稀散元素硒、碲量子点的合成和应用及其催化动力学分析方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生物大分子如蛋白质、DNA的检测分析中,由于研究对象含量低,检测条件要求苛刻,需要一些高灵敏度的分析方法,常用的方法如放射性同位素分析,荧光分析等方法。放射性同位素分析在使用中不仅会对研究对象造成损害,使其变性、失活,而且对操作者也存在一定的危害风险,实验废弃物处理也是一个难题;荧光分析因其具有较高的灵敏度,操作简便、快速,广泛应用于生物样品的分析,如分子荧光光谱分析,荧光显微镜成像分析等。但多数生物样品,自身只能被激发出极弱的荧光或根本不发射荧光,无法直接进行荧光分析,因此,多采用有机荧光染料对其进行标记,根据有机荧光染料与生物样品作用时荧光强度的变化,进行间接的定性定量分析。有机荧光染料最致命的缺点是在紫外光照射条件下,易发生光漂白和光降解,光解产物还会对生物体产生损伤,而且有机荧光染料的激发范围窄,发射峰存在严重的拖尾,不能满足长时间、高灵敏性、多颜色、多通道的生物检测的要求。
     近年来,具有优异光学性能的半导体荧光纳米粒子——量子点(QDs),作为传统有机荧光染料的替代者,在生物荧光分析和标记领域中引起人们的极大兴趣。量子点是由Ⅱ-Ⅵ族和Ⅲ-Ⅴ族元素组成的半导体纳米粒子,具有纳米尺度的量子点显示出特殊的光学特征:荧光强度大且稳定,抗光漂白能力强,激发光谱宽,发射光谱窄,较大的斯托克斯位移和较窄而且对称的荧光光谱,且发射波长可通过改变量子点的粒径大小和组成来控制等优点。无论是应用尺寸控制的量子点作为译码标签的多元平行分析目标物,还是功能化的量子点在不同的领域内进行原位成像,示踪细胞的新陈代谢过程,在单细胞水平上展示了它应用于医学与生命科学的巨大潜力。
     基础的研究已揭示分析试验中的离子与量子点表面的原子能够相互发生某些物理化学作用,导致量子点表面的微环境改变,表现为对量子点荧光有显著改变。利用这一性质,对量子点的表面进行功能化修饰,使其能够高选择性的识别某一阴离子或阳离子,这一性质使其在金属离子检测方面显示出巨大的优势。
     电化学生物传感器因其具有检测快速,成本低廉,易于集成化和自动化等优点,在基因检测、抗癌药物筛选、药物作用机理研究以及疾病的诊断与治疗等方面逐渐成为一个极具生命力的检测研究手段。量子点优良的光谱特征和电化学活性使其在设计各类新颖、高性能电化学生物传感器方面表现出巨大的科学研究价值与实际应用价值,引起研究人员的极大关注。
     以稀散元素硒(Se)、碲(Te)为主要原料,合成的量子点具有较高的稳定性和优异的光学、电化学性能。而硒、碲两种元素,更是在半导体感光器件,计算机,通讯及宇航开发,能源,医药卫生,健康保健以及高技术装备等重要领域发挥着巨大的作用,成为关系到国计民生的战略性资源。众所周知,稀散元素硒、碲在自然界中的储量都比较低(稀),伴生于其它金属或矿物中,基本无独立矿物存在(散),因此硒、碲的分析方法引起了人们极大的关注和重视。
     本文在水相中合成了CdSe QDs和CdTe QDs,对光学性能和稳定性优良的CdTe QDs,合成的条件进行了讨论,提出了新的Te前体的合成路线,应用多种手段对CdTe QDs的光学性能和结构进行表征,计算量子产率,研究了散射光对荧光测定的影响,并提出了消除方法,讨论了不同尺寸CdTe QDs相互作用时的荧光强度的变化。应用CdTe QDs作为ⅠB,ⅡB族的金属离子的荧光探针,研究了它们相互作用的实验条件及选择性。通过研究CdTe QDs、DNA和柔红霉素(DNR)之间的作用,设计了基于荧光共振能量转移(FRET)的DNA探针。以CdTe QDs作为增敏剂,构建了高灵敏度、高选择性的DNA电化学传感器。并且研究了基于硒、碲对S~(2-)化合物还原亚甲基蓝(MB)的反应,利用催化动力学方法,测定痕量硒、碲。论文主要研究内容如下:
     第一部分主要研究了稀散元素硒、碲化合物量子点的合成方法及生物大分子和无机离子检测方面的应用。
     第一章序言对查阅的文献进行综述,主要包括以下内容:首先对量子点的概念及其物理性能、光学性能和潜在的毒性进行介绍;其次对量子点的合成方法进行了介绍,传统的有机相合成,水相合成、表面修饰和水相转化的最新研究进展;再次从生物标记、细胞成像、荧光共振能量转移和离子检测等方面介绍了量子点的荧光标记应用,以及量子点在免疫传感器、酶传感器和DNA传感器等领域应用的研究进展;最后阐述了本论文的主要研究意义、研究内容和创新之处。
     第二章主要介绍了硒、碲化合物量子点的合成。本章以NaHSe和NaHTe为Se和Te的前体合成了CdSe QDs和CdTe QDs,并比较了二者的荧光光谱性质及稳定性,结果表明CdTe QDs具有更优越的光谱性质和更高的稳定性。对CdTeQDs的合成条件进行了讨论,得到最优条件:Cd~(2+),Te~(2-),MPA合成配比的为n_(Cd2+):n_(Te2-)为2:1,n_(MPA):n_(Te2-)为5:1,pH值为9.0,温度为96℃。采用新的Te前体合成方法,以金属Al作为还原剂,合成(NH_4)_2Te,与传统的NaHTe还原的方法相比,(NH_4)_2Te稳定性好,反应条件温和,便于大量制备和长期储存,使合成路线更加合理,操作更加方便。
     第三章主要对所合成的CdTe QDs的性质及结构进行表征。利用紫外-可见光吸收光谱仪,荧光光谱光谱仪,对不同尺寸的QDs的光学性能进行表征,尺寸可以通过控制反应时间调谐。随QDs尺寸的增加,吸收光谱和荧光发射光谱都发生显著红移;应用紫外-可见光谱带边吸收方法,透射电镜和X-射线粉末衍射对QDs尺寸进行估计。X-射线粉末衍射谱证实了本实验室所合成的CdTe QDs属立方闪锌矿结构;红外光谱图可得知MPA的巯基与CdTe QDs发生了作用,达到了钝化CdTe QDs表面的目的;以罗丹明B的乙醇溶液为参照物,计算CdTeQDs的量子产率为28%;研究了散射光产生的原因,及其对荧光测定的影响,并提出了消除散射光的方法;提出了不同尺寸CdTe QDs相互作用时的“叠加效应”或“猝灭效应”,并对其产生原因进行探讨。
     第四章主要研究了碲化镉量子点与ⅠB,ⅡB族金属离子的作用。讨论了发射峰位于540nm,570 nm,600 nm的3种粒径的CdTe量子点与Cu(Ⅱ),Ag(Ⅰ),Hg(Ⅱ),Au(Ⅲ)离子相互作用时荧光强度的变化,为这些离子的检测选择合适粒径的CdTe量子点。在实验中发现,Cu(Ⅱ),Hg(Ⅱ),Au(Ⅲ)离子对3种CdTe QDs的荧光强度有明显的猝灭作用,Ag(Ⅰ)离子对600 nm的CdTe量子点的荧光强度有明显的猝灭作用,而对540nm,570 nm的CdTe量子点的荧光强度作用为先增强,后猝灭。在一定的条件下,体系的相对荧光强度(△F=F_0-F)与Cu(Ⅱ),Ag(Ⅰ),Hg(Ⅱ),Au(Ⅲ)离子的浓度呈线性关系。掩蔽剂EDTA与Cu~(2+)或Ag~+发生络合作用,会削弱Cu~(2+)/Ag~+对CdTe QDs荧光强度的影响。对Au(Ⅲ)的模拟样品进行测定,相对标准偏差为1.6%。对猝灭机理进行了探讨。
     第五章主要研究了CdTe量子点-DNA与柔红霉素(DNR)相互作用。根据吸收光谱和荧光光谱,推断出DNR与DNA发生了嵌插作用,CdTe QDs与DNA可能存在着非嵌插的吸附作用,CdTe QDs与DNR之间没有直接的吸附作用,但DNR对CdTe QDs的荧光有很强的猝灭作用,其形式为能量转移猝灭。通过盐效应实验和热变性实验进一步加以印证DNR与DNA的嵌插作用。计算了Stern-Volmer曲线的猝灭常数K_(SV),以及热力学参数△H,△G,△S,对二元体系的作用形式及荧光猝灭形式进行判断。在三元体系实验中,不同的混合顺序,产生了不同的荧光效果,对其原因进行了描述,并在此基础上,设计了基于荧光共振能量转移的DNA探针。
     第六章研究了CdTe量子点标记的DNA电化学传感器。本章利用碳纳米管和CdTe量子点(QDs)组装的电化学传感器,建立了一种识别DNA的新方法。将带有有氨基的单链DNA探针,共价键合固定在带有羧基的碳纳米管修饰的金电极上,然后与CdTe QDs标记的目标DNA进行杂交。利用差分脉冲法(DPV)和循环伏安法(CV)对目标DNA的固定和杂交进行表征,通过电活性指示剂柔红霉素(DNR)的DPV峰电流变化,对互补DNA,非互补DNA和单碱基错DNA序列进行识别。相比较未标记CdTe QDs的目标DNA,标记CdTe QDs的目标DNA序列的电流响应值的灵敏度明显提高。对DNA电化学传感器的检测反应条件进行优化:DNR的浓度为1.67×10~(-5)mol/L,DNA杂交时间为80 min,杂交温度为55℃。目标DNA的浓度在1.0×10~(-13)~1.0×10~(-8)mol/L范围内,其对数值与其响应的DPV信号(还原峰电流)成线性关系,检测限为3.52×10~(-14)mol/L(S/N=3,n=9)。线性方程为△I=50.22+3.5671 lgC_(DNA),相关系数为0.9966。对浓度为1.0×10~(-10)mol/L的目标DNA样品进行重复测定,相对标准偏差RSD=4.8%(n=5),有良好的重现性。
     第二部分主要研究了稀散元素硒、碲的催化动力学分析方法。其中第一章序言主要包括以下内容:首先分别介绍了硒、碲的分析检测的样品处理、分离富集和分析方法的研究进展;其次详细介绍了催化动力学分光光度法,硒、碲的催化动力学分光光度法研究进展;最后阐述了本论文的主要研究意义、研究内容和创新之处。
     第二章主要研究了催化动力学光度法测定痕量硒的方法。基于硒(Ⅳ)催化硫代乙酰胺在碱性条件下还原亚甲基蓝的反应,测定痕量的硒。由于催化反应的的反应速率在一定范围内与催化剂的用量有一定的比例关系,因此可根据反应速度与催化剂的关系进行定量分析。通过测定催化反应及非催化反应的吸光度之差的变化斜率(即反应速率),实现定量分析生物样品中痕量硒的目的。硒含量在0.1~1.0μg/15mL范围内服从朗伯比尔定律,回归方程为y=0.0195x-0.0024,相关系数r=0.995,测定了枸杞子中的硒的含量,相对标准偏差为5.4%(n=4),加标回收率为90%~96%,计算了催化反应的表观活化能为38.24kJ·mol~(-1)。本法灵敏度高,重现性好。
     第三章主要研究催化动力学光度法测定碲。基于Te(Ⅳ)催化S~(2-)还原亚甲基蓝褪色反应,建立了新的测定微量碲的动力学分析方法。研究了催化反应条件,并测定了催化反应的表观活化能为68.94 kJ·mol~(-1)。Te(Ⅳ)浓度在20~220ng·mL~(-1)范围内服从比尔定律,回归曲线的线性方程为y=0.0038x+0.2191,相关系数r=0.9995,方法的检出限为3.04 ng·mL~(-1)。研究了硒、碲的分离方法,应用于粗硒粉中微量碲的测定,相对标准偏差为3.1%(n=7),加标回收率为98.4%~100.4%。
     实验结果表明:本论文所提出的以稀散元素硒、碲合成的量子点,替代传统有机荧光染料,用于生物大分子和无机离子的荧光分析的研究,立题不但具有较重要的科学研究价值、学术价值,同时也具有很好的实际应用价值;研究方案设计科学合理,技术方法选择正确有效;为进一步深入研究打下了很好的基础。
The detection of biomacromolecule, such as protein and DNA, need someanalysis method of high sensitivity because of the low content of research object andthe harsh detection condition. The common method is fluorescence analysis,radioactive isotope analysis. Radioactive isotope analysis not only damages thesample but also do harm to the researchers. The disposal of experiment is also aproblem. Because of its high sensitivity, simple and rapid operation, fluorescenceanalysis is widely applied to detect biological samples, such as fluorescence spectrumanalysis and fluorescence microscope imaging analysis. For most biological samples,weak or little fluoscence can be excitated from themselves. So organic fluorochromeis usually adopted to label them and qualitative and quantitative analysis is indirectlycarried out according to the change of fluorescence intensity in the reaction betweenorganic fluorochrome and biological samples. The fatal defect of organicfluorochrome is that photobleaching and photodegradation are easily happen underthe illumination of ultraviolet light and photodecomposition product may damage theorganism. In addition, organic fluorochrome has narrow excitation range and hasserious tailing in its emission peak. So it can not satisfy the need for long time, highsensitivity, multicolor and multicenter biological detection.
     In the recent years, semiconductor fluorescence nano-patricle—quantum dots(QDs), which possess excellent optical properties, have drawn intense attention as thereplacer of traditional organic fluorochrome in the field of bioluminescence analysisand biological labeling. Quantum dots are semiconductor nano-patricle which consistsofⅡ-ⅥorⅢ-Ⅴrace element. The quantum dots of nanometer scale show specialoptical characteristics: high and stable fluorescence intensity, strong anti- photobleaching ability, broad excitation spectrum,narrow emission spectrum, largerstokes shift, size-tunable, narrow and symmetric emission spectra, emissionwavelength can be controlled by the change of size and composition. Whether thesize-controlled quantum dots are applied as decoding labels in parallel analysis ofmultiple targets, or functionalized quantum dots are applied to in situ imaging andtracing the course of cell metabolism in different fields, in single cell leveldemonstrated its great potential for medical and life sciences applications.
     Basal studies have revealed that the ion in the analysis can react with the atom onthe surface of quantum dots, certain physical and chemical effects occur, leading tothe surface of quantum dots changes in micro-environment and the fluorescence ofquantum dots changes significantly. Take advantage of this nature, the surface ofquantum dots can be modified to enable it to identify a certain anion or cation withhigh selectivity. Because of the nature, it shows huge advantage in the detection ofmetal ion.
     Because of its rapid, low-cost, easy integration and automation, etc.,electrochemical biosensor has gradually become a important analysis means in thegenetic testing, anti-cancer drug screening, drug mechanism studies, as well asdiagnosis and treatment of disease areas. It exhibited enormous science andapplication value that excellent spectral characteristics and electrochemical activity ofQuantum dots was caused greatly concern in the novel, high-performanceelectrochemical biosensor.
     The quantum dots which synthesized by using rare and scattered elements Se andTe have high stability and excellent optical electrochemical properties. Selenium andtellurium play an important part in photosensitive semiconductor devices, computer,communications and aerospace development, energy, medicine and health care, theimportant high-tech equipment areas,they also are the strategic resources which areclosely related to the national economy and people's life. As well as we know, thereserve of rare and scattered elements selenium, tellurium is relatively low (rare) inthe nature, they associates with other metals or minerals and without self-mineralsbasically. So the Analysis methods for selenium and tellurium arise great concern.
     In this paper, we synthesize the CdSe QDs and CdTe QDs by aqueous approach. The synthesis conditions of the CdTe QDs, which has excellent optical properties andstability, are discussed. New synthesis route of Te precursor has been put forward.Many instruments are used to characterize the optical properties and structure of CdTeQDs. Quantum yield has been calculated. The influence of scattered light on thedetection of fluorescence has been studied and elimination method has been proposedtoo. The changes of fluorescence intensity in the interaction between CdTe QDs ofdifferent sizes are discussed. CdTe QDs is used as fluorescence probe for metal ionsofⅠB,ⅡB race .For their interaction, experimental conditions and selectivity arestudied too. fluorescence resonance energy transfer (FRET)-based DNA probes aredesigned by studying the interaction among CdTe QDs、DNA and daunorubicin(DNR). DNA electrochemical sensor with high-sensitivity and high selectivity isconstructed with CdTe QDs as sensitizer. In addition, the catalytic effect ofselenium, tellurium for the redox reaction between sulfide and methylene blue (MB)are studied. Trace selenium, tellurium are detected by catalytic kinetics method.Major research paper is as follows:
     The first part mainly studies the synthesis and application on biomacromoleculeand inorganic ions of QDs which composed of rare and scattered element Se, Tecompound.
     Chapter one mainly contains literature review: First of all, we present theconception, the physical performance, the optical performance and potential toxicityof QDs. Secondly, we present synthetic method of QDs, and the latest researchprogress of traditional organically preparation, aqueous synthesis, surfacemodification and aqueous transform; Thirdly, we present the application of QDs suchas biological marking, cell imaging, fluorescence resonance energy transfer, iondetection, and improving on the application of immunosensor,enzymaticsensor,DNA sensor. Eventually, we present the main research meaning, research contentsand innovation of this article.
     Chapter two mainly present the synthesis of QDs which composed of Se,Tecompounds. We prepare CdSe QDs and CdTe QDs which taking NaHSe and NaHTeas precursors of Se and Te, and compare the fluorescent spectrum properties andstability of them; the result indicates QDs has more superior spectrum properties and higher stability. We discuss the synthetic condition of QDs, and get the optimumcondition: the molar ratio of Cd~(2+), Te~(2-), and MPA,n_(Cd2+):n_(Te2-)is 2:1,n MPA:n_(Te2-)is5:1,pH is 9.0, the temperature is 96℃.We adopt a new Te precursors prepartionmethod, regard metal Al as reducing agent to prepare(NH_4)_2Te. Comparing with thetraditional method, the stability of (NH_4)_2Te is superior to NaHTe . And(NH_4)_2Te dueto the mild condition of reaction, easy to synthesis in a large amount and store for along time, it is more convenient and reasonable to synthesize.
     Chapter three mainly signifies the property and the structure of CdTe QDs. Weutilize UV-vis absorb spectrogram, the fluorescent spectrocomparator to signify theoptical performance of different size of QDs, and the size can be controlled byreaction time. With the increasing of the size of QDs, absorption spectrum andfluorescent emission spectrometry become prominently red shift; We use UV-visspectrum absorption edge method, transmission electron microscopy and X-raypowder diffraction to estimate the size of QDs. X-ray powder diffraction has verifiedthat CdTe QDs formated in the laboratory belong to the cubic zincblende structure; IRspectroscopy indicate that CdTe QDs capped with MPA react with CdTe QDs, andachieve the purpose to passivat the surface of CdTe QDs; taking ethanol solution ofrhodamine B as the object of reference, calculate the quantum yield of CdTe QDs is28%; we also study the reason why it produces the scattered light, and the influence todetermine fluorescence, and put forward the method to dispel scattered light; wepropose different size of CdTe QDs interacting with each other may arise“additiveeffects”or“quenching effects”, and discuss the reason why it produce.
     Chapter four mainly study tellurium cadmium quantum dots react with metal ioninⅠB andⅡB. Discuss the changes of fluorescent intensity while the emission peak in540nm, 570 nm, 600 nm CdTe QDs react with Cu (Ⅱ) ,Ag(Ⅰ) ,Hg(Ⅱ) ,Au(Ⅲ) ion. Wefind in the experiment, Cu (Ⅱ) ,Hg(Ⅱ) ,Au(Ⅲ) has obvious quenching function to thefluorescent intensity of CdTe QDs .Ag (Ⅰ) quench CdTe QDs at 600 nm while it firstincrease and then quenching fluorescent intensity of CdTe QDs at 540nm,570nm.Under certain condition, system relatively fluorescent intensity(△F=F_0-F)arelinear relationship with Cu (Ⅱ), Ag(Ⅰ), Hg(Ⅱ), Au(Ⅲ) ion. The shelter pharmaceuticalEDTA complex function with Cu~(2+)orAg~+, and it will weaken the influence of Cu~(2+)/Ag~+ to the fluorescence intensity of CdTe QDs. Determine simulation sampleAu (Ⅲ), and its relatively deviation standard is 1.6%. Finally we carried on thediscussion in quenching mechanism.
     In the fifth chapter, we discuss the interaction between the CdTe QDs -DNAwith daunorubicin (DNR) that based on absorption and fluorescence spectra. Weconclude that DNR can insert the base of the DNA。The DNR and CdTe QDs areindirect adsorption, but have a strong fluorescence quenching that is the form ofenergy transfer quenching。Salt effect and thermal denaturation experiments canfurther prove that the insert functioning between the DNA and the DNR. WeCalculate the Stern-Volmer quenching constant curve Ksv, as well as thethermodynamic parameters△H,△G,△S, and determine the interact form of binarysystem and the form of fluorescence quenching。In the ternary system, differentmixture order can produced a different fluorescence effects, its causes are described,and on this basis, we design the DNA probe that based on fluorescence resonanceenergy transfer.
     In the sixth chapter, we described a novel DNA electrochemical biosensor thatwas prepared base on CdTe quantum dots (QDs) and carbon nanotubes (CNTs)modified gold electrode. The ss-DNA probe was covalently attached onto a carboxylcarbon nanotubes modified gold electrode through amines of the DNA bases usingN-hydroxysulfosuccinimide (NHS) and N-(3-dimethylamion) propyl-N'-ethylcarbodiimidehy- drochloride (EDC). After hybridization with the target ssDNA-CdTequantum dots (QDs) nanoconjugates,differential pulse voltammetry(DPV) and cyclicvoltammetry (CV) were used to sensitive detection of the target DNA withdaunomycin (DNR) as the indicator. This DNA electrochemical sensor coulddifferentiate the completely complementary DNA sequence, non-complementaryDNA sequence and Single base mismatch DNA sequence, indicating a goodselectivity. Compared with target DNA sequences without CdTe QDs, CdTe QDslabels on target DNA could obviously improve the sensitivity. Hybridizationconditions determining the sensitivity of the electrochemical assay was investigated.The electrochemical responses suggested that optimal detection of hybridizationoccurred at 55℃for 80 minimums. Under optimal conditions, DNR concentration of 1.67×10~(-5) mol/L was chosen as the optimal accumulation concentration. The peakcurrent signal suggested that almost linear with the logarithm of oligodeoxynucleotide(ODN) concentration in the range 1.0×10~(-13)~1.0×10~(-8)mol/L with the minimumdetection limit of 3.52×10~(-14) mol/L based on the ratio of signal-to-noise of 3, linearregression equation is△I=50.22 +3.5671 1gC_(DNA) with the correlation coefficient of0.9966. The relative standard deviation (RSD) was 4.8% (n=5) with target DNAsample concentration of 1.0×10~(-10) mol/L. It indicated that a satisfactoryreproducibility could be obtained by this DNA electrochemical biosensor.
     The catalytic kinetic analysis methods of rare and scattered elements-seleniumand tellurium are studied in the second part. The first chapter, preamble includes thefollowing contents: Firstly, we introduce analytical methods development of thesample handling, separation and preconcentration of selenium and tellurium;Secondly, we introduce catalytic kinetic spectrophotometric method in details, thedevelopment of catalytic kinetic spectrophotometric method of selenium and tellurium;finally, we present the main research meaning, research contents and innovation ofthis article.
     Chapter two studies the method of catalytic kinetic spectrophotometricdetermination of trace selenium. Based on the reaction of methylene blue reductingthioacetamide with selenium (Ⅳ) as catalyses under alkaline conditions, this paperdetermines the trace selenium. Because reaction rate of catalytic reaction has a certainratio relationship with the amount of catalyst in a certain range, the quantitativeanalysis is made according to the relation between the reaction rate and catalyst. Bymeasuring the variation slope (i.e., reaction rate) of difference of the absorbancechanges between the Catalytic reaction and non-catalytic reaction, the quantitativeanalysis of trace selenium in biological samples is realized. The Selenium content inthe range of 0.1~1.0μg/15mL conforms to the Lambert-Beer's law, regressionequation is y=0.0195x-0.0024, correlation coefficient r=0.995, the selenium contentin medlar is measured and the relative standard deviation is 5.4% (n=4), recoveryrate is 90%~96%, calculated the apparent activation energy of catalytic reaction for38.24kJ mol~(-1).This method is high sensitivity and reproducibility.
     Chapter three studies determination of tellurium by catalytic kinetic spectrophotometric. Based on Te (Ⅳ) catalytic reduction S~(2-) fading reaction ofmethylene blue, a new Kinetic Determination of Trace Tellurium analysis isestablished. By studying the catalytic reaction conditions, the apparent activationenergy of catalytic reaction is determined for 68.94 kJ mol~(-1).Te (Ⅳ) concentration isin the range of 20-220 ng mL~(-1) Beer's law is obeyed, the linear regression curveequation is y=0.0038 x+0.2191,correlation coefficient r=0.9995, detection limit is3.04 ng mL~(-1).The studied separation method of selenium and tellurium is applied fordetermination of trace tellurium of coarse selenium powder. The relative standarddeviation is 3.1% (n =7) and the recovery rate is 98.4%~100.4%.
     The result of experiment indicate: the research which quantum dots weresynthesized by using rare & scattered elements selenium & tellurium and used influorescence analysis of biomacromolecule and inorganic ions to replace traditionalorganic fluorochrome not only has important science and learned value, but also hasbetter practically application value. The research project is reasonable, the experimentmeans is effectual. It is beneficial to high level research.
引文
[1]汪尔康,2l世纪的分析化学,科学出版社,1999:294~294
    [2]Tiancai Liu,Bisen Liu,Haili Zhang et al.,The Fluorescence Bioassay Platforms on Quantum Dots Nanoparticles,Journal of Fluorescence,2005,15(5):729~733
    [3]罗国安,王义明,单细胞水平的分析方法研究及进展,分析化学,1995,23(8):953~959
    [4]Jin-Hua Liu,Jun-Bing Fan,Zheng Gu et al.,Green Chemistry for Large-Scale Synthesis of Semiconductor Quantum Dots,Langmuir,2008,24(10):5241-5244
    [5]Qiao Xu,Jian-Hao Wang,Zhan Wang et al.,Interaction of CdTe quantum dots with DNA,Electrochemistry Communications,2008,10(9) :1337-1339
    [6]Shaopeng Wang,Natalia Mamedova,Nicholas A.Kotov et al.,Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates,Nano Letters,2002,2(8):817-822
    [7]Daxiang Cui,Bifeng Pan,Hong Zhang et al.,Self-Assembly of Quantum Dots and Carbon Nanotubes for Ultrasensitive DNA and Antigen Detection,Anal.Chem.,2008,80 (21):7996-8001
    [8]Amim H.,Physiochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles,Chem.Rev.,1989,89(8):1861~1873
    [9]X.G.Peng,Mechanisms for the Shape-Control and Shape-Evolution of Colloidal Semiconductor Nanocrystals,Adv.Mater.,2003,15(5):59~463.
    [10]Ashoori R C.,Electrons in artificial atoms,Nature,1996,379:413
    [11]孙宝全,徐咏蓝,衣光舜等,半导体纳米晶体的光致发光特性及在生物材料荧光标记中的应用,分析化学,2002,30(9):1130~1136
    [12]Wang Y,Herron N,Nanometer-sized semiconductor clusters:materials synthesis,quantum size effects,and photophysical properties,J.Phys.Chem.,1991,95(2):525~532
    [13]Jingbo Li,Lin-Wang Wang,Comparison between Quantum Confinement Effects of Quantum Wires and Dots,Chem.Mater.2004,16(21):4012-4015
    [14]Du Y W,J.Appl.Phys.,1981,52:4100
    [15]Han M Y,Gao X H,Nie S Met al.,Quantum-Dot-Tagged Microbeads for Multiplexed Optical Coding of Biomolecules,Nature Biotechnology,2001,19(7):631 ~ 635
    [16]Bruchez M Jr,Moronne M,Gin Pet al.,Semiconductor nanocrystals as fluorescent biological labels,Science,1998,281:2013~2015
    [17]Hao Zhang,Zhen Zhou,Bai Yang,The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles,J.Phys.Chem.B,2003,107(1):8~13
    [18]Alivisatos A P,Semiconductor clusters nanocrystals and quantum dots,Science,1996,271:933~937
    [19]Sandra J.Rosenthal,Bar-coding biomolecules with fluorescent nanocrystals, Nat.Biotechnol., 2001, 19: 621-622
    [20] A. Celik, U. Comelekoglu, S. Yalin.A, study on the investigation of cadmium chloride genotoxicity in rat bone marrow using micronucleus test and chromosome aberration analysis, Toxicol. Ind. Health, 2005, 21:243-248
    [21] Derfus A. M., Chan W. C. W., Bhatia S. N., Probing the cytotoxicityof semiconductor quantu dots, Nano Lett, 2004, 4(1): 11-18
    [22] Warren S., Patel S., Kapron C. M., The effect of vitamin E exposure on cadmium toxicity in mouse embryo cells in vitro, Toxicology, 1999, 142(2): 119-126
    [23] C. Kirchner, T. Liedl, S. Kudera et al., Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles, Nano Lett., 2005, 5 (2) :331-338
    [24] P. Alivisatos, The use of nanocrystals in biological detection. Nat, Biotechnol,2004, 22(1): 47-52
    [25] A. Miyawaki, A. Sawano, T. Kogure, Lighting up cells: labelling proteins with fluorophores, Nat. Cell Biol., 2003, Supply: S1-S7
    [26] N. Pradhan, D. Goorskey, J. Thessing et al.,An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals, J. Am.Chem. Soc, 2005, 127 (50): 17586-17587
    [27] B. Ballou, B.C., Lagerholm, L.A. Ernst et al., Noninvasive imaging of quantum dots in mice, Bioconjugate Chem., 2004, 15 (1):79-86
    [28] J. Patrakka, A. T. Lahdenkari, O. Koskimies et al., The number of podocyte slit diaphragms isdecreased in minimal change nephrotic, Pediat. Res., 2002,52:349-355
    [29] Stuczynski S.M., B.J.Cz, Steigerwald M.L., Formation of metal-chalcogen the reaction of metal-alkyls with silyl chalcogenides, Inorg. Chem, 1989,28(25):4431-4432
    [30] Murray C B, Norris D J, Bawendi M G, Synthesis and characterization of nearlymonodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocry- stallites, Journal of American Chemical Socioty, 1993, 115(19):8706-8715
    [31] Hines M A, Guyot-Sionnest P, Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals, J. Phys. Chem, 1996, 100(2): 468—471
    [32] Peng Z A, Peng X, Formation of High-Quality CdTe、 CdSe、 and CdS Nanocrystals Using CdO as Precursor, Journal of American Chemical Society,2001,123(1): 183-184
    [33] Michael J. Murcia, David L. Shaw, Heather Woodruff et al., Facile Sonochemical. Synthesis of Highly Luminescent ZnS-ShelledCdSe Quantum Dots, Chem. Mater., 2006, 18(9): 2219-2225
    [34] Dmitri V. Talapin, Stephan Haubold, Andrey L. Rogachet al., A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals, J. Phys.Chem. B. 2001,105(12): 2260-2263
    [35] Dmitri V. Talapin, Andrey L. Rogach, Andreas Kornowski et al., Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine Trioctylphosphine Oxide Trioctylphospine Mixture, Nano Lett,2001, 1(4):207—211
    [36] Chun Wanga, Yang Jianga, Guohua Lia et al., A greener synthetic route to monodisperse CdSe quantum dots with zinc-blende structure, Journal of Crystal Growth, 2008, 310(11) :2890-2894
    [37] Andrey Gao, Stefan Kirstei, Helmuth Mohwald et al., Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification, J. Phys. Chem. B, 1998,102(43): 8360-8363
    [38] Andrey L. Rogach, Andreas Kornowski, Mingyuan Gao, et al., Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals, J. Phys. Chem. B , 1999, 103(16):3065-3069
    [39] Hao Zhang, Zhen Zhou, and Bai Yang, et al., The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles, J. Phys. Chem. B, 2003, 107 (1): 8-13
    [40] Sondi I., Siiman O., Matijevic E, Synthesis of CdSe Nanoparticles in the Presence of Aminodextran as Stabilizing and Capping Agent, J Colloid Interface Science, 2004, 275: 503-507
    [41] Wang Q., Luminescent Properties of Water-Soluble Denatured Bovine Serum Albumin-Coated CdTe Quantum Dots, J Phys Chem B, 2006, 110 (34): 16860- 16866
    [42] S. Kim, M.G. Bawendi, Oligomeric ligands for luminescent and stable nanocrystal quantum dots, J. Am. Chem. Soc., 2003, 125(48): 14652-14653
    [43] J. Aldana, Y.A. Wang, X. Peng, Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols, J. Am. Chem. Soc., 2001, 123(36):8844~8850
    [44] W. Russ Algar, Ulrich J. Krull, Multidentate Surface Ligand Exchange for the Immobilization of CdSe/ZnS Quantum Dots and Surface Quantum Dot-Oligonucleotide Conjugates , Langmuir, 2008, 24 (10) :5514-5520
    [45] Xiao-Song Wang, Tieneke E. Dykstra, Mayrose R. Salvador, et al., Surface Passivation of Luminescent Colloidal Quantum Dots with Poly (Dimethyl aminoethyl methacrylate) through a Ligand Exchange Process, J. Am. Chem.Soc., 2004, 126 (25): 7784-7785
    [46] Wenhao Liu, Hak Soo Choi, John P. Zimmer, et al., Compact Cysteine-Coated CdSe(ZnCdS) Quantum Dots for in Vivo Applications, J. Am. Chem. Soc., 2007,129(47): 14530-14531
    [47] H. Fan, E.W. Leve, C. Scullin, et al., Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dotmicelles, Nano Lett., 2005, 5(4):645-648.
    [48] X. Gao, Y. Cui, R.M. Levenson et al., In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol., 2004, 22(8):969-976
    [49] William W. Yu a, Emmanuel Chang , Rebekah Drezek et al., Water-soluble quantum dots for biomedical applications, Biochemical and Biophysical Research Communications, 2006, 348 (3):781-786
    [50] Frederic Duconge, Thomas Pons, Carine Pestourie et al., Fluorine- 18- Labeled Phospholipid Quantum Dot Micelles for in ViWo Multimodal Imaging from Whole Body to Cellular Scales Bioconjugate Chem., 2008, 79(9): 1921-1926
    [51] D. Gerion, F. Pinaud, S.C. Williams et al., Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots, J. Phys., Chem. B, 2001, 105 (37):8861-8871
    [52] W. Tan, K. Wang, X. He et al., Bionanotechnology based on silica nanoparticles,Med. Res. Rev., 2004, 24 (5):621-638
    [53] A.L. Rogach, D. Nagesha, J.W. Ostrander et al., "Raisin Bun"-type composite spheres of silica and semiconductornanocrystals, Chem. Mater., 2000, 12 (9):2676-2685
    [54] S.T. Selvan, T.T. Tan, J.Y. Ying et al., non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence, Adv. Mater., 2005,17(13):1620-1625.
    [55] B Zhang et al., A novel method to enhance quantum yield of silica-coated quantum dots for Biodetection, Nanotechnology, 2008, 19: 465604
    [56] Min-Kyung So, Chenjie Xu, Andreas M Loening et al, Selfilluminating quantum dot conjugates for in vivo imaging, Nat. Biotechnol., 2006, 24: 339-343
    [57] P.S. Eastman, W. Ruan, M. Doctolero et al., Qdot nanobarcodes for multiplexed gene expression analysis, Nano Lett., 2006, 6(5): 1059-1064
    [58] Ellen R G, Eric D B et al., Avidin:A natural bridge for quantum dot-antibody conjugates, J.Am.Chem.Soc., 2002, 124(22):6378-6382.
    [59] Medintz I L, Clapp A R.et al., Proteolytic activitymonitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates, Nat. Mater,2006, 6(5): 581-589.
    [60] Shi L F, Paoli V D et al., synthesis and application of quantum dots FRET-based protease sensors, J.Am.Chem.Soc, 2006, 128(32): 10378-10379.
    [61] Xiao-Feng Hua, Tian-Cai Liu, Yuan-Cheng Cao et al., Characterization of the coupling of quantum dots and immunoglobulin antibodies, Anal Bioanal Chem 2006,386:1665-1671
    [62] Chang E, Miller J S, Protease-activated quantum dot probes, Biochem. Bioph.Res. Co., 2005, 334(4): 1317-1321.
    [63] Richard L O.Harper T F.et al.Wstern blot analysis with quantum dot flusrescence technology technology a sensitive and quantitative method for multiplexed proteomics. Nat. Meth., 2005, 2(1):79-81.
    [64] Bakalova R, Zhelev Z et al., Quantum dot-based western blot technology for ultrasensitive detection of tracer proteins, J. Am. Chem. Soc, 2005, 127(26):9328-9329.
    [65] Lao U L, Mulchandani A et al., Simple conjugation and purification of quantum dot antibody complexes-using a thermally responsive elastin-protein Lscaffold as immunofluorescent agents,J.Am.Chem.Soc.,2006,128(46):14756-14757
    [66]张春阳,马辉,丁尧等,量子点标记天花粉蛋白的研究,高等学校化学学报,2001,22(1):34~37
    [67]林章碧,苏星光,金钦汉等.用水溶液中合成的量子点作为生物荧光标记物的研究.高等学校化学学报,2003,24(2):216~220
    [68]Lin Z B,Cui S X,Zhang H et al.,Studies on quantum dots synthesized in aqueous solution for biological labeling via electrostatic interaction Analytical Biochemistry,2003,319 (2):239~243
    [69]Mengying Li,Yingxin Ge,Qifan Chen et al.,Hydrothermal synthesis of highly luminescent CdTe quantum dots by adjusting precursors'concentration and their conjunction with BSA as biological fluorescent probes,Talanta,2007,72(1):89-94
    [70]Chan W C,Maxwell D J,Gao X et al.,Luminescent quantum dots for multiplexed biological detection and imaging.Curr Opin Biotechnol,2002,13(1):40~46
    [71]Jaiswal J K,Mattoussi H,Simon S M,Long-term multiple color imaging of live cells using quantum dot bioconjugates,Nature Biotechnology,2003,21:47~51
    [72]黄劭,刘亚伟,姜勇,细胞穿透肽在肿瘤治疗中的应用,生理科学进展,2007,38(4):301-306
    [73]EI-Andaloussi,S.,Holm,T.,and Langel,U.Cellpenetrating peptides:Mechanisms and applications,Curr.Pharm.Des.2005,(11),3597-3611
    [74]Delehanty,J.B.,Medintz,I.L.,Pons,T.,Brunel,F.M.,Dawson,P.E.,and Mattoussi,H.Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery.Bioconjugate Chem.2006,17(4),920-927
    [75]Igor L.Medintz,Thomas Pons,James B.Delehanty et al.,Intracellular Delivery of Quantum Dot-Protein Cargos Mediated by Cell Penetrating Peptidesl,Bioconjugate Chem.,2008,19(9):1785-1795.
    [76]Bhranti S.Shah,Paul A.Clark,Eduardo K et al.,Labeling of Mesenchymal Stem Cells by Bioconjugated Quantum Dots,Nano Lett.,2007,7 (10):3071-3079
    [77]Li zhao-hui,Wang ke-ming,Tan wei-hong et al.,Immunofluoresceng labeling of cancer cells with quantum dots synthesized in aqueous solution.Analytical Biochemistry,2006,354(2):169-174
    [78]Dongzhi Yang,Qifan Chen,Wenxing Wang et al.,Direct and indirect immuno-labelling of HeLa cells with quantum dots,Luminescence,2008,23(3):169-174
    [79]Wu X Y,Liu H Jet al.,Immunofluorescent labeling of cancer marker her2 and other cellular targets with semiconductor quantum dots,Nat.Biotechnol,2003,21:41-46.
    [80]Xiao H G,Yuan Y C et al.,In vivo cancer targeting and imaging with semiconductor quantum dots,Nat.Biotechnol,2004,22(8):969-976
    [81]S.J.Rosenthal,I.Tomlinson,E.M.Adkins et al.,Targeting Cell Surface Receptors with Ligand-Conjugated Nanocrystals,J.Am.Chem.Soc.,2002,124(17):4586~4594
    [82]M.Dahan,S.Levi,C.Luccardini et al.,Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,Science,2003,302:442~445
    [83]Jifang Weng,Xingtao Song,Liang Li et al.,Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging,Talanta,2006,70 (2):397~402
    [84]Larson D.R.,Zipfel W.R.,Williams R.M.et al.,Watersoluble Quantum Dots for Multiphoton Fluorescence Imaging in vivo,Science,2003,300:1434~1436
    [85]Benoit Dubertret,Paris Skourides,David J.Norris et al.,In Vivo Imaging of QuantumDots Encapsulated inPhospholipid Micelles,Science,2002,298:1759~1762
    [86]Kim S,Lim Y T,Bawendi M Get al.,Near-infrared fluorescent type Ⅱquantum dots for sentinel lymph node mapping,Nature Biotechnology,2004,22:93~97
    [87]Wen Jiang,Anupam Singhal,Betty Y.S.Kim et al.,Assessing Near-Infrared Quantum Dots for Deep Tissue,Organ,and Animal Imaging Applications,JALA,2008,13(2):6~12
    [88]谢小燕,夏宁邵,生物学中荧光共振能量转移的研究应用进展,生物技术通讯,2001,12(3):S31~S37
    [89]郭尧君,荧光实验技术及其在分子生物学中的应用,科学出版社,1983:147~152
    [90]Willard D M,Orden A V,Quantum dots:Resonant energy-transfer sensor,Nature Materials,2003,2:575~576
    [91]Wang S,Mamedova N,Kotov N A et al.,Antigen/Antibody Immuncomplex from CdTe Nanoparticle Bioconguates,Nano Lett.,2002,2(8):817~822
    [92]Vitor R.Hering,Gary Gibson,Robert I.Schumacher,Energy Transfer between CdSe/ZnS Core/Shell Quantum Dots and Fluorescent Proteins,Bioconjugate Chem.2007,18(6):1705-1708
    [93]S.Shankara Narayanan,Sudarson Sekhar Sinha,Samir Kumar Pal,Sensitized Emission from a Chemotherapeutic Drug Conjugated to CdSe/ZnS QDs ,J.Phys.Chem.C,2008,112(33):12717~12720
    [94]Vaishali Bagalkot,Liangfang Zhang,Etgar Levy-Nissenbaum et al.,Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging,Therapy,and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer,Nano Lett.,2007,7 (10):3065-3070
    [95]Hohng S,Ha T et al.,Single-molecule quantum-dot fluorescence res-onance energy transfer,Chem Phys Chem,2005,6(5):956~960
    [96]Wargnier R ,Baranov A V ,Nabiev I et al.,Energy Transfer in Aqueous Solutions of Oppositely Charged CdSe/ZnS Core/Shell Quantum Dots and in Quantum Dot-Nanogold Assemblies,Nano Letters,2004,4 (3) :451~457
    [97]Lifang Shi,Vania De Paoli,Nitsa Rosenzweig,et al.,Synthesis and Application of Quantum Dots FRET-Based Protease Sensors,J.Am.Chem.Soc.,2006,128(32) 10378-10379
    [98]Lifang Shi,Nitsa Rosenzweig,Zeev Rosenzweig,et al.,Luminescent Quantum Dots Fluorescence Resonance Energy Transfer-Based Probes for Enzymatic Activity and Enzyme Inhibitors,Anal.Chem.2007,79(1):208-214
    [99]Chen,Y.,Rosenzweig,Z.,Luminescent CdS quantum dots as selective ion probes ,Anal.Chem.,2002,74(19):5132~5138
    [100]Haibing Li,Yan Zhang,Xiaoqiong Wang,Calixarene capped quantum dots as luminescent probes for Hg~(2+) ions,Materials Letters ,2007,61 (7):1474~1477
    [101] Jinlong Chen, YingChun Gao, ZhiBing Xu, A novel fluorescent array for mercury (II) ion in aqueous solution with functionalized cadmium selenide nanoclusters, Analytica Chimica Acta, 2006, 577(1):77-84
    [102] Yao-hai Zhang, Hua-shan Zhang, Xiao-feng Guo et al., L-Cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper(II) determination, Microchemical Journal, 2008, 89(2): 142-147
    [103] Zhuo Bin Shang, Yu Wang, Wei Jun Jin, Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (II) and iodide in aqueous solution, Talanta, 2008,78(2):364-369
    [104] Yun-Sheng Xia, Chang-Qing Zhu, Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II), Talanta, 2008,75(1):215-221
    [105] Massimiliano Tomasulo, Ibrahim Yildiz, Franc(?)isco M. Raymo, pH-Sensitive Quantum Dots, J. Phys. Chem. B, 2006,110( 9): 3853-3855
    [106] Chunyan Sun, Bin Liu, Jinghong Li, Sensitized chemiluminescence of CdTe quantum-dots on Ce(IV)-sulfite and its analytical applications, Talanta 2008,75:447-454
    [107] Daniel R T, Klara T et al., Electrochemical biosensors: reconmmended definitions and classification, Biosensors & Bioelectronics, 2001, 16 (1-2) :121-131
    [108] Hong Wu, Liu Guodong, Jun Wang, Quantum-dots based electrochemical immunoassay of interleukin-1a, Electrochemistry Communications, 2007,9(7): 1573-1577
    [109] Jie Guifen, Zhang Jingjing, Wang Danchen, Electrochemi luminescence Immunosensor Based on CdSe Nanocomposites, Anal. Chem, 2008, 80(11):4033-4039
    [110] Liu Qing, Lu Xianbo, Li Jun et al., Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes, Biosensors and Bioelectronics, 2007, 22(12): 3203-3209
    [111] Jie Guifen, Liu Bo, Pan Hongchenget al., CdS Nanocrystal-Based Electrochem-iluminescence Biosensor for the Detection of Low-Density Lipoprotein by Increasing Sensitivity with Gold Nanoparticle Amplification, Anal. Chem., 2007, 79(1 5):5574-5581
    [112]古练权,生物化学,高等教育出版社,2000
    [113]J.D.Watson,F.H.Crick,A Structure for Deoxyribose Nucleic Acid,Nature,1953,171,737-738
    [114]Selina Moses,Scott H.Brewer,Lisa B.Lowe et al.,Characterization of Single-and Double-Stranded DNA on Gold Surfaces,Langmuir,2004,20 (25):11134-11140
    [115]Guodong Liu,Thomas M.H.Lee,Joseph Wang.,Nanocrystal-Based Bioelectronic Coding of Single Nucleotide Polymorphisms,J.Am.Chem.Soc.2005,127(1):38-39
    [116]Liu,T.,Tang,J.,Zhao,H.Q.et al.,Particle Size Effect of the DNA Sensor Amplified with Gold Nanoparticles Langmuir,2002,18(14):5624-5626
    [117]Fojta,M.,Kubicarova,T.,Palecek,E.,Electrode potential-modulated cleavage of surface-confined DNA by hydroxyl radicals detected by an electrochemical biosensor Biosens Bioelectron,2000,15(3-4):107-115
    [118]Fojta M,Havran L,Kubicarova T.et al.,Electrode potential - controlled DNA damage in the presence of copper ions and their completes ,Bioelectrochem,2002,55(1-2),25-27
    [119]Wang,J.,Rivas,G.,Cai,X.et al.,Sequence-specific electrochemical biosensing of M.tuberculosis DNAAnal.Chim.Acta,1997,337(1),41-48.
    [120]Ana Maria Oliveira Brett,Silvia H.P.Serrano,Ivano Gutz,Mauro A.La-Scalea,Maria Luiza Cruz,Voltammetric behavior of nitroimidazoles at a DNA-biosensor,Electroanalysis.1997,9(14):1132- 1137
    [121]鞠熀先,电分析化学与生物传感技术,科学出版社,2006
    [122]王柱香,李衍飞,王文鑫等,DNA电化学传感器的研究进展,聊城大学学报,2007,20(2):48-53
    [123]孙伟,焦逵,王振永等,DNA电化学传感器的设计和应用,理化检验-化学分册,2004,40(12):742-745
    [124]Wantterson J H,Piunno P A E ,Wust C C et al.,Effects of Oligonucleotide Immobilization Density on Selectivity of Quantitative Transduction of Hybridization of Immobilized DNA Langmuir,2000,16(11):4984-4992
    [125] David Avila-Brande, Esteban Urones-Garrote, Nebil A. Katcho,et al.Electron microscopy characterization of nanostructured carbon obtained from chlorination of metallocenes and metal carbides.Carlos Otero-Diaz; Micron,2007, 38 (4):335-345
    [126] Cai, H., Xu, Y., He, P. G., Fang, Y. Z., Indicator Free DNA Hybridization Detection by Impedance Measurement Based on the DNA-Doped Conducting Polymer Film Formed on the Carbon Nanotube Modified Electrode, Electroanal,2003, 15(23-24): 1864-1870.
    [127] Wang J, Femandes J R, Kubota L T, Polishable and Renewable DNA Hybridization Biosensors, Anal.Chem., 1998,70(17):3699-3702
    [128] Sonja Tragl, Katharina Gibson, Jochen Glaser et al., Solid State Communications, 2007, 141(9): 529
    [129] Cheng, G, Zhao J., Tu, Y. H., et al.A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole, Anal. Chim. Acta, 2005, 533:1-16
    
    [130] Gore, M. R., Szalai, V. A., Ropp, P.A., et al. Detection of Attomole Quantitites of DNA Targets on Gold Microelectrodes by Electrocatalytic Nucleobase Oxidation, Anal. Chem, 2003, 75:6586-6592
    [131] Cheng Gui-Fang, Zhao Jie, Tu Yong-Hua et al., Chinese Journal of Chemistry,2005,23:576—580
    [132] Rongchao Jin, Guosheng Wu, Zhi Li et al, What Controls the Melting Properties of DNA-Linked Gold Nanoparticle Assemblies, J. Am. Chem. Soc, 2003,125(6): 1643-1654
    
    [133] Endo M, Takeuchi K, Kobor K, et al., Pyrolytic carbon nanotubes from vapor-grown carbon fibers, Carbon, 1995, 33(7):873
    [134]Gustavo A. Rivas, Mar'D. Rubianes , Marcela C et al., Carbon nanotubes for electrochemical biosensing, Talanta, 2007, 74(3):291-307 .
    [135] WANG Yuerong, HU Ping, LIANG Qiongling et al., Application of Carbon Nanotube Modified Electrode in Bioelectroanalysis, Chin J Anal Chem, 2008,36(8):1011-1016
    [136] Guodong Liu, Thomas M. H. Lee, Joseph Wang, Nanocrystal-Based Bioelectronic Coding of Single Nucleotide Polymorphisms [J]., J. Am. Chem.Soc, 2005, 127 (1):38-39.
    
    [137] Peng Hui, Christian S, Mark B. Cannell et al., Electrochemical detection of DNA hybridization amplified by nanoparticles, Biosensors and Bioelectronics 2006, 21(9): 1727- 1736.
    
    [138] Cui Rongjing, Pan Hong-Cheng, ZhuJun-Jie , Versatile Immunosensor Using CdTe Quantum Dots as Electrochemical and Fluorescent Labels, Anal. Chem.2007, 79(22): 8494-8501
    
    [139] XIE Jiang-Kun, JIAO Kui, LIU He,et al. DNA Electrochemical Sensor Based on PbSe Nanoparticle for the Sensitive Detection of CaMV35S Gene Sequence.Chin J .Anal Chem, 2008, 36(7), 874-878
    
    [140] Xu Qiao, Wang Jian Hao, Wang Zhan.et al. Interaction of CdTe quantum dots with DNA., Electrochemistry Communications 10 (2008) 1337-1339
    [1]Nirmal,M.,Brus,L.Acc,Luminescence photophysics in semiconductor nanocrystals,Chem.Res.,1999,32(5):407~414
    [2]Murray C B,Norris D J,Bawendi M G,Synthesis and characterization of nearlymonodisperse CdE (E=sulfur,selenium,tellurium) semiconductor nanocry-stallites,Journal of American Chemical Socioty,1993,115(19):8706~8715
    [3]Dmitri V.Talapin,Stephan Haubold,Andrey L.Rogach.et al.,A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals,J.Phys.Chem.B,2001,105(12):2260~2263
    [4]J.Aldana,Y.A.Wang,X.Peng,Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols,J.Am.Chem.Soc.,2001,123(36):8844~8850
    [5]William W.Yu,Emmanuel Chang,Rebekah Drezek.et al.,Water-soluble quantum dots for biomedical applications,Biochemical and Biophysical Research Communications,2006,348(3):781~786
    [6]P.S.Eastman,W.Ruan,M.Doctolero.et al.,Qdot nanobarcodes for multiplexed gene expression analysis, Nano Lett., 2006, 6(5): 1059-1064
    [7] Rogach, A. L., Kotov, N. A.,Koktysh, D. S. et al., Electrophoretic Deposition of Latex-Based 3D Colloidal Photonic Crystals: a Technique for Rapid Production of High Quality Opals, Chem. Mater., 2000, 12(9):2721-2726
    [8] Rogach, A. L., Susha, A., Caruso, F., Sukhorukov, G. et al., Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-m-sized poly-styrene latex spheres pre-coated with luminescent polyelectro-lyte/nanocrystal shells, AdV. Mater., 2000,12(5):333-337
    [9]Yu-Ching Kuo, Qiang Wang, Chada Ruengruglikit. et al., Antibody-Conjugated CdTe Quantum Dots for Escherichia coli Detection, J. Phys. Chem. C, 2008,112(13):4818-4824
    [10] Mattoussi, H., Mauro, J. M., Goldman, E. R. et al. Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein, J. Am.Chem. Soc.,2000, 122(49):12142-12150
    [11] Parak, W. J., Boudreau, R., Le Gros, M. et al. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks, AdV.Mater., 2002, 14(12):882-885
    [12] Jipei Yuan, Weiwei Guo, Jianyuan Yinb et al., Glutathione-capped CdTe quantum dots for the sensitive detection of glucose, Talanta, 2008, 77(5):1858-1863
    [13] Jinlong Chen, AiFang Zhen, Yingchun Gao, Functionalized CdS quantum dots-based Luminescence probe for detection of heavy and transition metal ions in aqueous solution, Molecular and Biomolecular Spectroscopy, 2008, 69(3):1044-1052
    [14] Mengying Li, Yingxin Ge, Qifan Chen. et al., Hydrothermal synthesis of highly luminescent CdTe quantum dots by adjusting precursors' concentration and their conjunction with BSA as biological fluorescent probes, Talanta, 2007,72(1):89-94
    [1]Bingbo Zhang,Jing Cheng,Xiaoqun Gong,Facile fabrication of multi-colors high fluorescent/superparamagnetic nanoparticles,Journal of Colloid and Interface Science,2008,322(2):485~490
    [2]DaeGwi Kim,Kazuyki Tomihira,Shinya Okahara.et al.,Highly efficient preparation of size-controlled CdS quantum dots with high photoluminescence yield,Journal of Crystal Growth,2008,310(18):4244~4247
    [3]Chunyan Sun,Bin Liu,Jinghong Li,Sensitized chemiluminescence of CdTe quantum-dots on Ce(IV)-sulfite and its analytical applications,Talanta,2008,75:447~454
    [4]Huachang Lu,Oliver Schps,Ulrike Woggon,Christof M.Niemeyer,Self-Assembled Donor Comprising Quantum Dots and Fluorescent Proteins for Long-Range Fluorescence Resonance Energy Transfer,J.Am.Chem.Soc.,2008,130(14):4815~4827
    [5]Xiao-Feng Hua,Tian-Cai Liu,Yuan-Cheng Cao,Characterization of the coupling of quantum dots and immunoglobulin antibodies,Anal Bioanal Chem,2006,386:1665~1671
    [6]Yarning Shan,Liping Wang,Yuhua Shi,NHS-mediated QDs-peptide/protein conjugation and its application for cell labeling,Talanta,2008,75:1008~1014
    [7]Igor L.Medintz,Lorenzo Berti,Thomas Pons,A Reactive Peptidic Linker for Self-Assembling Hybrid Quantum Dot-DNA Bioconjugates,Nano Lett.,2007,7(6):1741~1748
    [8]Jipei Yuan,Weiwei Guo,Xiurong Yang.et al.,Anticancer Drug-DNA Interactions Measured Using a Photoinduced Electron-Transfer Mechanism Based on Luminescent Quantum Dots,Anal.Chem.,2009,81(1):362~368
    [9]Wang S,Mamedova N,Kotov N A,et al.,Antigen/Antibody Immuncomplex from CdTe Nanoparticle Bioconguates,Nano Lett.,2002,2(8):817~822
    [10]许金钧,王尊本,荧光分析法,科学出版社,2006
    [11]W.William Yu,Lianhua Qu,Wenzhuo Guo.et al.,Experimental Determination of the Extinction Coefficient of CdTe,CdSe,and CdS Nanocrystals,Chem.Mater.,2003,15(14):2854~2860
    [12]Z.Tang,N.A.Kotov,M.Giersig,Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires,Science,2002,297:237~240
    [13]D.V.Talapin,S.Haubold,A.L.Rogach.et al.A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals,J.Phys.Chem.B,2001,105(12):2260~2263
    [14]A.L.Rogach,A.Kornowski,M.Gao,Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals,J.Phys.Chem.B,1999,103(16):3065~3069
    [15]杨洗,潘祖亭,马勇,用罗丹明B作标准物测定二氯荧光素的荧光量子产率,分析科学学报,2003,19(6):588~589
    [1]Chen,Y.,Rosenzweig,Z.,Luminescent CdS quantum dots as selective ion probes,Anal.Chem,2002,74(9):5132~5138
    [2]Haibing Li,Yan Zhang,Xiaoqiong Wang,Calixarene capped quantum dots as luminescent probes for Hg~(2+) ions,Mater.Lett.,2007,61(7):1474~1477
    [3]Wang J.H.,Wang H.Q.,Zhang H.L.et al.,CdS quantum dots as fluorescence probes for the sensitive and selective detection of highly reactive HSe-ions in aqueous solution,Anal.Bioanal.Chem,2007,388:717~722
    [4]Wu C.L.,Zhao Y.B.,CdS quantum dots as fluorescence probes for the sensitive and selective detection of highly reactive HSe- ions in aqueous solution,Anal.Bioanal.Chem,2007,388(3):717~722
    [5]Jinlong Chen,YingChun Gao,ZhiBing Xua,A novel fluorescent array for mercury (Ⅱ) ion in aqueous solution with functionalized cadmium selenide nanoclusters,Analytica Chimica Acta,2006,577(1):77~84
    [6]Haibing Li,Yan Zhang,Xiaoqiong Wang,L-Carnitine capped quantum dots as luminescent probes for cadmium ions,Sens.Actuators,B,2007,127(2):593~597
    [7]Xia Yun Sheng,Cao Chun Zhu,Selective Detection of Mercury(Ⅱ) and Copper(Ⅱ) Based on the Opposite Size-dependent Fluorescence Quenching of CdTeQuantum Dots,Chinese Journal of Chemistry,2007,25(12):1836~1841
    [8]Masilamany Koneswaran,Ramaier Narayanaswamy,1-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu~(2+) ion,Sensors and Actuators B,Chemical G Model,SNB-11024;No.of Pages6
    [9]Yao-hai Zhang,Hua-shan Zhang,Xiao-feng Guo.et al.,L-Cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper(Ⅱ) determination,Microchemical Journal,2008,89(2):142~147
    [10]Zhuo Bin Shang,Yu Wang,Wei Jun Jin,Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (Ⅱ) and iodide in aqueous solution,Talanta,2009,78(2):364~369
    [11]Yun-Sheng Xia,Chang-Qing Zhu,Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (Ⅱ),Talanta,2008,75(1):215~221
    [12]许金钧,王尊本,荧光分析法,2006,科学出版社,64~81
    [13]Jin-Long Chen,Chang-Qing Zhu,Anal.Chim.Acta,2005,546:147~153
    [1]Pons T,Medintz L,Wang X.et al.,Solution-Phase Single Quantum Dot Fluorescence Resonance Energy Transfer,J.Am.Chem.Soc.,2006,128 (47):15324~15331
    [2]Clapp A R,Medintz L,Mauro J M.et al.,Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors,J.Am.Chem.Soc.,2004,126(1):301~310
    [3]Nabiev I,Mitchell S,Davies A.et al,Nonfunctionalized Nanocrystals Can Exploit a Cell's Active Transport Machinery Delivering Them to Specific Nuclear and Cytoplasmic Compartments,Nano.Lett.,2007,7(11):3452~3461
    [4]Susumu K,Uyeda H T,Medintz I L.et al,Enhancing the Stability and Biological Functionalities of Quantum Dots via Compact Multifunctional Ligands,J.Am.Chem.Soc.,2007,129(45):13987-13996
    [5]Zhaohui Li,Kemin Wang Weihong Tan.et al.,Immunofluorescent labeling of cancer cells with quantum dots synthesized in aqueous solution,Anal.Bioanal.,2006,354(2):169~174
    [6]Kuo Y C,Wang Q,Ruengruglikit C.et al.,Antibody-Conjugated CdTe Quantum Dots for Escherichia coli Detection,J.Phy.Chem.C,2008,112(13):4818
    [7]Huachang Lu, Oliver Schps, Ulrike Woggon.et al.,Self-Assembled Donor Comprising Quantum Dots and Fluorescent Proteins for Long-Range Fluorescence Resonance Energy Transfer,J.Am.Chem.Soc.,2008,130 (14):4815~4827
    [8]Xiao-Feng Hua lian-Cai Liu,Yuan-Cheng Cao,Characterization of the coupling of quantum dots and immunoglobulin antibodies,Anal Bioanal Chem,2006,386:1665~1671
    [9]Yaming Shan,Liping Wang,Yuhua Shi,NHS-mediated QDs-peptide/protein conjugation and its application for cell labeling,Talanta,2008,75(4):1008~1014
    [10]Igor L.Medintz,Lorenzo Berti,Thomas Pons,A Reactive Peptidic Linker for Self-Assembling Hybrid Quantum Dot-DNA Bioconjugates,Nano Lett.,2007,7(6):1741~1748
    [11]Jipei Yuan,Weiwei Guo,Xiurong Yang.et al.,Anticancer Drug-DNA Interactions Measured Using a Photoinduced Electron-Transfer Mechanism Based on Luminescent Quantum Dots,Anal.Chem,2009,81 (1):362~368
    [12]H.Berg,G.Horn,U.Luthardt.et al.,447-Interaction of anthracycline antibiotics with biopolymers :Part V.Polarographic behavior and complexes with DNA,Bioelectrochem.Bioenerg.1981,8(5):537~553
    [13]Frank A.Fornari Jr,W.David Jarvis,Steven Grant,et al.,Growth arrest and non-apoptotic cell death associated with the suppression of c-myc Expression in MCF-7 breast tumor cells following acute exposure to doxorubicin,Biochem.Pharmacol.1996,51 (7):931~940
    [14]许金钩,王尊本,荧光分析方法,2006,科学出版社,26
    [15]Steven A.Tysoe,Robert J.Morgan,A.David Baker,et al.,Spectroscopic investigation of differential binding modes of .A.- and A-Ru(bpy)z(ppz)~(2+) with calf thymus DNA,J.Phys.Chem.,1993,97(8):1707
    [16]高恩君,赵淑敏,刘祁涛等,三元配合物钯(Ⅱ)-联喹啉-丙二酸根的合成及其生物活性研究,化学学报,2004,62(6):593~597
    [17]徐靖等,应用水相合成的CdTe/CdS核壳型量子点荧光探针测DNA,分析试验室,2006,25(4):50~53
    [18]Ross P D,Subramanian S,Thermodynamic of protein association reactions:forces contributing to stability,Biochemistry,1981,20(11 ):3096~3102
    [19]Lakowicz J R.,Principles of Fluorescence Spectroscopy (2nd),New York:Plenum Press,1999,239~240
    [20]林娟,赵炜,丁飞等,巴比妥与牛血清白蛋白结合反应的热力学研究,光谱学与光谱分析,2008,28(3):648-651
    [1]Kagan Kerman,Masato Saito,Shohei Yamamura.et al.,Nanomaterial-based Electrochemical biosensors for medical applications,Trends in Analytical Chemistry,2008,27(7):585~592
    [2]Danie'le Altschuh,Sule Oncul,Alexander P.et al.,Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors,J.Mol.Recognit,2006,19(6):459~477
    [3]Ci Yun-Xiang,Zheng Yuan-Gang,Tie Jian-Ke,et al.,Chemiluminescence investigation of the interaction of metalloporphyrins with nucleic acids,Anal.Chim.Acta,1993,282(3):695~701
    [4]Alan Saghatelian,Kevin M.Guckian,Desiree A.et al.,DNA Detection and Signal Amplification via an Engineered Allosteric Enzyme,J.Am.Chem.Soc.,2003,125(2):344~345
    [5]Jose'M.Pingarro'n,Paloma Ya'n~ez-Seden~o,Araceli Gonza'lez-Corte's,Gold nanoparticle-based electrochemical biosensors,Electrochim.Acta,2008,53(19):5848~5866
    [6]Karadeniz H,Erdem A,Caliskan A,et al.,Electrochemical sensing of silver tags labelled DNA immobilized onto disposable graphite electrodes,Electrochem.Commun,2007,9(9):2167~2173
    [7]Bifeng Pan,Daxiang Cui,Cengiz S.et al.,Effects of Carbon Nanotubes on Photoluminescence Properties of Quantum Dots,J.Phys.Chem.C,2008,112(4):939~944
    [8]XIE Jiang-Ktm, JIAO Kui,LIU He,et al.,DNA Electrochemical Sensor Based on PbSe Nanoparticle for the Sensitive Detection of CaMV35S Gene Sequence,Chinese journal of analytical chemistry,2008,36(7):874~878
    [9]Joseph Wang,Guodong Liu,Gustavo Rivas,Encoded Beads for Electrochemical Identification,Anal.Chem.,2003,75(17):4667~4671
    [10]Peng Hui,Christian S,Mark B.Cannell,et al.,Electrochemical detection of DNA hybridization amplified by nanoparticles,Biosens Bioelectron,2006,21(9):1727~1736.
    [11]Cui Rongjing,Pan Hong-Cheng,ZhuJun-Jie,et al.,Versatile Immunosensor Using CdTe Quantum Dots as Electrochemical and Fluorescent Labels,Anal.Chem.,2007,79(22):8494~8501
    [12]Gustavo A.Rivas,MarD.Rubianes,Marcela C,et al.,Carbon nanotubes for electrochemical biosensing,Talanta,2007,74(3):291~307
    [13]Wang Yuerong,Hu Ping, Liang Qiongling,et al.,Application of Carbon Nanotube Modified Electrode in Bioelectroanalysis,Chin J Anal Chem,2008,36(8):1011~1016
    [14]Liu Jian-Xiao,Zhou Wen-Jing,Gong Ji-Lai,et al.,An electrochemical sensor for detection of laccase activities from Penicillium simplicissimum in compost based on carbon nanotubes modified glassy carbon electrode,Bioresource Technology,2008,99(18):8748~8751
    [15]Bernard Munge,Guodong Liu,Greg Collins.et al.,Multiple Enzyme Layers on Carbon Nanotubes for Electrochemical Detection Down to 80 DNA Copies,Anal.Chem,2005,77(14):4662~4666
    [16]唐婷,彭图治,时巧翠等,碳纳米管修饰金电极检测特定序列DNA,化学学报,2005,63(22):2042~2046
    [17]PUMERA M,MERKOcI A.ALEGRET S,Carbon nanotube-epoxy composites for electrochemical sensing, Sens. Actuators, A, 2006, 113(2):617-622
    [18] Luo Hongxia, SHI Zujin, LI Nanqiang, et al., Investigation of the Electrochemical and Electrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode, Anal Chemm, 2001, 73(5):915-920
    [19] MARRAZZA G, CHIANELLA I, MASCINI M., Disposable DNA electrochemical sensor for hybridization detectionl, Biosens Bioelectron, 1999,14(1):43-51
    [20] Chu Xia, Shen Guo-Li, Jiang Jian-Hui,et al., Voltammetric studies of the interaction of daunomycin anticancer drug with DNA and analytical applications,Anal.Chim.Acta, 1998, 373(1):29-38
    [21]Hayet Tayeb-Bel Haj, Milena Salerno , Waldemar Priebe,et al., New findings in the study on the intercalation of bisdaunorubicin and its monomeric analogues with naked and nucleus DNA, Chem. Biol. Interact., 2003, 145(3):349-358
    [22] CHENG, Gui-Fang, ZHAO, et al., Study on the Interaction between Antitumor Drug Daunomycin and DNA, Chin. J. Chem., 2005, 23(5):576-580
    [23] Cheng Guifang, Qu Haiyun, Zhang Dongmei, et al., Spectroelectrochemical study of the interaction between antitumor drug daunomycin and DNA in the presence of antioxidants, J.Pharm.Biomed.Anal., 2002, 29(1-2):361-369
    [24] Chu Xia, Shen Guoli, Jiang Jianhui, et al., Voltammetric studies of the interaction of daunomycin anticancer drug with DNA and analytical applications, Anal. Chim.Acta, 1998, 373(1):29-38
    [1]涂光炽,高振敏,胡瑞忠等,分散元素地球化学及成矿机制,地质出版社,2004
    [2]臧树良,稀散元素化学与应用,中国石化出版社,2008
    [3]南京大学《无机及分析化学》编写组,无机及分析化学,第三版,北京高等教育出版社,1998:254
    [4]徐承水,微量元素硒的生物特征及抗衰老机理,微量元素与健康研究,2000,17(2):72~73
    [5]徐辉碧,生物微量元素硒,武汉:华中工学院出版社,1984
    [6]陈新谦,新编药物学,第十四版,北京:人民卫生出版社,1998:55
    [7]杨武,高锦章,光度分析中的高灵敏反应及方法,科学出版社,2000
    [8]Milan Ihnat,Atomic absorption spectrometric determination of selenium with carbon furnace atomization,Anal chim Acta,1976,82(2):293~309
    [9]Williams K T,Byers H G.,Selenium In Deep Sea Deposites,Ind.Eng Chem,1935,13:353
    [10]仇佩红,林丽,叶哓霞等,催化动力学测定人发中痕量硒,化学研究与应用,2001,13(3):343~344
    [11]Hall R.H,Lashin S,Frank P.et al.,Preliminary Observations On Toxicity Of Elemental Selenium,Arch Ind Hyg Occup Med,1951,4:458~464
    [12]邹大琼,詹志春,张爱沅等,测定硒过程中湿法分解样品时防止硒损失的研究,分析测试通报,1992,1 1(1):75~78
    [13]周珊,微波消化石墨炉原子吸收法测定鱼样中痕量硒,中国食品卫生杂志1999,11(3):14~15
    [14]Pathan et al.,Kinetic Determination Of Selenium Using The Reduction Of Nile Blue Sulfide Cons.,J Anal Chem,2000,55(7):673~675
    [15]贺萍,许卉,催化动力学光度法测定茶叶中痕量硒,烟台大学学报(自然科学与工程版),1999,12(2):95~98
    [16]Chester T L,Pinkston J D,Raynie D,Supercritical Fluid Chromatography and Extraction,Analy Chem,1994,66(12):106~130
    [17]贾奎寿,催化光度法测定微量硒消除干扰离子的研究,光谱实验室,2002,19(4):56~59
    [18]Abbas Afkhami,Tayyebeh Madrakian,Kinetic—Spectrophotometric Determination Of Selenium Natural Water After Preconcentration Of Elemental Selenium On Activated Carbon,Talanta,2002,58:311~317
    [19]卫芝贤,孔令俊,N1923萃取碲的研究,华北工学院学报,1997,18(3):274~276
    [20]王琳,施永生,毛云,离子交换法去除水中硒的研究,有色金属设计,2005,32(1):53~57
    [21]祁俊生,陈明君.王裕玲,从富硒烟叶中分离硒蛋白,化学研究与应用,1997,9(6):626~628
    [22]杨文斌,王靖芳,离子交换法从铜阳极泥中提取高纯硒,稀有金属,1989,13(4):300~303
    [23]包敏,王通胜.分光光度法测定微量硒的研究,化工矿物与加工,2001,(10):15~17
    [24]刘艳秦,赵士杰,包雪英,原子荧光光谱法测定野生杏仁中的微量硒,化学分析计量.2004,(3):26~27
    [25]Mieczyslaw Korozuk,Malgorzata Grabarczyk,Determination of Se(Ⅳ) in On-Line System by Cathodic Stripping Voltammetry,Electroanalysis 2003,15,(9)
    [26]Fabiano B.G.,Claudete F.P.,Antonio J.,Development of an Automatic Electrochemical System for Differential Pulse Amperometry and Its Application for Se(Ⅳ) Determination,Electroanalysis,2005,17(22):2084-2089
    [27]申金山,李献锐,王昕,液相化学发光法测定微量硒,分析化学,2000,28(11):1414~141
    [28]孙立波,李静,郭哓燕等,高效液相色谱法分析富硒食品中硒,中国公共卫生,1997,13(1):14
    [29]肖上甲,黄薇,微波消解-气相色谱法测定化妆品中硒,微量元素与健康研究,2004,(1):44~45
    [30]周聪,石墨炉原子吸收光谱法测定食品中的痕量硒,海南大学学报(自然科学版),2004,22(1):40~42
    [31]Bowen.H.J.M.et al.,The Determination Of Selenium In Biological Material By Radioactivation,Analyst,1963,88:721~726
    [32]Rubio R,Shinafuji T.,Photoreduction-hydride generation:a new on-line system for the determination of selenate and selenite,Anal Chem Acta,1997,353(1):91~97
    [33]Maurizio Guidotti,Guido Ravaioli,Selective Determination of Se~(4+) and Se~(6+)Using SPME and GC/MS,J.High.Resol.Chromatogr.1999,22,(7) 414-416
    [34]谢明辉,王兴明,陈后兴,碲的资源、用途与提取分离技术研究现状,四川有色金属,2005,(1):5~8
    [35]祝志宏,钟治宇,痕量啼的极谱测定研究,华中师范大学学报(自然科学版),2000,34(4):450~453
    [36]吕运开,孙汉文,尿中痕量碲测定的萃取-氢化物发生原子荧光光谱法,分析测试学报,2000,1 9(4):24~27
    [37]杨俊衡,微波消解试样-原子荧光光谱法测定土壤中硒碲,理化检验-化学分册,2008,44(3):43~45
    [38]玉立佑三等,分析化学(日),1999,48(5):499~504
    [39]王冬珍,阳极泥及碲回收物料中高含量碲的测定,岩矿测试,2002,21(2):143~146
    [40]王菊香,王亚红,郭爱武,断续法氢化物发生-原子荧光光谱测定地质样品中的微量碲,光谱实验室,2008,25(3):362~364
    [41]卫芝贤,杨文斌,段永生,溶剂萃取法分离提纯硒碲的进展,有色金属(冶炼部分),1995,(6):37~38
    [42]李永红,刘兴芝等,N235萃取碲及其机理研究,稀有金属,1999,23(6):409~413
    [43]卫芝贤等,以N503从盐酸溶液中萃取四价硒的研究,华北工学院学报,1996,17(4):319~322
    [44]李永红,刘兴芝,三辛胺萃取碲的研究,辽宁大学学报(自然科学版),1999,26(4):377~380
    [45]王献科,李玉萍,乳状液膜法分离富集稀土总量与测定,有色金属与稀土应用,2000,(4):30~33
    [46]黄坚,龚竹青,火焰原子吸收光谱法测定铅碲渣中碲,冶金分析,2006,26(2):53~54
    [47]Gaspar,Attila.Beam injection flame furnace AAS.A new flam methode,Anal.Chem,2000,72(1):240~246
    [48]Liu H M,Detn.of Bi,Se,Tei in nickel- based alloys and copper by FI-HG-AAS with Vc prercduction and cupferron chelation-extration,Anal.Chim.Acta,2002,459(1):161 ~ 168
    [49]吴相华.陈燕,丁红星,连续扫描ICP-AES法测定触点材料中硒碲,理化检验(化学分册),1991,27(4):250
    [50]Mstsumoto Akihiro Detn.,Bi Te in steels by high power nitrogen microwave induced plas plasma AES coupled with the HG technique,Anal.and Bioanal.Chemistry,2004,379(1):90~95
    [51]刘珍,徐淑坤,迟明玉等,电感耦合等离子体原子发射光谱法测定纯银中痕量碲,冶金分析.2007,27(1):32~34
    [52]冯先进.江银潮,氢化物-原子荧光光谱法同时测定金属镍中微量硒和碲,分析试验室,1992,11(4):18~20
    [53]Rodenas-Torralba,Eva,Muicommutation as an environmentally friendly analytical tool in the HG-AFS.detn.of Te in milk,Analytical and Bioanalytical Chemistry,2004,379(1):83~89
    [54]张桂珍,邵梦欣,李志红,催化极谱法连续测定面粉中硒和碲,理化检验(化学分册),1998,34(9):416~421
    [55]Li,Lijun,Catalytic detn.of ulra amounts of tellurium by 2.5-order differential oscillopolarography,Fresenius'J.Anal.Chem.,2000,366(3):239~243
    [56]Yang,Haoyun Cathodic striping voltammetric detn.of Te(Ⅳ) at a Nafion/8-quinolinol mercurry film modified electrodem,Anal.Chim.Acta.,1998,358(3):285 290
    [57]Balog I.S..Extraction photomeric detn.of Te(Ⅳ) with N,N-di(acetoxyethyol) indocarbocyanine,Ukr.Khim.Zh.,1991,57(6):644
    [58]Balaji.T.,Detn of Te in thin film and alloys by spectrophotometry,Chem.Environs.Ros ,1995,4(1-2):123~128
    [59]Balogh,losephs, Comparati spectrophotometric of the complexation and extraction Te with various halide ions and N,N'- di(acetoxyethyl)indocarbosyanine,Anal.Chim.Acta.,1998,22(2):173~179
    [60]Luo Hongshan,Study on the color reaction of the Te -potassium iodide-Rhodanine B system in the presente of PVA-OP,Microchim.Acta,1992,106(2):216
    [61]李祖碧,王加林,徐其亨,用钨酸盐和耐尔蓝光度法测定痕量碲,分析化学,1998,26(3):283~286
    [62]李祖碧,曹秋娥,徐其亨,碲钨杂多酸-丁基罗丹明B超高灵敏显色反应的研究,分析实验室,1998,17(3):1~4
    [63]S.G.Kawatkar,Spectrophotometric detn.Te(Ⅳ)with 9,10-photonanthraquinone guanylhydrazone,Orient.J.Chem.1 998,l 4(1):169~171
    [64]Marawi,Isam,GF-huchride prcencentration and subsequent detection by ICP-MS,Anal.Chim.Acta,1994,291(1-2):75~80
    [65]Bando,Shoji,Detn.of Te in NaOH by neutron activation analysis,Radioisotopes,1992,41(12):627
    [66]Kumar,Sanjiv,Detn.of stoichiometry of CdTe by XPS.Fresenius'J.,Anal.Chem,1992,343(12):879
    [67]Raviadra,H.R.,Detn.of Te in Se by wavelength dispersive X-ray fluorescence spectrometry,Analyst,1993,118(2):1559
    [68]陈四箴,动力学方法概括,分析化学,1978,6(1):42~58
    [69]Horado A.Mottola,Harry B.Mark,Jr ,Kinetic Determination And Some Kinetic Aspects Of Analytical Chemistry,Anal.Chem.,1982(54) 62R~83R
    [70]祝大昌,催化动力学分析法,复旦大学出版社,1984,57~64
    [71]汪尔康,21世纪分析化学,科学出版社,2001,95~96
    [72]丁良,单金缓,王秀梅等,催化动力学光度法测定抗癌中草药中痕量硒-溴酸钾-罗丹明B体系,光谱学与光谱分析,2004,24(1 1):1419~1421
    [73]高杰郑怀礼,催化光度法测定痕量N02的研究,理化检验化学分册,1999,35(9)404~405
    [74]罗庆尧,邓延倬,蔡汝秀等,分光光度分析,科学出版社,1998
    [75]Qili Feng,Chunxue Ouyang,Jingyan Gao,Determination Of Ultra Trace Amounts Of Selenium(Ⅳ)By Means Of A New Reaction Systemmethyl Yellow And Hydrogen Peroxide,Analytical Letters,1998,31 (9):1593~1602
    [76]刘长久,严进,催化动力学测定痕量硒(Ⅳ),分析化学,1997,(5):615~616
    [77]仇佩红,林丽,扬小凤,痕量硒的催化褪色法测定,分析化学,2002,30(8):935~937
    [78]A.Safavi,A Afkhami,Catalytic Spectrophotometric Determination Of Selenium,Analytical Letters, 1995,28(6):1095~1105
    [79]单金媛,王秀梅,王宇等,溴酸钾-罗丹明 B 体系催化动力学测定抗癌中草药中痕量硒.微量元素与健康研究,2002,19(2):29~32
    [80]Abbas.Afkhami,Tayyebeh Madrakian,Kinetic-Spectrophotometric Determination Of Selenium In Natural Water After Preconcentration Of Elemental Selenium On Activated Carbon,Talanta,2002,58(2):311~317
    [81]Afsaneh Safavi, Abbas Afkhami.Ali Massoumi,Spectrophotometric Catalytic Determination Of Ultra-Trace Amounts Of Selenium Based On The Reduction Of Resazurin By Sulphide,Analytical Chimica Acta,1990,232:351~356
    [82]R.Gurkan M.Akcay,Kinetic Spectrophotometric Determination Of Trace Amounts Of Selenium Based On The Catalytic Reduction Of Maxilon Blue-SG By Sulfide,Microchem.J.,2003,75(1):39~49
    [83]陈思钦,彭珊珊,阮大文,利用新的催化反应分光光度测定痕量硒(Ⅳ),分析化学(研究简报),1984,12(10)913~915
    [84]Revanastddappa,H.D,Spectrophotometric Determination Of Selenium Using Patassium Iodide And Starch As Reagents,Mikrochimica Acta,2003,14(3-4):175~178
    [85]F.Mousavi, M.R.Almasian,Flow-injection spectrophotometric determination of trace amounts of ellurium by catalytical reduction of toluidine blue,Analytical letters,1996,29(10):1851~1860
    [86]H.K.hajehsharifi,M.F.Mousavi.Kinetic spectrophotometric method for simultaneo determination o selenium and tellurium using partial least squares calibration.J.Ghasemi,Analytical Chimica Acta,2004,512(2):369~373
    [87]吴建中,陈国树,催化动力学法测定痕量碲的研究,分析化学,1995,23(3):459~462
    [88]A.Safavi,A.Afkhami,A.Masoumi,Cataytic determination of trace amounts of Tellurium(Ⅳ) based on it calytic effect in the reduction of Bromate with Hydrazinium Dichloride,Microchemical Jourmal,1995,52(1):3~9
    [89]Satnchez-Pedrefio,Maria Osabel Albero,Maria Sarcia.et al.,Kinetic determination of tellurium based on its inhibitory effect on the Palladium(II)-catalysed reaction between Pyronine G and Hyphosphite ion,Analyst,1990,115(9):1257~1260
    [90]陈树榆,张云,余华明,催化动力学吸光光度法同时测定环境样品中痕量Se(Ⅳ)和Te(Ⅳ),理化检验(化学分册),2001,37(9):405~408
    [91]Ali.A.Ensafi,M.Saber Tehrany,M.Keyvanfardm,Spectrophotometic determination of trace amounts of tellurium based on its catalytic effect in the reaction of gallocyanine with sodium sulphide,Indian Journal of Chemistry,2002,41(9):1871~1873
    [92]A.Safavi,MohsenKeyvanfard,Kinetic-Spectrophotometric determination of Tellurium(IV) by its catalytic effect on the reduction of Thionine by sodium sulfide in cationic micellar medium,Anal.Chem.,2003,83(5):397~404
    [1]李萍,朱滨等,微量元素硒与人体健康,微量元素与健康研究,1996,13(4):54~55
    [2]周聪,石墨炉原子吸收光谱法测定食品中的痕量硒,海南大学学报(自然科学版),200.(1):40~42
    [3]刘艳秦,赵士杰,包雪英等,原子荧光光谱法测定野生杏仁中的微量硒,化学分析计量2004.13(3):26~27
    [4]Fabiano Barbieri Gonzaga.Claudete Femandes Pereira,Development of an Automatic Electrochemical Svstem for Differential Pulse Amperometry and Its Applicati for Se(Ⅳ) Demination,Electroanalysis,2005,17(22):2084~2089
    [5]仇佩红,林丽,扬小凤等,痕量硒的催化褪色法测定,分析化学,2002,30(8):935~937
    [6]Revanastddappa H D, Spectrophotometric Determination Of Selenium Using Patassium Iodide And Starch As Reagents,Mikrochim.Acta,2003,14(3-4):175~178
    [7]Mitic.S.S.et al,Kinetic Determination Of Se(Ⅳ) In Pharmaceatical Samples,Chem.Soc.,2002,65(8):595~601
    [8]中国标准出版社,中华人民共和国国家标准,水质硒的测定2,3—二氨基萘荧光法,环境保护国家标准汇编,265~268
    [9]A.R.Garifzyanov,V.F.Toropova,G.K.Budnikov.et al.,New Indicator Reactions Involving Sulfur-Containi Organic Compounds For The Kinetic Determination Of Selenium,J.Anal.Chem.,2001,56(5):485~488
    [1]Shiue,M.Y.Detn.of Te in In-Sb semiconductor material by electrothermal AAS,Analyst,2001,126(8):1449~1452
    [2]Gaspar,Attila.Beam injection flame furnace AAS a new flam methode,Anal.Chem,2000,72(1):240~246
    [3] C. M. Patricia, Speciation of Se and Te in milk by HG-AFS, J. Anal. At.Spectrom., 2004, 19(5):696-699
    [4] Chunhai Yun, Speciation analysis of Te by solid-phase extraction in the presence of ammonium pyrrolidine dithiocarbamate and ICP-MS, Analytical and Bioanalytical Chemistry, 2003, 376(2):236-242
    [5] B.M.Mar'yanov, Use of linear regression for the processing of curives of differentical potentiometric titration of binary mixture of Heterovalent Ions using precipitation reactions, J. Anal. Chem., 2003, 58(4):300-304
    [6] Betul Arikan, Melda Tucay, Resat Apak, Sensitivity enhancement of the methylene blue catalytic—spectrophotometric method of selenium(IV) determination by CTAB, Anal. Chim. Acta, 1996, 355(1-2): 155-167
    [7] Ddeng Gui-chun, Hou Song-mei, Tian Dong-mei.et al., Spectroscopy and Spectral Analysis, 2006, 26(3):522~525

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700