低功耗高速可植入式UWB发射机与接收机芯片的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术、半导体集成技术、医疗电子技术的迅猛发展与相互融合,植入式微电子技术的研究已成为一个新兴的研究领域。无线可植入式微电子设备可以在不破坏生物体神经系统完整性与活性的同时,对生物电信号进行实时无线传输或监测,促进对生物体组织的研究。而在此领域中,相对于传统窄带无线通信技术,超宽带(UWB)无线通信技术以大信道容量及共存性好等特点,更能胜任多通道量、高精度生物电信号的传输需求。由于植入式环境对设备提供的能量与空间极为有限,因此功耗、复杂度、体积及效率等因素,成为将UWB无线通信技术应用于此方面的研究焦点与重要挑战。
     本课题研发了一套低功耗、低复杂度、高速UWB无线通信系统,提出了一套较完备的系统解决方案,并基于0.18m CMOS工艺研发了触发式、低功耗UWB发射机芯片、基于滤波与整形技术的低复杂度UWB发射机芯片、以平方结合低通滤波为检测机制的UWB接收机芯片等专用芯片。课题受国家自然科学基金“生物医学用植入式无线能量传输及射频集成电路的研究”(60976026)项目资助。
     所研发的触发式、低功耗UWB发射机芯片集成了开关键控(OOK)极窄脉冲产生器、差分三角极窄脉冲产生器、开关压控环形振荡器(ON-OFF VCRO)、射频缓冲器等关键电路。芯片能够产生3~5GHz、250Mbps的UWB信号。芯片单位比特能耗20pJ,射频旁瓣抑制率>30dB,面积0.08mm~2。
     所研发的基于滤波与整形技术的低复杂度UWB发射机芯片集成了OOK极窄脉冲产生器、滤波与整形单元、辐射功率可调的UWB功放等关键电路。芯片能够产生3~5GHz、250Mbps的UWB信号。芯片单位比特能耗8pJ/bit,辐射峰值功率谱-30~-50dBm可调,射频旁瓣抑制率>20dB,面积0.32mm~2。
     所研发的以平方结合低通滤波为检测机制的UWB接收机芯片集成了UWB低噪放、UWB有源巴伦、平方器、低通滤波器、宽带压控增益放大器、高速判决与基带接口、带隙基准源等关键电路。芯片能够接收3~5GHz、最高250Mbps的UWB信号,接收灵敏度-79dB、误比特率<10-4、输入匹配<-10dB、功耗<26mW,面积2mm~2。
     论文主要研究成果及创新点如下:
     (1)创新性地提出了具有互补开关结合自偏置技术的ON-OFF VCRO以及具有触发式交替互补推拉电荷泵技术的差分三角极窄脉冲产生器,通过新颖的振荡环路匹配互补通断方式,使触发式UWB发射机芯片无需集成电感电容等大面积的滤波单元,即可以很小的芯片面积辐射出具有优异频谱效率且满足美国联邦通信委员会(FCC)频谱规范的UWB射频信号;以快速传输响应的间歇性、触发式的工作模式,使芯片获得了很低的功耗,并可提供高速的无线传输能力。
     (2)通过电阻电容(RC)并联反馈技术,提出了新型的共栅极输入、电流模输出的UWB功率放大器,使基于滤波与整形技术的UWB发射机芯片实现超宽频带范围的输出匹配;并且可以提供20dB的辐射功率可调范围,使芯片可满足不同植入式环境对辐射功率强度的需求。
     (3)提出了输入串联非对称电感及具有自偏置的电阻电容电感(RCL)并联负反馈技术,实现了很高增益平坦度的新型推挽式UWB低噪放,保证了UWB接收机芯片的信噪比,实现了超宽频带范围的输入匹配性能。
     (4)基于相位纠偏思想,提出了具有相位纠偏功能的新型UWB有源巴伦,使其输出的差分射频信号具有很低的差分相位偏差,保证了UWB接收机芯片的差分匹配一致性与增益稳定性。
     (5)提出了新型的高线性度平方器,该电路通过对工作于线性区的两个MOS管的栅极之间与两个MOS管的源漏分别输入差分射频信号,实现乘法或平方功能,使电路输出信号中不包含与输入射频信号相关的多次项。该电路除了可用于平方之外还可用于超高频的混频。
     (6)基于电感与电容的零极点补偿原理,提出了新型的宽带压控增益放大器(VGA),电路通过有源电感负载网络,在保证电路较低的物理实现面积的同时,获得了线性放大带宽的显著拓宽,保证了UWB接收机提供0~40dB可调的增益动态范围。
     本论文的研究成果不仅可以对生物医用植入式高速无线通信的研究提供一定的技术参考,也可以用于如室内无线互联等对功耗有苛刻要求的高速无线通信应用。
With the rapid development and combination of information technology, semiconductorintegration technology, biomedical electronics technology, the implantable microelectronictechnology has become an emerging research field. Without destroying the integrity andactivity of the biological nervous system, wireless implantable microelectronic devices cantransmit and monitor the bio-electricity signal in real time, promoting the research of livingorganism tissue. In this field, compared to traditional narrowband wireless communicationtechnology, UWB wireless communication technology has the advantages of large channelcapacity and good coexistence which is benefit for transmitting the multi-channel andhigh-precision bio-electricity signals. The implantable environment provides extremelylimited energy and space to in-vivo devices. Therefore, power, complexity, volume andefficiency become the focuses and key challenges of UWB wireless communicationtechnology applied in this field.
     In this thesis, a low-power, low-complexity, high-speed UWB wireless communicationsystem and systematic design solution have been studied. Baesd on0.18m CMOStechnology, several chips have been implemented, such as a low-power UWB transmitteroperating in burst mode, a low-complexity UWB transmitter based on filtering and shaping, alow-complexity UWB squarer-filter receiver. The above study was supported by the NaturalScience Foundation of China (60976026).
     The proposed low-power UWB transmitter operating in burst mode integrates OOKnarrow pulse generator, differential triangular narrow pulse generator, ON-OFF VCRO, RFbuffer, etc. The chip can generate3-5GHz UWB RF signal with a sidelobe rejection of morethan30dB with a low energy consumption of20pJ/bit at250Mbps and a small core chipsize of0.08mm~2.
     The proposed low-complexity UWB transmitter based on filtering and shaping techniqueintegrates OOK narrow pulse generator, filtering and shaping circuits, a novel UWB PA withtunable radiation power, etc. The chip can generate3-5GHz UWB RF signal with a sideloberejection of more than20dB with a low energy consumption of8pJ/bit at250Mbps, atunable radiation peak power of-30~-50dBm, and a core chip size of0.32mm~2.
     The proposed low-complexity UWB squarer-filter receiver chip integrates UWB LNA,UWB active balun, squarer, low-pass filter, wide band VGA, high-speed comparator andbase-band interface, bandgap reference, etc. The chip can receive3-5GHz UWB RF signalwith the highest data rate of250Mbps, a receiving sensitivity of-79dBm, a bit error ratelower than10-4, an input matching lower than-10dB, a power consumption lower than26mW and a chip size of2mm~2.
     The achievements of this thesis are as follows:
     First, combining innovative complementary switch with self-biased technique andtriangular narrow pulse generator with push-pull charge pump technique are proposed. Thenovel ON-OFF VCRO driven by triangular narrow pulses is realized to generate the UWB RFsignal. The output PSD of the proposed low-power UWB transmitter operating in burst modeshows excellent spectral efficiency in compliance with FCC mask, without a large area of LCfilter and shaper. Due to operation in burst mode, this chip achieves low power consumption,high speed and excellent radiation efficiency.
     Second, a new type of gate input and current mode output UWB power amplifier (PA) isproposed based on RC parallel feedback technique. The novel PA makes the proposedlow-complexity UWB transmitter based on filtering and shaping technique satisfy ultra-widefrequency band impedance matching, provide a range of20dB tunable radiation power andmeets the requirement of different implantable environment.
     Third, by introducing an asymmetric inductor in series with the NMOS gate combiningwith RCL parallel negative feedback technique, a novel push-pull UWB LNA with high gainflatness is proposed. It makes the proposed UWB receiver get good signal-to-noise ratio andinput impedance matching of ultra-wide frequency band.
     Fourth, the phase correction circuit in the UWB active balun is designed to obtain anextreme low differential phase deviation for the proposed UWB receiver. It garantees thedifferential matching and gain stability of the UWB receiver.
     Fifth, a new high linearity squarer with a pair of linear region MOS transistors isproposed to implement multiplication or square. Due to no multiple-order nonlinear term inthe output of this squarer, it also can be used as a mixer of ultra high frequency.
     Sixth, the zero-pole compensation of inductor and capacitor are adopted to implement a novel wideband VGA. The circuit with active inductor load achieves a small physical area,expands the bandwidth of the VGA and ensures an adjustable dynamic range of UWBreceiver from0to40dB.
     In summary, the results of this thesis not only can be used as a reference for the researchof biomedical implantable high-speed wireless communication, but also can be used forindoor wireless interconnect applications which has a harsh demand for power consumptionand transmission speed.
引文
[1] J.F. Rizzo, S. Miller, J. L. Wyatt, D. Edell. Development of a silicon retinal implant–reproducibility of electrically-evoked visual cortical responses in rabbits[J]. InvestigativeOphthalmology&Visual Science,1995,36(4): S927-S927
    [2] Moo Sung Chae, Zhi Yang, Yuce, M.R., Linh Hoang, Liu W. A128-channel6mWwireless neural recording IC with spike feature extraction and UWB transmitter[J]. NeuralSystems and Rehabilitation Engineering,2009,17(4):312-321
    [3] W. Liu, E. McGucken, M. Clemments, K. Vichienchom, C. Demarco, M. S. Hammayun, E.de Juan, J. Weiland, R. Greenberg. The engineering of a prototype retinal prosthesis[J].Investigative Ophthalmology&Visual Science,1999,40(4): S782-S782
    [4] A. M. Kuncel, S. E. Cooper, B. R. Wolgamuth, M. A. Clyde, S. A. Snyder, E. B.Montgomery, A. R. Rezai, W. M. Grill. Clinical response to varying the stimulusparameters in deep brain stimulation for essential tremor[J]. Movement Disorders,2006,21(11):1920-1928
    [5] Santhanam, G., Linderman, M.D., Gilja, V., Afshar, A., Ryu, S.I., Meng, T., Shenoy, K..HermesB: a continuous neural recording system for freely behaving primates[J]. IEEETransactions on Biomedical Engineering,2007,54(11):2037-2050
    [6] M. Canepari, L. Nelson, G. Papageorgiou, et al. Photochemical and pharmacologicalevaluation of7-nitroindolinyl-and4-methoxy-7-nitroindolinyl-amino acids as novel, fastcaged neurotransmitters[J]. J Neurosci Methods,2001,112(1):29-42
    [7] E. S. Boyden, F. Zhang, E. Bamberg, et al. Millisecond-timescale, genetically targetedoptical control of neural activity[J]. Nat Neurosci,2005,8(9):1263-l268
    [8] M. Volgraf, P. Gorostiza, R. Nurnano, et a1. Allosteric control of an ionotropic glutamatereceptor with an aptical switch[J]. Nat Chem Biol,2006,2(1):47-52
    [9] H. Hirase, V. Nikolenko, J. H. Goldberg, et a1. Multiphoton stimulation of neurons[J]. JNeurobiol,2002,51(3):237-247
    [10] F. Zhang, L. P. Wang, M. Braunder, et a1. Multimodal fast optical interrogation of neuralcircuitry[J]. Nature,2007,446(7136):633-639
    [11] Xu Zhang, Weihua Pei, Qiang Gui, Hongda Chen. Low power integrated circuits forwireless neural recording applications[A]. IEEE Asia Pacific Conference on Circuits andSystems[C]. Macao, SAR.: IEEE,2008:650-653
    [12] Yuce, M.R., Wentai Liu, Moo Sung Chae, Jung Suk Kim. A Wideband telemetry unit formulti-channel neural recording systems[A]. IEEE International Conference onUltra-Wideband[C]. Singapore: IEEE,2007:612-617
    [13] Yuce, M.R., Ho Chee Keong, Moo Sung Chae. Wideband communication for implantableand wearable systems[J]. Microwave Theory and Techniques,2009,57(10):2597-2604
    [14]“Health Informatics-PoC Medical Device Communication-Part00101:Guide--Guidelines for the Use of RF Wireless Technology”, IEEE Std11073-00101-2008, pp.1-99
    [15] Mehmet Rasit, Tharaka N., Dissanayke, Ho Chee Keong. Wideband technology formedical detection and monitoring[R].Australia: The University of Newcastle,2010
    [16] Sumin Yun, Kihyun Kim, Sangwook Nam. Outer-wall loop antenna for ultrawidebandcapsule endoscope system[J]. Antennas and Wireless Propagation Letters,2010,9:1135-1138
    [17] Bonfanti, A., Ceravolo, M., Zambra, G., Gusmeroli, R.. A multi-channel low-powersystem-on-chip for single-unit recording and narrowband wireless transmission of neuralsignal[A]. Annual International Conference of the IEEE Engineering in Medicine andBiology Society,2010[C] BuenosAires: IEEE,2010:1555-1560
    [18] Liuqing Yang, Giannakis, G.B.. Ultra-wideband communications: an idea whose time hascome[J]. Signal Processing Magazine,2004,21(6):26-54
    [19] Aiello G.R., Rogerson G.D.. Ultra-wideband wireless systems. Microwave Magazine,2003,4(2):36-47
    [20] Hasan, Z., Phuyal, U., Yadav, V.. ISI-free pulses for high-data-rate ultra-widebandwireless systems[J]. Canadian Journal of Electrical and Computer Engineering,2007,32(4):187-192
    [21] Sakib, M.N., Hraimel, B., Xiupu Zhang. Impact of optical transmission on multibandOFDM ultra-wideband wireless system with fiber distribution[J]. Journal of LightwaveTechnology,2009,27(18):4112-4123
    [22] Y. Gao, Y.J. Zheng, S.X. Diao. Low-power ultrawideband wireless telemetry transceiverfor medical sensor applications[J]. IEEE Biomedical Engineering,2011,58(3):768-772
    [23] H. Yu, K. Najafi. Circuitry for a wireless microsystem for neural recordingmicroprobes[A]. The23rd Annual International Conference of the IEEE Engineering inMedicine and Biology Society[C]. Turkey: IEEE,2001:761-764
    [24] Pedro Irazoqui-Pastor. Transcutaneous inductively powered neural recording system[D].USA: the University of California LosAngeles,2003
    [25] Eric Y. Chow, et al. Implantable wireless telemetry boards for in vivo transoculartransmission[J]. IEEE Transactions on Microwave Theory and Techniques,2008,56(12):3200-3208
    [26] Louis-Francois Tanguay, Mohamad Sawan. Process Variation Tolerant LC-VCODedicated to Ultra-Low Power Biomedical RF Circuits[A]. The9th InternationalConference on Solid-State and Integrated-Circuit Technology[C]. Beijing: IEEE,2008:1585-1588
    [27] A. M. Sodagar, G. E. Perlin, Yao Ying, K. Najafi, K. D. Wise. An implantable64-channelwireless microsystem for single-unit neural recording[J]. IEEE Journal of Solid-StateCircuits,2009,44(9):2591-2604
    [28] A. M. Sodagar, K. D. Wise, K. Najafi. A wireless implantable microsystem formultichannel neural recording[J]. IEEE Transactions on Microwave Theory andTechniques,2009,57(10):2565-2573
    [29] R. R. Harrison, R. J. Kier, C. A. Chestek, V. Gilja, P. Nuyujukian, S. Ryu, B. Greger, F.Solzbacher, and K. V. Shenoy. Wireless neural recording with single low-powerintegrated circuit[J]. IEEE Trans. Neural Syst. Rehab. Eng.,2009,17(4):322-329
    [30] Seung Bae Lee, Hyung-Min Lee, M. Kiani, Uei-Ming Jow, Maysam Ghovanloo. Aninductively powered scalable32-channel wireless neural recording system-on-a-chip forneuroscience applications[J]. IEEE Transactions on Biomedical Circuits and Systems,2010,4(6):360-371
    [31] Xinkai Chen, Xiaoyu Zhang, Linwei Zhang, Xiaowen Li, Nan Qi, Hanjun Jiang, ZhihuaWang. A wireless capsule endoscope system with low-power controlling and processingASIC[J]. IEEE Transactions on Biomedical Circuits and Systems,2009,3(1):11-22
    [32] Tianjia Sun, Xiang Xie, Guolin Li, Yingke Gu, Yangdong Deng, Zhihua Wang. Atwo-hop wireless power transfer system with an efficiency-enhanced power receiver formotion-free capsule endoscopy inspection[J]. IEEE Transactions on BiomedicalEngineering,2012,59(11):3247-3254
    [33] Shuo Guan, Jingren Gu, Zhonghan Shen, Junyu Wang, Yue Huang, Andrew Mason. Awireless powered implantable bio-sensor tag system-on-chip for continuous glucosemonitoring[A]. Biomedical Circuits and Systems Conference [C]. San Diego, CA: IEEE,2011:193-196
    [34] Haichao Han, Lingzhi Fu, Min Li, Junyu Wang. A configurable RFID sensor tagbaseband conforming to IEEE1451.7standard[A].20123rd International Conference onthe Internet of Things[C]. Wuxi: IEEE,2012:63-67
    [35] Shu-Shan Xie, Zhi-Gong Wang, Xiao-Ying Lü, Wen-Yuan Li, Hai-Xian Pan. Afour-channel microelectronic system for neural signal regeneration[A].3rd InternationalConference of Bioinformatics and Biomedical Engineering[C]. Beijing: IEEE,2009:1-4
    [36] Zhi-Gong Wang, Xiao-Ying Lv, Wen-Yuan Li, Xiaoyan Shen, Zonghao Huang, XintaiZhao, Liangjie Du, Zheng-Lin Jiang, Xingya Gao, Guohua Wang, Pan Haixian, CunliangZhu, Xin Gong, Lei Qiu. Signal regeneration and function rebuilding usingmicroelectronic neural bridge between two far-separated nervous systems[A]. IEEE2011International Conference on Body Sensor Networks[C]. Dallas, TX: IEEE,2011:25-28
    [37] Xiaohong Sui, Fei Tan, Ting Liang, Wei Chen, Gang Li, Qiushi Ren. Encapsulation andevaluation of a MEMS-based flexible microelectrode array for acute in-vivoexperiment[A].2nd International Conference on Biomedical Engineering andInformatics,2009[C]. Tianjin: IEEE,2009:1-6
    [38] Li Sheng, Hu Jie, Chai Xinyu, Ren Qiushi, Peng Yinghong. Research on and design ofvisual prosthesis based on visual information processing[J]. Journal of BiomedicalEngineering,2012,29(4):754-759
    [39] Weihong Chen, Yimin Yang, Shuming Ye. Study on implantable low-power consumptionwireless system for small animal monitoring[J]. Journal of Transducer and MicrosystemTechnologies,2012,34(4):60-62
    [40] MingJian Zhao, Bin Li, ZhaoHui Wu.20-pJ/pulse250Mbps low-complexity CMOSUWB transmitter for3-5GHz applications[J]. IEEE Microwave and WirelessComponents Letters,2013,23(3):158-160
    [41] XianBo Li, Bin Li, ZhaoHui Wu. Compact low-power CMOS squarer for high-speednoncoherent UWB receiver[J]. Electron. Lett.,2012,48(19):1237-1238
    [42] Wang, K., Wu, Z.H.; Zhao, M.J.; Li, B. A low-power and low-complexitychopper-stabilized amplifier[A].2011International Conference of Electron Devices andSolid-State Circuits[C]. Taijin: IEEE,2011:1-2
    [43] Liang K, Xu Z, Yuan W, et al. A system of portable ECG monitoring based on Bluetoothmobile phone[C].2011International Symposium on IT in Medicine and Education(ITME), Guangzhou: IEEE,2011:309-312
    [44] Haijun Wu, Bin Li, Minhan Zhao, et al. An1.2V8-bit1-MS/s single-input res-capsegment SAR ADC for temperature sensor in LTE[A].2011International Conference ofElectron Devices and Solid-State Circuits[C]. Tianjin: IEEE,2011:1-2
    [45] Zhaohui Wu, Xu zhang, Zhiming Liang, Bin Li. CMOS implementation of a low-powerBPSK demodulator for wireless implantable neural command transmission[J]. Journal ofSemiconductors,2012,33(5):113-119
    [46] Sui Xiaohong, Pei Weihua, Zhang Ruoxin, Lu Lin, Chen Hongda, A MicromachinedSiO2/Silicon Probe for Neural Signal Recordings.[J] Chinese Physics Letters,2006,23(7):1932-1934
    [47] Xu Zhang, Weihua Pei, Beiju Huang, Jin Chen, Ning Guan, Hongda Chen. Implantablemicrosystem for wireless neural recording applications[A].2009IEEE/ICMEInternational Conference on Complex Medical Engineering[C]. USA: IEEE/ICME,2009:1-4
    [48] Zhang X, Pei W H, Huang B J, Wang S J, Guan N, Guo K, Wang Y, Gui Q, Chen J, WangK, Wu H J, Li X X, Li K, Chen H D. Implantable CMOS neuro-stimulus chip for visualprosthesis[J]. Science China-Information Sciences,2011,54(4):898-908
    [49] SanYuan Chen, WeiHua Pei, Qiang Gui, Hui Zhao, YuanFang Chen, HongDa Chen.Integrated optrode array for neural stimulating and recording[A].2012IEEE BiomedicalCircuits and Systems Conference[C]. Hsinchu: IEEE,2012:196-199
    [50] Zanyun Zhang, Zan Zhang, Beiju Huang, et al. CMOS-compatible vertical gratingcoupler with quasi mach-zehnder characteristics[J]. Photonics Technology Letters,2013,25(3):224-227
    [51] Zhang Xu, Pei Weihua, Huang Beiju, Chen Hongda. Low power CMOS preamplifier forneural recording applications[J]. Journal of Semiconductors,2010,31(4):62-67
    [52] L. Huang, X. Zhang, N. Guan, S. Chen, Y. Gui, W. Pei, H. Chen, Real-time multi-channelsystem for neural spikes acquisition and detection[A]. IEEE International NEWCASConference2012[C]. Montreal, Canada: IEEE,2012:149-152
    [53] Xu Zhang, Weihua Pei, Beiju Huang, Hongda Chen. A CMOS Chip with ActiveImaging and Stimulation Pixels for Implantable Retinal Prosthesis[A].2010IEEEBiomedical Circuits and Systems Conference[C]. Paphos: IEEE,2010,98-101
    [54] Rohde,U.L., Newkirk,D.P. RF/Microwave circuit design for wireless applications[M].John Wiley&Sons,2004:40-100
    [55] Cavallaro M, Copani T, Palmisano G. A gaussian pulse generator for millimeter-waveapplications[J]. IEEE Transactions on Circuits and Systems I: Regular Papers,2010,57(6):1212-1220
    [56] Maria-Gabriella Di Benedetto, Guerino Giancola. Understanding ultra wide band radiofundamentals[M]. New Jersey: Prentice Hall,2004:111-220
    [57] Bourdel, Y. Bachelet, J. Gaubert, R. Vauche, O. Fourquin, N. Dehaese, and H.Barthelemy. A9-pJ/Pulse1.42-Vpp OOK CMOS UWB pulse generator for the3.1–10.6-GHz FCC band[J]. IEEE Transactions on Microwave Theory and Techniques,2010,58(1):65-73
    [58] J. He and Y.P. Zhang. A CMOS differential fifth-derivative Gaussian pulse generator forUWB applications[J]. Microwave and Optical Technology Letters,2010,52(8):1849-1852
    [59] Kim. Chul, and S. Nooshabadi. Design of a tunable all-digital UWB pulse generatorCMOS chip for wireless endoscope[J]. IEEE Transactions on Biomedical Circuits andSystems,2010,4(2):118-124
    [60] S. X. Diao, Y. J. Zheng, C. H. Heng. A CMOS ultra low-power and highly efficientUWB-IR transmitter for WPAN applications[J]. IEEE Trans. Circuits and Systems II:Express Briefs,2009,56(3):200-204
    [61] Anh-Tuan P, Jeongseon L, Krizhanovskii V, et al. Energy-efficient low-complexityCMOS pulse generator for multiband UWB impulse radio[J]. IEEE Transactions onCircuits and Systems I: Regular Papers,2008,55(11):3552-3563
    [62] Sanghoon S, Dong-Wook K, Songcheol H. ACMOS UWB pulse generator for6–10GHzapplications[J]. Microwave and Wireless Components Letters,2009,19(2):83-85
    [63] Witrisal K, Leus G, Janssen G, et al. Noncoherent ultra-wideband systems[J]. IEEESignal Processing Magazine,2009,26(4):48-66
    [64] Zou Zhuo, Ruan Yue, Zheng Li-Rong, et al. Impulse UWB Energy detection receiverwith energy offset synchronization scheme[A]. IEEE International Conference onUltra-Wideband,2009[C]. Vancouver, Canada: IEEE,2009:540-544
    [65] Van Helleputte N, Gielen G. A70pJ/pulse analog front-end in130nm CMOS for UWBimpulse radio receivers[J]. IEEE J. Solid-State Circuits,2009,44(7):1862-1871
    [66] Faranak Nekoogar. Ultra-Wideband Communications: Fundamentals and applications[M].USA: Prentice Hall,2006:1-40,69-99
    [67] MingJian Zhao. The Design of UWB-NFC Component Interconnect RF Receiver SOCChip[D]. Guilin: Guilin University of Electronic Technology
    [68] MingJian Zhao, Sheng Zhang, XiaoKang Lin. A Chip Solution for UWB-NFC Receiverin CMOS0.18um Technology[A].2010Proceedings of the6th International WirelessCommunications and Mobile Computing Conference[C]. Caen, France: ACM,2010:839-842
    [69] Qiuming Zhao, Mingjian Zhao, Weidong Wang. A0.18um low-voltage and high-speedintegrated op-amp with high PSRR[J]. Microelectronics,2011,41(1):39-43
    [70] Chi Baoyong Yu Zhiping Shi Bingxue. Analysis and design of CMOS RF integratedcircuits[M]. China: Tsinghua University Press.2006:317-397
    [71] Signals and systems[M].2nd Edition. USA: Prentice Hall,2002:654-721
    [72] Robert L. Boylestad, Louis Nashelsky. Electronic devices and circuit theory[M].11thEdition. USA: Prentice Hall,2012:493-538
    [73] Phillip E. Allen, Douglas R. Holberg. CMOS analog circuit design[M].2nd Editon. USA:Oxford University Press,2002:202-263
    [74] Wei Tang, Eugenio Culurciello. A low-power high-speed ultra-wideband pulse radiotransmission system[J]. IEEE Transactions on Biomedical Circuits and Systems,2009,3(5):286-292
    [75] H.W. Chung, C.Y. Hsu, C.Y Yang, K.F. Wei, H.R. Chuang. A6-10GHz CMOS poweramplifier with an inter-stage wideband impedance transformer for UWB transmitters[A].38th European Microwave Conference,2008[C].Amsterdam: IEEE,2008:305-308
    [76] S.A.Z. Murad, R.K. Pokharel, A.I.a. Galal, R. Sapawi, H. Kanaya, K. Yoshida. Anexcellent gain flatness3.0-7.0GHz CMOS PA for UWB applications[J]. IEEEMicrowave and Wireless components Letters,2010,20(9):510-512
    [77] S.A.Z. Murad, R.K. Pokharel, H. Kanaya, K. Yoshida. A3.0-7.5GHz CMOS UWB PAfor group1~3MB-OFDM application using current-reused and shunt-shunt feedback[A].International Conference on Wireless Communications&Signal Processing,2009[C].Nanjing: IEEE,2009:1-4
    [78] Chang-Wan Kim, Min-Suk Kang, Phan Tuan Anh, Hoon-Tee Kim, Sang-Gug Lee. Anultra-wideband CMOS low noise amplifier for3-5GHz UWB system[J]. IEEE journalof Solid-State Circuits,2005,40(2):544-547
    [79] S. A. Z. Murad, M. M. Shahimim, R. K. Pokharel, H. Kanaya, K. Yoshida. A6–10.6GHzCMOS PA with common-gate as an input stage for UWB transmitters[A].2011IEEERegion10Conference[C]. Bali: IEEE,2011:607-610
    [80] R. Sapawi, R. K Pokharel, D.A.A. Mat, H. Kanaya, K. Yoshida. A3.1-6.0GHz CMOSUWB power amplifier with good linearity and group delay Variation[A].2011Asia-Pacific Microwave Conference Proceedings[C]. Melbourne, VIC: IEEE,2011:9-12
    [81] R. Sapawi, R.K. Pokharel, S.A.Z. Murad, A. Anand, N. Koirala, H. Kanaya, K. Yoshida.Low group delay3.1-10.6GHz CMOS power amplifier for UWB applications[J]. IEEEMicrowave and Wireless Components Letters,2012,22(1):41-43
    [82] Rui Xu, Yalin Jin, Cam Nguyen. Power-efficient switching-based CMOS UWBtransmitters for UWB communications and radar systems[J]. IEEE Transactions onMicrowave Theory and Techniques,2006,54(8):3271-3277
    [83] Hui Zheng, S. Lou, Dongtian Lu, Cheng Shen, Tatfu Chan, H. C. Luong. A3.1GHz–8.0GHz single-chip transceiver for MB-OFDM UWB in0.18-um CMOS Process[J]. IEEEJournal of Solid-State Circuits,2009,44(2):414-426
    [84] Paul Leroux, Johan Janssens, Michiel Steyaert. A0.8-dB NF ESD-protected9-mWCMOS LNA operating at1.23GHz[J]. IEEE J. Solid-State Circuits,2002,37(6):760-765
    [85] Mou Shouxian, Ma Jian-Guo, Yeo Kiat Seng, Do Manh Anh. A modified architectureused for input matching in CMOS low-noise amplifiers[J]. IEEE Trans. Circuits andSystems II: Express Briefs,2005,52(11):784-788
    [86] Fred Tzeng, Amin Jahanian, Payam Heydari. A multiband inductor-reuse CMOSlow-noise amplifier[J]. IEEE Trans. Circuits and Systems II: Express Briefs,2008,55(3):209-213
    [87] Liang-Hung Lu, Hsieh-Hung Hsieh, Yu-Shun Wang. A Compact2.4/5.2-GHz CMOSdual-band low-noise amplifier[J]. IEEE Microwave and Wireless Components Letters,2005,15(10):685-687
    [88] Hyejeong Song, Huijung Kim, Kichon Han, et al. ASub-2dB NF dual-band CMOS LNAfor CDMA/WCDMA applications[J]. IEEE Microwave and Wireless ComponentsLetters,2008,18(3):212-214
    [89] T. H. Lee.The design of CMOS radio-frequency integrated circuits [M].2ndEdition.Cambridge, U.K.: Cambridge Univ. Press,2004:373-380
    [90] Derek K. Shaeffer, Thomas H. Lee. A1.5-V,1.5-GHz CMOS low noise amplifier [J].IEEE J. Solid-State Circuits,1997,32(5):745-759
    [91] Trung-Kien Nguyen, Chung-Hwan Kim, Gook-Ju Ihm, et al. CMOS low-noise amplifierdesign optimization techniques[J]. IEEE Trans. Microwave Theory and Techniques,2004,52(5):1433-1442
    [92] Shih-Fong Chao, Jhe-Jia Kuo, Chong-Liang Lin. A DC-11.5GHz low-power, widebandamplifier using splitting-load inductive peaking technique[J]. IEEE Microwave andWireless Components Letters,2008,18(7):482-484
    [93] Qiang-Tao Lai, Jun-Fa Mao. A0.5–11GHz CMOS low noise amplifier usingdual-channel shunt technique[J]. IEEE Microwave and Wireless Components Letters,2010,20(5):280-282
    [94] A. Meaamar, B. C. Chye, D. M. Anh, Y. K. Seng. A3–8GHz low-noise CMOSamplifier[J]. IEEE Microw. Wireless Compon. Lett.,2009,19(4):245–247
    [95] Michael T. Reiha, John R. Long. A1.2V reactive-feedback3.1-10.6GHz low-noiseamplifier in0.13um CMOS[J]. IEEE J. Solid-State Circuits,2007,42(5):1023-1033
    [96] Yi-Jing Lin, Shawn S. H. Hsu, Jun-De Jin, et al. A3.1–10.6GHz ultra-wideband CMOSlow noise amplifier with current-reused technique[J]. IEEE Microwave and WirelessComponents Letters,2007,17(3):232-234
    [97] Hsi-Han Chiang, Fu-Chien Huang, Chao-Shiun Wang, Chorng-Kuang Wang. A90nmCMOS V-band low-noise active balun with broadband phase-correction technique[J].IEEE Journal of Solid-State Circuits,2011,46(11):2583-2591
    [98] H. Koizumi, S. Nagata, K. Tateoka, K. Kanazawa, D. Ueda. A GaAs single balancedmixer MMIC with built-in active balun for personal communication systems[A]. IEEE1995Microwave and Millimeter-Wave Monolithic Circuits Symposium[C]. Digest ofPapers, Orlando, USA: IEEE:1995:77-80
    [99] Dengjun Lai, Yingmei Chen, Xiaodong Wang, Xuehui Chen. ACMOS single-differentialLNA and current bleeding CMOS mixer for GPS receivers[A].201012th IEEEInternational Conference on Communication Technology[C]. Nanjing: IEEE,2010:677-680
    [100] Bo-Jiun Huang, Bo-Jr Huang, Kun-You Lin, Huei Wang. A2–40GHz active balunusing0.13CMOS process[J]. IEEE Microwave and Wireless Components Letters,2009,19(3):164-166
    [101] X. B. Li, M.J. Zhao, Z. H. Wu, B. Li. A high-linearity fully-differential mixer[A].2011International Conference of Electron Devices and Solid-State Circuits, Tianjing: IEEE,2011:17-18
    [102] Z. Zou, D. S. Mendoza, P. Wang, Q. Zhou, J. Mao, F. Jonsson, H. Ten-hunen, L.-R.Zheng. A low-power and flexible energy detection IR-UWB receiver for RFID andwireless sensor networks[J]. IEEE Trans. Circuits Syst. I,2011,58(7):1470-1482
    [103] G. Giustolini, G. Palmisano, G. Palumbo.1.5V power supply CMOS voltage squarer[J].Electron. Lett.,1997,33(13):1134-1135
    [104] S. Solda, M. Caruso, A. Bevilacqua, A. Gerosa, D. Vogrig, A. Neviani. A5Mb/sUWB-IR transceiver front-end for wireless sensor networks in0.13mm CMOS[J].IEEE J. Solid-State Circuits,2011,46(7):1636-1647
    [105] H. C. Chen, C. C. Meng, S. S. Lu.2.4GHz CMOS double balance Gilbert cellmicromixer[J]. Microw. Opt. Techno. Lett.,2001,28(4):251-253
    [106] Ching-Piao Liang, Pei-Zong Rao, Tien-Jien Huang, Shyh-Jong Chung. A2.45/5.2GHzimage rejection mixer with new dual-band active notch filter[J]. IEEE Microwave andWireless Components Letters,2009,19(11):716-718
    [107] A. Motieifar, Z. A. Pour, G. Bridges, C. Shafai, L. Shafai. An ultra wideband (UWB)mixer with0.18um RF CMOS technology[A]. Canadian Conference on Electrical andComputer Engineering,2006[C]. Ottawa, Canada: IEEE,2006:697-700
    [108] Hanbin Dai, Yuming Zhang, Yimen Zhang, Hui Guo. Optimized Design of a CMOSAnalog Multiplier with Wide Input Range[J]. Modern Electronics Technique,2008,31(1):140-143
    [109] Z. Q. Li, X. W. Sun. A CMOS differential tesla-volt multiplier cell[J]. IEEE ElectronDevice Letters,2004,25(5):326-327
    [110] Chunhong Chen, Zheng Li. A low-power CMOS analog multiplier[J]. IEEETransactions on Circuits and Systems II: Express Briefs,2006,53(2):100-104
    [111] Yuh-Shyam Hwang, Ho-Cheng Lin. A new CMOS analog front end for RFID tags[J].IEEE Transactions on industrial electronics,2009,56(7):2299-2307
    [112] Ho S S K, Saavedra C E. A CMOS broadband low-noise mixer with noisecancellation[J]. IEEE Transactions on Microwave Theory and Techniques,2010,58(5):1126-1132
    [113] Kim N, Aparin V, Larson L E. A resistively degenerated wideband passive mixer withlow noise figure and high IIP2[J]. IEEE Transactions on Microwave Theory Techniques,2010,58(4):820-830
    [114] Poobuapheun N, Chen W-H, Boos Z, Niknejad A. A1.5V0.7-2.5-GHz CMOSquadrature demodulator for multiband direct-conversion receivers[J]. IEEE Journal ofSolid-State Circuits,2007,42(8):1669-1677
    [115] Pan Z L, Jiang P C, Zhang L, et al. Low flicker noise and high linearity passive mixer in0.18μm CMOS for direct conversion receiver[A]. IEEE Asia Pacific Conference onPostgraduate Research in Microelectronics&Electronics[C]. Shanghai: IEEE Circuitsand Systems Society,2009:21-24
    [116] Mengmeng Liu, Sheng Zhang, Shuo Wang, et al. High-speed and low-complexityanalog automatic gain control loop for UWB receiver[J]. Journal of Circuits andSystems,2010,15(2):70-74
    [117] Zhiming Chen, Yuanjin Zheng, Foo Chung Choong, Minkyu Je. A low-powervariable-gain amplifier with improved linearity: analysis and design[J]. IEEETransactions on circuits and systems-I: Regular Papers,2012,59(10):2176-2185
    [118] Nguyen, H.-H., Duong, Q.-H., Lee, S.-G.84dB5.2mA digitally-controlled variable gainamplifier[J]. Electronics Letters,2008,44(5):344-345
    [119] I-Hsin Wang, Shen-Iuan Liu. A0.18-um CMOS1.25-Gbps automatic-gain-controlamplifier[J]. IEEE Transactions on Circuits and Systems II: Express Briefs,2008,55(2):136-140
    [120] Yuanjin Zheng, Jiangnan Yan, Yong-Ping Xu. A CMOS VGA with DC offsetcancellation for direct-conversion receivers[J]. IEEE Transactions on Circuits andSystems I: Regular Papers,2009,56(1):103-113
    [121] Yanjie Wang, Afshar, B., Lu Ye, Gaudet, V.C., Niknejad, A.M.. Design of a low power,inductorless wideband variable-gain amplifier for high-speed receiver systems[J]. IEEETransactions on Circuits and Systems I: Regular Papers,2012,59(4):696-707
    [122] H. Elwan, A. Tekin, K. Pedrotti. A differential-ramp based65dB-linear VGA techniquein65nm CMOS[J]. IEEE Journal of Solid-State Circuits,2009,44(9):2503-2514
    [123] Lei Qianqian, Xu Qiming, Chen Zhiming, et al. A high-performance low-power CMOSAGC for GPS application[J]. J. Semicond.,2010,31(2):49-53
    [124] Hui Dong Lee, Kyung Ai Lee, Songcheol Hong. A wideband CMOS variable gainamplifier with an exponential gain control[J]. IEEE Trans. Microwave Theory andTechniques,2007,55(6):1363-1373
    [125] Chang Liu, Yue-Peng Yan, Wang-Ling Goh, et al. A5-Gb/s automatic gain controlamplifier with temperature compensation[J]. IEEE J. Solid-State Circuits,2012,47(6):1323-1333
    [126] Chia-Hsin Wu, Chang-Shun Liu, Shen-Iuan Liu. A2GHz CMOS variable-gainamplifier with50dB linear-in-magnitude controlled gain range for10GBase-LX4Ethernet[A]. International Solid-State Circuits Conference,2004[C]. IEEE,2004:484-541
    [127] Zhang Sheng, Li Zheng, Lin Xiaokang. Alow-power UWB transceiver by use of triggerreceiving method[J]. Journal of Circuits, Systems, and Computers,2010,19(7):1609-1619
    [128] Hu Jianyun, Zhu Yunliang, Wang Shang, et al. A0.17-nJ/pulse IR-UWB receiver basedon distributed pulse correlator in0.18-μm digital CMOS[A]. IEEE Radio FrequencyIntegrated Circuits Symposium[C]. Boston, MA: IEEE,2009:543-546
    [129] Zheng Yuanjin, WongKing-Wah, M. Annamalai Asaru, et al. A0.18μm CMOSdual-band UWB transceiver[A]. IEEE International Solid-State Circuits Conference[C].Singapore: IEEE,2007:114-590

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700