单个量子点的光学性质研究及其在超高分辨率定位上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点(Quantum Dots, QDs)是一种具有诸多优良光学特性的纳米荧光探针,已在化学分析、生物传感、分子影像等领域得到了广泛应用。单个量子点的光学性质研究有望发现一些宏观方法不能发现的实验现象,为改善其光学性能提供思路,也有助于更好的将其应用于各领域。本论文以宽场荧光显微成像技术为主要研究手段,以单个量子点为研究对象,发现了非激发光漂白量子点的行为,提出了影响量子点氧化过程的因素,并将量子点应用于单分子计数和超高分辨率定位,具体内容如下:
     一、量子点在非激发光照明下的光漂白行为研究
     本章以核壳量子点(Core/shell, CdSe/ZnS)为研究对象,用非激发光连续照射量子点一段时间,结果发现在单分子和系综两个层面上量子点均能被非激发光漂白。这说明即使没有提供足够高的能量使量子点价带的电子跃迁到导带,量子点的光漂白反应依然发生。非激发光下的光漂白动力学与激发光下光漂白动力学相同,均为连续一级基元反应。
     二、单个核壳量子点的氧化动力学研究
     量子点光谱蓝移是量子点氧化后核尺寸减小的结果。本章利用光谱成像的方法,监测了量子点光谱蓝移的过程,也就相当于监测了量子点的氧化过程。在考察了激发光波长与光强度对蓝移过程的影响后,我们认为量子点的蓝移幅度取决于量子点的激发光波长和量子点的初始尺寸,而与激发光强度无关。量子点的氧化速率正比于激发光的强度,激发光波长越短,量子点的氧化速率越快。
     三、量子点团聚程度的测量
     纳米颗粒团聚程度的实时测量在技术层面上是一个难点。本章提出了一种基于量子点光谱蓝移和光漂白不同步性的测量量子点团聚体中量子点个数的方法。通过观测量子点团聚物一级条纹的分裂过程,计量出团聚体中量子点的个数。
     四、多色和同色量子点复合物的超高分辨率定位技术
     多色量子点的超高分辨定位是根据不同颜色量子点的光谱位置不同而识别闪烁的量子点。通过监测双色或多色量子点复合物中个体量子点一级光谱的闪烁,分别定位两种颜色的QD,从而测量出双色量子点间小于衍射极限的距离。
     同色量子点的超高分辨率定位是基于量子点光谱蓝移的不同步和量子点漂白的不同步,识别闪烁的量子点,并分别定位。
As novel fluorescent nanomaterials, quantum dots have played important roles in many fileds, such as chemical analysis, biology sensor, molecular imaging, owing to their excellent optical properties. Studies on the properties of single quantum dot can help to find new experimental phenomenology, which can't be found in the ensemble-approach; provide a mentality to improve the properties of quantum dots; contribute to a better application of QDs in various fields. Utilizing the wide-field fluorescence microscopy as the main study approach and taking single QD as research object, this dissertation showed photobleaching of QDs by non-excitation light, presented the influence factor of oxidation process, and applied the QDs to single molecule counting and super-resolution localization. The main work were as follows:
     1. Photobleaching of Quantum Dots by Non-excitation Light
     Core/shell quantum dots are found to be photobleached by non-excitation wavelength light at the single molecule level and ensemble level. That means even the provided photons have not enough energy to pump electrons into conductive band, the photoreaction of QD for photobleaching still occurs but with slower rate comparing with photobleaching by excitation light. The photodynamic of photobleaching under the non-excitation illumination also follows the consecutive elementary reactions as the behavior of excitation wavelength irradiation.
     2. Oxidation Dynamic of Single CdSe/ZnS Quantum Dots
     QDs photo-spectal blue shift are caused by an overall size reduction of the QDs due to photooxidation. In this chapter, we utilized the spectral imaging to monitor the process of bule shift, that equals to monitor the QDs oxidation process. After investigated the influence of excitation wavelengh and intensity on Core/shell CdSe/ZnS qauntum dots photo-spectral blue shift, we found that the extent of the blue shift strongly depends on the excitation wavelength and QDs initial size, but not depends on the excitaion intensity. The core oxidation rate is almost proportional to the excitation intensity, shorter excitation wavelength induces faster oxidation rate.
     3. A meathod for measuring extent of QDs aggregation
     Real-time measurement of the extent of nanopaticle aggregation is a difficult technical problem. In this chapter, we described a simple and accurate stoichiometry method to count the number of QDs among aggregated QDs by recording the process of its spectral buling and photobleaching. Observing aggregated QDs first-order spectral split, the number of spectral split displays the number of QDs.
     4. Superlocalization Technique of Multi-color and same-color Quantum Dot Complex
     Superlocalization technique of multicolor quantum dot complex is baesd on different spectral position at different color QDs to monitor the QDs blinking. Tracing the first order spectral of multicolor and dualcolor QDs complex, we realized different color QDs localization, separately, and measured the distance between the two QDs, that is less than diffraction limit distance.
     Baesd on the QDs spectral bule shift and photobleaching asynchronism, a simple superlocalization technique of same-color QDs complex were developed by identifying QDs blinking.
引文
[1]Moerner W E, Fromm D P. Methods of single-molecule fluorescence spectroscopy and microscopy. Review of Scientific Instruments,2003,74 (8): 3597-3619
    [2]梁帅,董献堆.单分子检测进展.分析化学,2006,34(3):421-426
    [3]Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281 (5385):2013-2016
    [4]Gao X H, Cui Y Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology,2004,22 (8):969-976
    [5]Biju V, Itoh T, Ishikawa M. Delivering quantum dots to cells:bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chemical Society Reviews,2010,39 (8):3031-3056
    [6]Medintz I L, Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials,2005,4 (6):435-446
    [7]Shao L, Gao Y, Yan F. Semiconductor Quantum Dots for Biomedicial Applications. Sensors,2011,11 (12):11736-11751
    [8]Wang C, Gao X, Su X G. In vitro and in vivo imaging with quantum dots. Analytical and Bioanalytical Chemistry,2010,397 (4):1397-1415
    [9]Zrazhevskiy P, Sena M, Gao X H. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chemical Society Reviews,2010,39 (11):4326-4354
    [10]Heintzmann R, Ficz G, Breaking the resolution limit in light microscopy. Digital Microscopy,3rd Edition, Elsevier Academic Press Inc:San Diego,2007, 81,561-580
    [11]Hell S W. Far-field optical nanoscopy. Science,2007,316 (5828):1153-1158
    [12]Knight A E, Interduction:the"single molecule" paradiam. Single molecule biology, Elsevier Academic Press Inc:2009, ⅹⅶ-ⅹⅹⅹⅴ
    [13]Schutz G J, Schindler H, Schmidt T. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophysical Journal,1997,73 (2): 1073-1080
    [14]Lakadamyali M, Rust M J, Babcock H P, et al. Visualizing infection of individual influenza viruses. Proceedings of the National Academy of Sciences of the United States of America,2003,100 (16):9280-9285
    [15]Merrifield C J, Feldman M E, Wan L, et al. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nature Cell Biology,2002,4 (9):691-698
    [16]Hirschfeld T. Optical microscopic observation of single small molecules. Applied Optics,1976,15 (12):2965-2966
    [17]Fox C B, Wayment J R, Myers G A, et al. Single-Molecule Fluorescence Imaging of Peptide Binding to Supported Lipid Bilayers. Analytical Chemistry, 2009,81 (13):5130-5138
    [18]Tokunaga M, Kitamura K, Saito K, et al. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochemical and Biophysical Research Communications,1997,235 (1):47-53
    [19]Demuro A, Parker I. Imaging the activity and localization of single voltage-gated Ca2+ channels by total internal reflection fluorescence microscopy. Biophysical Journal,2004,86 (5):3250-3259
    [20]Demuro A, Parker I. Imaging single-channel calcium microdomains by total internal reflection microscopy. Biological Research,2004,37 (4):675-679
    [21]Lu H P, Xun L Y, Xie X S. Single-molecule enzymatic dynamics. Science,1998, 282(5395):1877-1882
    [22]Dickson R M, Cubitt A B, Tsien R Y, et al. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature,1997,388 (6640):355-358
    [23][23] Sosa H, Peterman E J G, Moerner W E, et al. ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nature Structural Biology,2001,8 (6):540-544
    [24]Denk W, Strickler J H, Webb W W.2-Photon laser scanning fluorescence microscopy. Science,1990,248 (4951):73-76
    [25]Mertz J, Xu C, Webb W W. Single-molecule detection by two-photon-excited fluorescence. Optics Letters,1995,20 (24):2532-2534
    [26]Martini J, Schmied K, Palmisano R, et al. Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time. Journal of Structural Biology,2007, 158 (3):401-409
    [27]Liu H. Qin W, Shao Y, et al. Myofibrillogenesis in live neonatal cardiomyocytes observed with hybrid two-photon excitation fluorescence-second harmonic generation microscopy. Journal of Biomedical Optics,2011,16 (12):126012
    [28]Orzekowsky-Schroeder R, Klinger A, Martensen B, et al. In vivo spectral imaging of different cell types in the small intestine by two-photon excited autofluorescence. Journal of Biomedical Optics,2011,16 (11):116025
    [29]Funatsu T, Harada Y, Tokunaga M, et al. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature,1995,374 (6522):555-559
    [30]Sako Y, Uyemura T. Total internal reflection fluorescence microscopy for single-molecule imaging in living cells. Cell Structure and Function,2002,27 (5):357-365
    [31]Dickson R M, Cubitt A B, Tsien R Y, et al. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature,1997,388 (6640):355-358
    [32]Nirmal M, Dabbousi B O, Bawendi M G, et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature,1996,383 (6603):802-804
    [33]Lee S F, Osborne M A. Photodynamics of a single quantum dot:Fluorescence activation, enhancement, intermittency, and decay. Journal of the American Chemical Society,2007,129 (29):8936-8637
    [34]Soper S A, Shera E B, Martin J C, et al. Single-molecule detection of rhodamine-6G in ethanolic solutions using continuous wave laser excitation. Analytical Chemistry,1991,63 (5):432-437
    [35]Haab B B, Mathies R A. Single-molecule fluorescence burst detection of DNA fragments separated capillary electrophoresis. Analytical Chemistry,1995,67 (18):3253-3260
    [36]Shortreed M R, Li H L, Huang W H, et al. High throughput single-molecule DNA screening based be electrophoresis. Analytical Chemistry,2000,72 (13): 2879-2885
    [37]Li N, Tang H, Gai H W, et al. Determination of protein surface excess on a liquid/solid interface by single-molecule counting. Analytical and Bioanalytical Chemistry,2009,394 (7):1879-1885
    [38]Kang S H, Yeung E S. Dynamics of single-protein molecules at a liquid/solid interface:Implications in capillary electrophoresis and chromatography. Analytical Chemistry,2002,74 (24):6334-6339
    [39]Li Q, Han R, Meng X X, et al. Tracking single quantum dot and its spectrum in free solution with controllable thermal diffusion suppression. Analytical Biochemistry,2008,377 (2):176-181
    [40]Edman L, Mets U, Rigler R. Conformational transitions monitored for single molecules in solution. Proceedings of the National Academy of Sciences of the United States of America,1996,93 (13):6710-6715
    [41]Wallace M I, Ying L M, Balasubramanian S, et al. Non-Arrhenius kinetics for the loop closure of a DNA hairpin. Proceedings of the National Academy of Sciences of the United States of America,2001,98 (10):5584-5589
    [42]Guan Y H, Wang Z, Cao A N, et al. Subunit exchange of MjHspl6.5 studied by single-molecule imaging and fluorescence resonance energy transfer. Journal of the American Chemical Society,2006,128 (22):7203-7208
    [43]Zhang Z Q, Rajagopalan P T R, Selzer T, et al. Single-molecule and transient kinetics investigation of the interaction of dihydrofolate reductase with NADPH and dihydrofolate. Proceedings of the National Academy of Sciences of the United States of America,2004,101 (9):2764-2769
    [44]Yildiz A, Tomishige M, Vale R D, et al. Kinesin walks hand-over-hand. Science, 2004,303 (5658):676-678
    [45]Yu J, Xiao J, Ren X J, et al. Probing gene expression in live cells, one protein molecule at a time. Science,2006,311 (5767):1600-1603
    [46]Elf J, Li G-W, Xie X S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science,2007,316 (5828):1191-1194
    [47]Byassee T A, Chan W C W, Nie S M. Probing single molecules in single living cells. Analytical Chemistry,2000,72 (22):5606-5611
    [48]Goulian M, Simon S M. Tracking single proteins within cells. Biophysical Journal,2000,79 (4):2188-2198
    [49]Xu N, Liang Z-y, Xu M, et al. Real-time detection of alpha(1A)-AR movement stimulated by phenylephrine in single living cells. Acta Pharmacologica Sinica, 2007,28 (6):796-802
    [50]Seisenberger G, Ried M U, Endress T, et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science,2001,294 (5548):1929-1932
    [51]Wang Y, Herron N. Nanometer-sized semiconductor clusters-materials synthesis, quantum size effects, and photophysical properties. Journal of Physical Chemistry,1991,95 (2):525-532
    [52]Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals. Journal of Physical Chemistry,1996,100 (31):13226-13239
    [53]Chestnoy N, Harris T D, Hull R, et al. Luminescence and Photophysics of Cds Semiconductor Clusters - the Nature of the Emitting Electronic State. Journal of Physical Chemistry,1986,90 (15):3393-3399
    [54]Lee D C, Pietryga J M, Robel I, et al. Colloidal Synthesis of Infrared-Emitting Germanium Nanocrystals. Journal of the American Chemical Society,2009,131 (10):3436-3437
    [55]Guo Q J, Hillhouse H W, Agrawal R. Synthesis of Cu(2)ZnSnS(4) Nanocrystal Ink and Its Use for Solar Cells. Journal of the American Chemical Society,2009, 131 (33):11672-11673
    [56]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996,271 (5251):933-937
    [57]Brus L. Electronic wave-functions in semiconductor clusters:experiment and theory. Journal of Physical Chemistry,1986,90 (12):2555-2560
    [58]Yu W W, Qu L H, Guo W Z, et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials,2003, 15 (14):2854-2860
    [59]Heath J R, Shiang J J. Covalency in semiconductor quantum dots. Chemical Society Reviews,1998,27 (1):65-71
    [60]Wang X Y, Ren X F, Kahen K, et al. Non-blinking semiconductor nanocrystals. Nature,2009,459 (7247):686-689
    [61]Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281 (5385):2016-2018
    [62]Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chemical Society Reviews,2010,39 (11):4326-4354
    [63]van Sark W, Frederix P, Bol A A, et al. Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots. Chemphyschem,2002,3 (10):871-879
    [64]Lee S F, Osborne M A. Brightening, Blinking, Bluing and Bleaching in the Life of a Quantum Dot:Friend or Foe? Chemphyschem,2009,10 (13):2174-2191
    [65]Cordero S R, Carson P J, Estabrook R A, et al. Photo-activated luminescence of CdSe quantum dot monolayers. Journal of Physical Chemistry B,2000,104 (51): 12137-12142
    [66]van Sark W, Frederix P, Van den Heuvel D J, et al. Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy. Journal of Physical Chemistry B,2001,105 (35): 8281-8284
    [67]Chen H P, Gai H W,Yeung E S. Inhibition of photobleaching and blue shift in quantum dots. Chemical Communications,2009, (13):1676-1678
    [68]Shi X B, Meng X X, Sun L C, et al. Observing photophysical properties of quantum dots in air at the single molecule level:advantages in microarray applications. Lab on a Chip,2010,10 (21):2844-2847
    [69]Myung N, Bae Y, Bard A J. Enhancement of the photoluminescence of CdSe nanocrystals dispersed in CHC13 by oxygen passivation of surface states. Nano Letters,2003,3 (6):747-749
    [70]Chon J W M, Zijlstra P, Gu M, et al. Two-photon-induced photoenhancement of densely packed CdSe/ZnSe/ZnS nanocrystal solids and its application to multilayer optical data storage. Applied Physics Letters,2004,85 (23): 5514-5516
    [71]Asami H, Abe Y, Ohtsu T, et al. Surface state analysis of photobrightening in CdSe nanocrystal thin films. Journal of Physical Chemistry B,2003,107 (46): 12566-12568
    [72]Javier A, Strouse G F. Activated and intermittent photoluminescence in thin CdSe quantum dot films. Chemical Physics Letters,2004,391 (1-3):60-63
    [73]Bao H B, Gong Y J, Li Z, et al. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals:Toward highly fluorescent CdTe/CdS core-shell structure. Chemistry of Materials,2004,16 (20):3853-3859
    [74]Hohng S, Ha T. Near-complete suppression of quantum dot blinking in ambient conditions. Journal of the American Chemical Society,2004,126 (5): 1324-1325
    [75]Dabbousi B O, RodriguezViejo J, Mikulec F V, et al. (CdSe)ZnS core-shell quantum dots:Synthesis and characterization of a size series of highly luminescent nanocrystallites. Journal of Physical Chemistry B,1997,101 (46): 9463-9475
    [76]Mahler B, Spinicelli P, Buil S, et al. Towards non-blinking colloidal quantum dots. Nature Materials,2008,7 (8):659-664
    [77]Ha T. Photonics:How nanocrystals lost their blink. Nature,2009,459 (7247): 649-650
    [78]Kuno M, Fromm D P. Johnson S T, et al. Modeling distributed kinetics in isolated semiconductor quantum dots. Physical Review B,2003,67 (12): 125304
    [79]Verberk R, van Oijen A M, Orrit M. Simple model for the power-law blinking of single semiconductor nanocrystals. Physical Review B,2002,66 (23):233202
    [80]Tang J, Marcus R A. Diffusion-controlled electron transfer processes and power-law statistics of fluorescence intermittency of nanoparticles. Physical Review Letters,2005,95 (10):107401
    [81]Cherniavskaya O, Chen L W, Brus L. Imaging the photoionization of individual CdSe/CdS core-shell nanocrystals on n- and p-type silicon substrates with thin oxides. Journal of Physical Chemistry B,2004,108 (16):4946-4961
    [82]Frantsuzov P A, Marcus R A. Explanation of quantum dot blinking without the long-lived trap hypothesis. Physical Review B,2005,72 (15):155321
    [83]Nazzal A Y, Wang X Y, Qu L H, et al. Environmental effects on photoluminescence of highly luminescent CdSe and CdSe/ZnS core/shell nanocrystals in polymer thin films. Journal of Physical Chemistry B,2004,108 (18):5507-5515
    [84]Jones M, Nedeljkovic J, Ellingson R J, et al. Photoenhancement of luminescence in colloidal CdSe quantum dot solutions. Journal of Physical Chemistry B,2003,107 (41):11346-11352
    [85]Wang Y, Tang Z Y, Correa-Duarte M A, et al. Mechanism of strong luminescence photoactivation of citrate-stabilized water-soluble nanoparticles with CdSe cores. Journal of Physical Chemistry B,2004,108 (40):15461-15469
    [86]Empedocles S A, Bawendi M G. Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots. Journal of Physical Chemistry B,1999,103 (11):1826-1830
    [87]Liu L P, Peng Q, Li Y D. An effective oxidation route to blue emission CdSe quantum dots. Inorganic Chemistry,2008,47 (8):3182-3187
    [88]Galian R E, de la Guardia M, Perez-Prieto J. Photochemical Size Reduction of CdSe and CdSe/ZnS Semiconductor Nanoparticles Assisted by n pi* Aromatic Ketones. Journal of the American Chemical Society,2009,131 (3):892-893
    [89]Hay K X, Waisundara V Y, Zong Y, et al. CdSe nanocrystals as hydroperoxide scavengers:A new approach to highly sensitive quantification of lipid hydroperoxides. Small,2007,3 (2):290-293
    [90]Lucey D W, MacRae D J, Furis M, et al. Monodispersed InP quantum dots prepared by colloidal chemistry in a noncoordinating solvent. Chemistry of Materials,2005,17 (14):3754-3762
    [91]Hwang S H, Moorefield C N, Wang P S, et al. Dendron-tethered and templated CdS quantum dots on single-walled carbon nanotubes. Journal of the American Chemical Society,2006,128 (23):7505-7509
    [92]Wu G S, Zhang L D, Cheng B C, et al. Synthesis of Eu2O3 nanotube arrays through a facile sol-gel template approach. Journal of the American Chemical Society,2004,126 (19):5976-5977
    [93]Hsiu S I, Sun I W. Electrodeposition behaviour of cadmium telluride from 1-ethyl-3-methylimidazolium chloride tetrafluoroborate ionic liquid. Journal of Applied Electrochemistry,2004,34 (10):1057-1063
    [94]Chunggaze M, McAleese J, O'Brien P, et al. Deposition of thin films of CdSe or ZnSe by MOCVD using simple air stable precursors. Chemical Communications, 1998, (7):833-834
    [95]Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society,1993,115 (19): 8706-8715
    [96]Qu L H, Peng Z A, Peng X G. Alternative routes toward high quality CdSe nanocrystals. Nano Letters,2001,1 (6):333-337
    [97]Qu L H, Peng X G. Control of photoluminescence properties of CdSe nanocrystals in growth. Journal of the American Chemical Society,2002,124 (9):2049-2055
    [98]Deng Z T, Cao L, Tang F Q, et al. A new route to zinc-blende CdSe nanocrystals: Mechanism and synthesis. Journal of Physical Chemistry B,2005,109 (35): 16671-16675
    [99]Li W W, Liu J, Sun K, et al. Highly fluorescent water soluble Cd(x)Zn(1-x)Te alloyed quantum dots prepared in aqueous solution:one-step synthesis and the alloy effect of Zn. Journal of Materials Chemistry,2010,20 (11):2133-2138
    [100]Rogach A L, Katsikas L, Kornowski A, et al. Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics,1996,100 (11):1772-1778
    [101]Choi H S, Liu W, Misra P, et al. Renal clearance of quantum dots. Nature Biotechnology,2007,25 (10):1165-1170
    [102]Law W-C, Yong K-T, Roy I, et al. Aqueous-Phase Synthesis of Highly Luminescent CdTe/ZnTe Core/Shell Quantum Dots Optimized for Targeted Bioimaging. Small,2009,5 (11):1302-1310
    [103]Gerion D, Pinaud F, Williams S C, et al. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. Journal of Physical Chemistry B,2001,105 (37):8861-8871
    [104]Nann T, Mulvaney P. Single quantum dots in spherical silica particles. Angewandte Chemie-International Edition,2004,43 (40):5393-5396
    [105]Zhou W, Schwartz D T, Baneyx F. Single-Pot Biofabrication of Zinc Sulfide Immuno-Quantum Dots. Journal of the American Chemical Society,2010,132 (13):4731-4738
    [106]Du Y P, Xu B, Fu T, et al. Near-infrared Photoluminescent Ag(2)S Quantum Dots from a Single Source Precursor. Journal of the American Chemical Society, 2010,132(5):1470-1471
    [107]Barat B, Sirk S J, McCabe K E, et al. Cys-diabody Quantum Dot Conjugates (ImmunoQdots) for Cancer Marker Detection. Bioconjugate Chemistry,2009, 20(8):1474-1481
    [108]Medintz I L, Clapp A R, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Materials,2003,2 (9): 630-638
    [109]Goldman E R, Anderson G P, Tran P T, et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Analytical Chemistry,2002,74 (4): 841-847
    [110]Mattoussi H, Mauro J M, Goldman E R, et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. Journal of the American Chemical Society,2000,122 (49):12142-12150
    [111]Mahtab R, Rogers J P, Singleton C P, et al. Preferential adsorption of a "kinked" DNA to a neutral curved surface:Comparisons to and implications for nonspecific DNA-protein interactions. Journal of the American Chemical Society,1996,118 (30):7028-7032
    [112]Moore D E, Patel K. Q-CdS photoluminescence activation on Zn2+ and Cd2+ salt introduction. Langmuir,2001,17 (8):2541-2544
    [113]Chen J L, Zhu C Q. Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Analytica Chimica Acta,2005, 546(2):147-153
    [114]Isarov A V, Chrysochoos J. Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles:Surface modification with copper(II) ions. Langmuir,1997,13 (12):3142-3149
    [115]Chen Y F, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes. Analytical Chemistry,2002,74 (19):5132-5138
    [116]Chan Y H, Chen J X, Liu Q S, et al. Ultrasensitive Copper(II) Detection Using Plasmon-Enhanced and Photo-Brightened Luminescence of CdSe Quantum Dots. Analytical Chemistry,2010,82 (9):3671-3678
    [117]Freeman R, Finder T,Willner I. Multiplexed Analysis of Hg(2+) and Ag(+) Ions by Nucleic Acid Functionalized CdSe/ZnS Quantum Dots and Their Use for Logic Gate Operations. Angewandte Chemie-International Edition,2009,48 (42):7818-7821
    [118]Shang L, Zhang L H,Dong S J. Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots. Analyst,2009,134 (1):107-113
    [119]Wu P, Li Y,Yan X P. CdTe Quantum Dots (QDs) Based Kinetic Discrimination of Fe(2+) and Fe(3+), and CdTe QDs-Fenton Hybrid System for Sensitive Photoluminescent Detection of Fe(2+). Analytical Chemistry,2009,81 (15): 6252-6257
    [120]Li H B, Zhang Y, Wang X Q, et al. Calixarene capped quantum dots as luminescent probes for Hg2+ ions. Materials Letters,2007,61 (7):1474-1477
    [121]Lakowicz J R, Gryczynski I, Gryczynski Z, et al. Luminescence spectral properties of CdS nanoparticles. Journal of Physical Chemistry B,1999,103 (36):7613-7620
    [122]Ali E M, Zheng Y G, Yu H H, et al. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Analytical Chemistry,2007,79 (24): 9452-9458
    [123]Constantine C A, Gattas-Asfura K M, Mello S V, et al. Layer-by-layer films of chitosan, organophosphorus hydrolase and thioglycolic acid-capped CdSe quantum dots for the detection of paraoxon. Journal of Physical Chemistry B, 2003,107 (50):13762-13764
    [124]Yan Y, Wang S H, Liu Z W, et al. CdSe-ZnS Quantum Dots for Selective and Sensitive Detection and Quantification of Hypochlorite. Analytical Chemistry, 2010,82 (23):9775-9781
    [125]Banerjee S, Kar S, Perez J M, et al. Quantum Dot-Based OFF/ON Probe for Detection of Glutathione. Journal of Physical Chemistry C,2009,113 (22): 9659-9663
    [126]Zhang K, Mei Q S, Guan G J, et al. Ligand Replacement-Induced Fluorescence Switch of Quantum Dots for Ultrasensitive Detection of Organophosphorothioate Pesticides. Analytical Chemistry,2010,82 (22):9579-9586
    [127]Barbara P F, Meyer T J, Ratner M A. Contemporary issues in electron transfer research. Journal of Physical Chemistry,1996,100 (31):13148-13168
    [128]Sandros M G, Gao D, Benson D E. A modular nanoparticle-based system for reagentless small molecule biosensing. Journal of the American Chemical Society,2005,127 (35):12198-12199
    [129]Ruedas-Rama M J, Hall E A H. Azamacrocycle Activated Quantum Dot for Zinc Ion Detection. Analytical Chemistry,2008,80 (21):8260-8268
    [130]Medintz I L, Farrell D, Susumu K, et al. Multiplex Charge-Transfer Interactions between Quantum Dots and Peptide-Bridged Ruthenium Complexes. Analytical Chemistry,2009,81 (12):4831-4839
    [131]Sykora M, Petruska M A, Alstrum-Acevedo J, et al. Photoinduced charge transfer between CdSe nanocrystal quantum dots and Ru-polypyridine complexes. Journal of the American Chemical Society,2006,128 (31): 9984-9985
    [132]Moeno S, Nyokong T. Opposing responses elicited by positively charged phthalocyanines in the presence of CdTe quantum dots. Journal of Photochemistry and Photobiology a-Chemistry,2009,201 (2-3):228-236
    [133]Dorokhin D, Tomczak N, Velders A H, et al. Photoluminescence Quenching of CdSe/ZnS Quantum Dots by Molecular Ferrocene and Ferrocenyl Thiol Ligands. Journal of Physical Chemistry C,2009,113 (43):18676-18680
    [134]Frasco M F, Chaniotakis N. Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Analytical and Bioanalytical Chemistry,2010, 396 (1):229-240
    [135]Jiang G X, Susha A S, Lutich A A, et al. Cascaded FRET in Conjugated Polymer/Quantum Dot/Dye-Labeled DNA Complexes for DNA Hybridization Detection. Acs Nano,2009,3 (12):4127-4131
    [136]Shi L F, De Paoli V, Rosenzweig N, et al. Synthesis and application of quantum dots FRET-based protease sensors. Journal of the American Chemical Society, 2006,128(32):10378-10379
    [137]Tang B, Cao L H, Xu K H, et al. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and an nanoparticles. Chemistry-a European Journal,2008,14 (12):3637-3644
    [138]Wang X, Guo X Q. Ultrasensitive Pb(2+) detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Analyst,2009,134 (7):1348-1354
    [139]Grunwell J R, Glass J L, Lacoste T D, et al. Monitoring the conformational fluctuations of DNA hairpins using single-pair fluorescence resonance energy transfer. Journal of the American Chemical Society,2001,123 (18):4295-4303
    [140]Tomschik M, Zheng H C, van Holde K, et al. Fast, long-range, reversible conformational fluctuations in nucleosomes revealed by single-pair fluorescence resonance energy transfer. Proceedings of the National Academy of Sciences of the United States of America,2005,102 (9):3278-3283
    [141]Wabuyele M B, Farquar H, Stryjewski W, et al. Approaching real-time molecular diagnostics:Single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes. Journal of the American Chemical Society,2003,125 (23): 6937-6945
    [142]Lu H, Schoeps O, Woggon U, et al. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. Journal of the American Chemical Society,2008,130 (14):4815-4827
    [143]Boeneman K, Prasuhn D E, Blanco-Canosa J B, et al. Self-Assembled Quantum Dot-Sensitized Multivalent DNA Photonic Wires. Journal of the American Chemical Society,2010,132 (51):18177-18190
    [144]Huang X, Li L, Qian H, et al. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angewandte Chemie-International Edition,2006,45 (31):5140-5143
    [145]Zhao S, Huang Y, Liu R, et al. A Nonenzymatic Chemiluminescent Reaction Enabling Chemiluminescence Resonance Energy Transfer to Quantum Dots. Chemistry-a European Journal,2010,16 (21):6142-6145
    [146]Li Z, Wang Y, Zhang G, et al. Chemiluminescence resonance energy transfer in the luminol-CdTe quantum dots conjugates. Journal of Luminescence,2010,130 (6):995-999
    [147]Zhao S, Huang Y, Shi M, et al. Chemiluminescence Resonance Energy Transfer-Based Detection for Microchip Electrophoresis. Analytical Chemistry, 2010,82 (5):2036-2041
    [148]So M K, Xu C J, Loening A M. et al. Self-illuminating quantum dot conjugates for in vivo imaging. Nature Biotechnology,2006,24 (3):339-343
    [149]Yao H Q, Zhang Y, Xiao F, et al. Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases. Angewandte Chemie-International Edition,2007,46 (23):4346-4349
    [150]Du J J, Yu C M, Pan D C, et al. Quantum-Dot-Decorated Robust Transductable Bioluminescent Nanocapsules. Journal of the American Chemical Society,2010, 132(37):12780-12781
    [151]Pinaud F, Clarke S, Sittner A, et al. Probing cellular events, one quantum dot at a time. Nature Methods,2010,7 (4):275-285
    [152]Dahan M, Levi S, Luccardini C, et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science,2003,302 (5644):442-445
    [153]Sako Y, Hibino k, Miyauchi T, et al. Single-Molecule Imaging of Signaling Molecules in Living Cells. Single Molecules,2000,1 (2):159-163
    [154]Pinaud F, Michalet X, Iyer G, et al. Dynamic Partitioning of a Glycosyl-Phosphatidylinositol-Anchored Protein in Glycosphingolipid-Rich Microdomains Imaged by Single-Quantum Dot Tracking. Traffic,2009,10 (6): 691-712
    [155]O'Connell K M S, Rolig A S, Whitesell J D, et al. Kv2.1 potassium channels are retained within dynamic cell surface microdomains that are defined by a perimeter fence. Journal of Neuroscience,2006,26 (38):9609-9618
    [156]Nechyporuk-Zloy V, Dieterich P, Oberleithner H, et al. Dynamics of single potassium channel proteins in the plasma membrane of migrating cells. American Journal of Physiology-Cell Physiology,2008,294 (4):C1096-C1102
    [157]Echarte M M, Bruno L, Arndt-Jovin D J, et al. Quantitative single particle tracking of NGF-receptor complexes:Transport is bidirectional but biased by longer retrograde run lengths. Febs Letters,2007,581 (16):2905-2913
    [158]Crane J M,Verkman A S. Long-range nonanomalous diffusion of quantum dot-labeled aquaporin-1 water channels in the cell plasma membrane. Biophysical Journal,2008,94 (2):702-713
    [159]Andrews N L, Lidke K A, Pfeiffer J R, et al. Actin restricts Fc epsilon RI diffusion and facilitates antigen-induced receptor immobilization. Nature Cell Biology,2008,10(8):955-963
    [160]Delehanty J B, Mattoussi H, Medintz I L. Delivering quantum dots into cells: strategies, progress and remaining issues. Analytical and Bioanalytical Chemistry,2009,393 (4):1091-1105
    [161]Hardman R. A toxicologic review of quantum dots:Toxicity depends on physicochemical and environmental factors. Environmental Health Perspectives, 2006,114 (2):165-172
    [162]Voura E B, Jaiswal J K, Mattoussi H, et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nature Medicine,2004,10 (9):993-998
    [163]Bharali D J, Lucey D W, Jayakumar H, et al. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. Journal of the American Chemical Society,2005,127(32):11364-11371
    [164]Susumu K, Uyeda H T, Medintz I L, et al. Design of biotin-functionalized luminescent quantum dots. Journal of Biomedicine and Biotechnology,2007, Article ID 90651
    [165]Yong K-T, Qian J, Roy I, et al. Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells. Nano Letters, 2007,7(3):761-765
    [166]Nabiev I, Mitchell S, Davies A, et al. Nonfunctionalized nanocrystals can exploit a cell's active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Letters,2007,7 (11):3452-3461
    [167]Derfus A M, Chan W C W, Bhatia S N. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Advanced Materials,2004,16 (12): 961-966
    [168]Wu X Y, Liu H J, Liu J Q, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology,2003,21 (1):41-46
    [169]Nan X L, Sims P A, Chen P, et al. Observation of individual microtubule motor steps in living cells with endocytosed quantum dots. Journal of Physical Chemistry B,2005,109 (51):24220-24224
    [170]Cai W B, Shin D W, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Letters.2006,6 (4): 669-676
    [171]Diagaradjane P, Orenstein-Cardona J M, Colon-Casasnovas N E, et al. Imaging epidermal growth factor receptor expression in vivo:Pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clinical Cancer Research,2008,14 (3):731-741
    [172]Aswathy R G, Yoshida Y, Maekawa T, et al. Near-infrared quantum dots for deep tissue imaging. Analytical and Bioanalytical Chemistry,2010,397 (4): 1417-1435
    [173]Kim S, Lim Y T, Soltesz E G, et al. Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping. Nature Biotechnology,2004,22 (1): 93-97
    [174]Samia A C S, Dayal S, Burda C. Quantum dot-based energy transfer: Perspectives and potential for applications in photodynamic therapy. Photochemistry and Photobiology,2006,82 (3):617-625
    [175]Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology B-Biology, 1997,39(1):1-18
    [176]Oleinick N L, Evans H H. The photobiology of photodynamic therapy:Cellular targets and mechanisms. Radiation Research,1998,150 (5):S146-S156
    [177]Yaghini E, Seifalian A M, MacRobert A J. Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. Nanomedicine,2009,4 (3):353-363
    [178]Rakovich A, Savateeva D, Rakovich T, et al. CdTe Quantum Dot/Dye Hybrid System as Photosensitizer for Photodynamic Therapy. Nanoscale Research Letters,2010,5 (4):753-760
    [179]Abbe E. Contributions to the theory of the microscope and that microscopic perception (translated from German) Arch. Microsc. Anat.,1873, 9 413-468
    [180]Rayleigh L. Investigations in optics, with special reference to the spectroscope. Philosophical Magazine,1879,8 261-274
    [181]Michalet X,Weiss S. Using photon statistics to boost microscopy resolution. Proceedings of the National Academy of Sciences of the United States of America,2006,103 (13):4797-4798
    [182]Hell S, Stelzer E H K. Properties of a 4pi Confocal Fluorescence Microscope. Journal of the Optical Society of America a-Optics Image Science and Vision, 1992,9 (12):2159-2166
    [183]Hell S W, Lindek S, Stelzer E H K. Enhancing the Axial Resolution in Far-Field Light-Microscopy-2-Photon 4pi Confocal Fluorescence Microscopy. Journal of Modern Optics,1994,41 (4):675-681
    [184]Bewersdorf J, Pick R, Hell S W. Multifocal multiphoton microscopy. Optics Letters,1998,23 (9):655-657
    [185]Gustafsson M G L, Agard D A, Sedat J W, Sevenfold Improvement of Axial Resolution in 3d Widefield Microscopy Using 2 Objective Lenses. Three-Dimensional Microscopy:Image Acquisition and Processing Ii,1995,2412. 147-156
    [186]Gustafsson M G L, Agard D A, Sedat J W. (IM)-M-5:3D widefield light microscopy with better than 100 nm axial resolution. Journal of Microscopy-Oxford,1999,195 10-16
    [187]Hell S W, Wichmann J. Breaking the Diffraction Resolution Limit by Stimulated-Emission - Stimulated-Emission-Depletion Fluorescence Microscopy. Optics Letters,1994,19 (11):780-782
    [188]Dyba M, Hell S W. Focal spots of size lambda/23 open up far-field florescence microscopy at 33 nm axial resolution. Physical Review Letters,2002,88 (16): 163901
    [189]Willig K I, Harke B, Medda R, et al. STED microscopy with continuous wave beams. Nature Methods,2007,4 (11):915-918
    [190]Hell S W, Kroug M. Ground-State-Depletion Fluorescence Microscopy - a Concept for Breaking the Diffraction Resolution Limit. Applied Physics B-Lasers and Optics,1995,60 (5):495-497
    [191]Hell S W. Toward fluorescence nanoscopy. Nature Biotechnology,2003,21 (11): 1347-1355
    [192]Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science,2006,313 (5793):1642-1645
    [193]Ando R, Hama H, Yamamoto-Hino M, et al. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America,2002,99 (20):12651-12656
    [194]Patterson G H, Lippincott-Schwartz J. Photoactivatable green fluorescent protein. Molecular Biology of the Cell,2002,13 551A-551A
    [195]Shroff H, Galbraith C G, Galbraith J A, et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proceedings of the National Academy of Sciences of the United States of America,2007,104 (51):20308-20313
    [196]Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods,2006,3 (10): 793-795
    [197]Bates M, Huang B, Dempsey G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science,2007,317 (5845): 1749-1753
    [198]Yildiz A, Forkey J N, McKinney S A, et al. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science,2003,300 (5628): 2061-2065
    [199]Qu X H, Wu D, Mets L, et al. Nanometer-localized multiple single-molecule fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America,2004,101 (31):11298-11303
    [200]Gordon M P, Ha T, Selvin P R. Single-molecule high-resolution imaging with photobleaching. Proceedings of the National Academy of Sciences of the United States of America,2004,101 (17):6462-6465
    [201]Churchman L S, Okten Z, Rock R S, et al. Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proceedings of the National Academy of Sciences of the United States of America,2005,102 (5):1419-1423
    [202]Lidke K A, Rieger B, Jovin T M, et al. Superresolution by localization of quantum dots using blinking statistics. Optics Express,2005,13 (18): 7052-7062
    [203]Lagerholm B C, Averett L, Weinreb G E, et al. Analysis method for measuring submicroscopic distances with blinking quantum dots. Biophysical Journal, 2006,91 (8):3050-3060
    [204]Agrawal A, Deo R, Wang G D, et al. Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes. Proceedings of the National Academy of Sciences of the United States of America,2008,105 (9):3298-3303
    [205]Antelman J, Wilking-Chang C, Weiss S, et al. Nanometer Distance Measurements between Multicolor Quantum Dots. Nano Letters,2009,9 (5): 2199-2205
    [206]Hoyer P, Staudt T, Engelhardt J, et al. Quantum Dot Blueing and Blinking Enables Fluorescence Nanoscopy. Nano Letters,2011,11 (1):245-250
    [207]Klimov V I, McBranch D W, Leatherdale C A, et al. Electron and hole relaxation pathways in semiconductor quantum dots. Physical Review B,1999, 60 (19):13740-13749
    [208]Zhang Y, He J, Wang P-N, et al. Time-dependent photoluminescence blue shift of the quantum dots in living cells:Effect of oxidation by singlet oxygen. Journal of the American Chemical Society,2006,128 (41):13396-13401
    [209]Ma J, Chen J-Y, Zhang Y, et al. Photochemical instability of thiol-capped CdTe quantum dots in aqueous solution and living cells:Process and mechanism. Journal of Physical Chemistry B,2007,111 (41):12012-12016
    [210]Efros A L, Rosen M, Kuno M, et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band:Dark and bright exciton states. Physical Review B,1996,54 (7):4843-4856
    [211]Nirmal M, Norris D J, Kuno M, et al. Observation of the Dark Exciton in Cdse Quantum Dots. Physical Review Letters,1995,75 (20):3728-3731
    [212]Sallen G, Tribu A, Aichele T, et al. Exciton dynamics of a single quantum dot embedded in a nanowire. Physical Review B,2009,80 (8):
    [213]Ozasa K, Nemoto S, Maeda M, et al. Excitation-wavelength-dependent photoluminescence evolution of CdSe/ZnS nanoparticles. Journal of Applied Physics,2007,101 (10):
    [214]Patterson G H, Piston D W. Photobleaching in two-photon excitation microscopy. Biophysical Journal,2000,78 (4):2159-2162
    [215]Sato K, Kojima S, Hattori S, et al. Controlling surface reactions of CdS nanocrystals:photoluminescence activation, photoetching and photostability under light irradiation. Nanotechnology,2007,18 (46):465702
    [216]Kim S H, Wolters R H, Heath J R. Photophysics of size-selected InP nanocrystals:Exciton recombination kinetics. Journal of Chemical Physics, 1996,105 (18):7957-7963
    [217]Oneil M, Marohn J, McLendon G. Dynamics of Electron-Hole Pair Recombination in Semiconductor Clusters. Journal of Physical Chemistry,1990, 94(10):4356-4363
    [218]Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science,2005,307 (5709):538-544
    [219]Algar W R, Susumu K, Delehanty J B, et al. Semiconductor Quantum Dots in Bioanalysis:Crossing the Valley of Death. Analytical Chemistry.2011,83 (23): 8826-8837
    [220]Uematsu T, Maenosono S, Yamaguchi Y. Photoinduced fluorescence enhancement in CdSe/ZnS quantum dot monolayers:Influence of substrate. Applied Physics Letters,2006,89 (3):
    [221]He H, Qian H F, Dong C Q. et al. Single nonblinking CdTe qnantnm dots synthesized in aqueous thiopropionic acid. Angewandte Chemie-International Edition,2006,45 (45):7588-7591
    [222]Walker G W, Sundar V C, Rudzinski C M, et al. Quantum-dot optical temperature probes. Applied Physics Letters,2003,83 (17):3555-3557
    [223]Lu L, Chen D F, Zhao G M, et al. Temperature and Excitation Wavelength Dependence of Surface-Plasmon-Mediated Emission from CdSe Nanocrystals. Journal of Physical Chemistry C,2010,114 (43):18435-18438
    [224]Aldana J, Lavelle N, Wang Y J, et al. Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals. Journal of the American Chemical Society,2005,127 (8):2496-2504
    [225]Avidan A, Oron D. Large blue shift of the biexciton state in tellurium doped CdSe colloidal quantum dots. Nano Letters,2008,8 (8):2384-2387
    [226]Biebricher A, Sauer M,Tinnefeld P. Radiative and nonradiative rate fluctuations of single colloidal semiconductor nanocrystals. Journal of Physical Chemistry B, 2006,110(11):5174-5178
    [227]Knappenberger K L, Wong D B, Romanyuk Y E, et al. Excitation wavelength dependence of fluorescence intermittency in CdSe/ZnS core/shell quantum dots. Nano Letters,2007,7 (12):3869-3874
    [228]Knappenberger K L, Wong D B, Xu W, et al. Excitation-Wavelength Dependence of Fluorescence Intermittency in CdSe Nanorods. Acs Nano,2008, 2 (10):2143-2153
    [229]Tonti D, van Mourik F, Chergui M. On the excitation wavelength dependence of the luminescence yield of colloidal CdSe quantum dots. Nano Letters,2004,4 (12):2483-2487
    [230]Han R, Zhang Y W, Dong X L, et al. Spectral imaging of single molecules by transmission grating-based epi-fluorescence microscopy. Analytica Chimica Acta,2008,619 (2):209-214
    [231]Mikulec F V, Kuno M, Bennati M, et al. Organometallic synthesis and spectroscopic characterization of manganese-doped CdSe nanocrystals. Journal of the American Chemical Society,2000,122 (11):2532-2540
    [232]Li Y, Zhang W, Li K, et al. Oxidative dissolution of polymer-coated CdSe/ZnS quantum dots under UV irradiation:mechanisms and kinetics. Environmental pollution (Barking, Essex:1987),2012,164 259-266
    [233]Henglein A. Mechanism of Reactions on Colloidal Microelectrodes and Size Quantization Effects. Topics in Current Chemistry,1988,143 113-180
    [234]Norris D J, Bawendi M G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys Rev B Condens Matter,1996,53 (24):16338-16346
    [235]Chen P, Zhou X C, Shen H, et al. Single-molecule fluorescence imaging of nanocatalytic processes. Chemical Society Reviews,2010,39 (12):4560-4570
    [236]Tachikawa T, Majima T. Single-molecule, single-particle fluorescence imaging of TiO(2)-based photocatalytic reactions. Chemical Society Reviews,2010,39 (12):4802-4819
    [237]Gell C, Bormuth V, Brouhard G J, et al. Microtubule Dynamics Reconstituted In Vitro and Imaged by Single-Molecule Fluorescence Microscopy. Methods in Cell Biology, Vol 95,2010,95 221-245
    [238]Li N, Tang H, Gai H, et al. Determination of protein surface excess on a liquid/solid interface by single-molecule counting. Anal Bioanal Chem,2009, 394(7):1879-1885
    [239]Lee J Y, Li J, Yeung E S. Single-molecule detection of surface-hybridized human papilloma virus DNA for quantitative clinical screening. Anal Chem, 2007,79(21):8083-8089
    [240]Liu X, Wu Z, Nie H, et al. Single DNA molecules as probes for interrogating silica surfaces after various chemical treatments. Anal Chim Acta,2007,602 (2): 229-235
    [241]Wang L, Xu G, Shia Z K, et al. Quantification of protein based on single-molecule counting by total internal reflection fluorescence microscopy with adsorption equilibrium. Analytica Chimica Acta,2007,590 (1):104-109
    [242]Agrawal A, Zhang C, Byassee T, et al. Counting single native biomolecules and intact viruses with color-coded nanoparticles. Anal Chem,2006,78 (4): 1061-1070
    [243]Qiu H, Ferrell E P, Nolan N, et al. Fluorescence single-molecule counting assays for high-sensitivity detection of cytokines and chemokines. Clinical Chemistry,2007,53 (11):2010-2012
    [244]Jiang D F, Wang L, Jiang W. Quantitative detection of antibody based on single-molecule counting by total internal reflection fluorescence microscopy with quantum dot labeling. Analytica Chimica Acta,2009,634 (1):83-88
    [245]Osborne M A, Lee S F. Quantum dot photoluminescence activation and decay: dark, bright, and reversible populations in ZnS-capped CdSe nanocrystals. ACS Nano,2011,5 (10):8295-8304
    [246]Vale R D, Funatsu T, Pierce D W, et al. Direct observation of single kinesin molecules moving along microtubules. Nature,1996,380 (6573):451-453
    [247]Casanova D, Giaume D, Moreau M, et al. Counting the number of proteins coupled to single nanoparticles. Journal of the American Chemical Society, 2007,129 (42):12592-12593
    [248]Delport F, Deres A, Hotta J, et al. Improved Method for Counting DNA Molecules on Biofunctionalized Nanoparticles. Langmuir,2010,26 (3): 1594-1597
    [249]Clarke S, Pinaud F, Beutel O, et al. Covalent monofunctionalization of peptide-coated quantum dots for single-molecule assays. Nano Lett,2010,10 (6):2147-2154
    [250]Ulbrich M H, Isacoff E Y. Subunit counting in membrane-bound proteins. Nat Methods,2007,4 (4):319-321
    [251]Lenn T, Gkekas C N, Bernard L, et al. Measuring the stoichiometry of functional PspA complexes in living bacterial cells by single molecule photobleaching. Chem Commun,2011,47 (1):400-402
    [252]Chiu R W K, Cantor C R, Lo Y M D. Non-invasive prenatal diagnosis by single molecule counting technologies. Trends in Genetics,2009,25 (7):324-331
    [253]Carstairs H M, Lymperopoulos K, Kapanidis A N, et al. DNA monofunctionalization of quantum dots. Chembiochem,2009,10 (11): 1781-1783
    [254]You C, Wilmes S, Beutel O, et al. Self-Controlled Monofunctionalization of Quantum Dots for Multiplexed Protein Tracking in Live Cells. Angewandte Chemie-International Edition,2010,49 (24):4108-4112
    [255]Howarth M, Liu W, Puthenveetil S, et al. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nature Methods,2008,5 (5):397-399
    [256]Willig K I, Rizzoli S O, Westphal V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature,2006, 440 (7086):935-939
    [257]Donnert G, Keller J, Medda R, et al. Macromolecular-scale resolution in biological fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America,2006,103 (31):11440-11445
    [258]Betzig E. Proposed Method for Molecular Optical Imaging. Optics Letters,1995, 20 (3):237-239
    [259]van Oijen A M, Kohler J, Schmidt J, et al.3-Dimensional super-resolution by spectrally selective imaging. Chemical Physics Letters,1998,292 (1-2): 183-187
    [260]Chien F C, Kuo C W, Chen P L. Localization imaging using blinking quantum dots. Analyst,2011,136 (8):1608-1613
    [261]Dertinger T, Colyer R, Iyer G, et al. Fast, background-free,3D super-resolution optical fluctuation imaging (SOFI). Proceedings of the National Academy of Sciences of the United States of America,2009,106 (52):22287-22292
    [262]Heinlein T, Biebricher A, Schluter P, et al. High-resolution colocalization of single molecules within the resolution gap of far-field microscopy. Chemphyschem,2005,6 (5):949-955
    [263]Thompson R E, Larson D R, Webb W W. Precise nanometer localization analysis for individual fluorescent probes. Biophysical Journal,2002,82 (5): 2775-2783
    [264]Hagerman P J. Flexibility of DNA. Annual Review of Biophysics and Biophysical Chemistry,1988,17 265-286
    [265]Mandelkern M, Elias J G, Eden D, et al. The Dimensions of DNA in Solution. Journal of Molecular Biology,1981,152(1):153-161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700