A V, Seeliger R and Steenbeck M. Z. Physik. 1933, 85: 144
    [56] 侯健,刘先锋,候惠奇等.上海环境科学.1999,18(4):151
    [57] Zhang G Q et al. Proc. ISPC-13, Beijing: Peking Univ. Press, 1997, 1933-1938
    [58] Seiji Tokino, Tomiji Wakida, Hiroshi Uchiyama and Muncheul Leer. JSDC. 1993, 109(10): 334~335
    [59] S. Meiners, J. G. H. Salge, E. Prinz and F. Forster. Surface and Coating Technology. 1998, 98: 1121~1127
    [60] 王燕,赵艳辉,张芝涛等.DBD等离子体及其应用技术的发展.自然杂志.2002,5(24),277~282
    [61] 徐学基,褚定昌.气体放电物理.复旦大学出版社.1996
    [62] 顾彪,陈茹.辉光放电等离了体对聚丙烯纤维的表面改性.高分了通报.2003. (2):51~57
    [63] 金旺.应用等离子体技术开发成功高档面料.染整技术.2002(1)
    [64] J. R. Roth. Industrial Plasma Engineering. IOP Publishing Ltd. 1995. Chaper 1.
    [65] 天津大学物理化学教研室编.物理化学.北京:高等教育出版社,1986
    [66] 阳建斌,郑光洪等.等离子体技术对合成纤维表面改性的探讨。成都纺织高等专科学校学报,1999,16(4):5~8
    [67] 潘强余等译.高聚物的界面与粘结.北京:纺织工业出版社,1987
    [68] 陈杰瑢.低温等离了体化学及其应用.北京:科学出版社,2001
    [69] 杨业智,莫少波等.X射线光电子能谱研究低温氧等离子体对棉纤维表面改性.分析测试通报,1991,10(6):10~12
    [70] Thomas Bahners, Functional thin layer deposition by photo-chemical and plasma process, lecture in Donghua University, 2004. 10 18, Shanghai.
    [71] K. Rachel Makinson, Shrinkproofing of Wool, Marcel Dekker, Inc., New York, USA, 1979
    [72] Hesse. A, Thomas. H, Hocker. H, Zero-AOX Shrinkproofing treatment for wool top and fabric Part I. Glow discharge treatment, T. R. J., Vol. 65, No. 6, 1995, pp. 355~361
    [73] 张树均等著.改性纤维与特种纤维.中国石化出版社.1995,p31
    [74] 吴立峰等著.合成纤维着色技术.中国石化出版社.1996
    [75] 杨志云,郑利民.合成纤维工业.1998,21(3):41~43
    [76] J.R.罗思,工业等离子体过程,科学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700