拟南芥抗致病疫霉突变体的筛选及T-DNA侧翼序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拟南芥(Arabidopsis thaliana)属十字花科芸薹属植物,在显花植物中,基因组最小(大小为125Mb),体细胞中仅5对染色体,并且基因组序列已测序完成。
     本研究将致病疫霉不同菌株接种到拟南芥Col-0生态型激活标签突变体上后,发现其抗感反应不同,并筛选出了感致病疫霉的突变体类型。以筛选出的拟南芥感病突变体基因组DNA为模板,利用热不对称交错PCR方法(Thermal asymmetric interlaced PCR,TAIL-PCR),进行了抗性相关基因的研究。通过TAIL-PCR技术,获得了拟南芥T-DNA插入侧翼序列,利用NCBI提供的拟南芥全基因组序列进行了序列同源性比对,主要结果如下:
     测定拟南芥258个激活标签突变体接种5个致病疫霉菌株后发现,AtTM31、AtTM34、AtTM40、AtTM113、AtTM246对致病疫霉的菌株17-B-1表现为重度感病,AtTM114对菌株17-B-1表现为中度感病,AtTM32、AtTM144、AtTM243、AtTM244对菌株17-B-1表现为轻度感病;AtTM32、AtTM34、AtTM40、AtTM113对菌株W040604表现为重度感病,AtTM31、AtTM244对菌株W040604表现为中度感病,AtTM114、AtTM144、AtTM243、AtTM246对菌株W040604表现为轻度感病;AtTM31对菌株W041002表现为重度感病,AtTM32、AtTM34、AtTM40、AtTM113、AtTM243、AtTM246对菌株W041002表现为中度感病,AtTM114、AtTM144、AtTM244对菌株W041002表现为轻度感病;AtTM32、AtTM40对菌株W041904表现为重度感病,AtTM34、AtTM144、AtTM243、AtTM246对菌株W041904表现为中度感病,AtTM31、AtTM 113、AtTM114、AtTM243对菌株W041904表现为轻度感病;AtTM31、AtTM32、AtTM40、AtTM246对菌株W041406表现为重度感病,AtTM34、AtTM114、AtTM243、AtTM244对菌株W041406表现为中度感病,AtTM113、AtTM144对菌株W041406表现为轻度感病。
     TAIL-PCR可以有效地扩增T-DNA插入侧翼拟南芥基因组序列,简并引物AD1、AD2、AD4和特异引物(Lex2、Lex4和Lex5)、(Lex3、Lex4和Lex5)组成的引物组合是最佳引物组合。对10个TAIL-PCR特异产物测序分析,发现2个T-DNA插入在基因上,2个则插入在基因间隔区中,5个是载体序列。
     T-DNA在AtTM34突变体基因组上插入第3条染色体133bp左右,处在第1个外显子上,该基因属于氨基酸透性酶家族蛋白,与SP/Q9WTR6胱氨酸/谷氨酸转座子有低的相似性(Amino acid transport system xc-){Mus musculus};包含Pfam profile PF00324:Amino acid permease。T-DNA在AtTM246突变体基因组上插入第5条染色体2672bp左右,处在第5个外显子上,该基因属于PPR模体蛋白(pentatricopeptide repeat containing protein)。
     通过Southern杂交试验验证,突变体AtTM34中含一个拷贝的T-DNA插入,突变体AtTM246中含两个拷贝的T-DNA插入。
Arabidopsis thaliana is a plant of Crucifereae. The Arabidopsis Genome is 125Mb,having five chromosomes, which had been sequenced in 2000.
     Several Phytophthora infestans-susceptible mutants had been obtained based onthe different reactions of Arabidopsis activated tagging mutants after being inoculatedby the fungus, and flanking sequence of Arabidopsis T-DNA insertion had also beenobtained by TAIL-PCR technology and genomic DNA from disease-susceptible mutantsas template. Some disease resistant-related genes had been found using NCBI sequencehomology analysis.
     Based on the 258 Arabidopsis activated tagging mutants being inoculated by thefive Phytophthora infestans different isolates we found that AtTM31, AtTM34, AtTM40,AtTM113, AtTM246 were higher susceptibility to isolate 17-B-1 and AtTM114 weremediate susceptibility to isolate 17-B-1 and AtTM32, AtTM144, AtTM243, AtTM244were lower susceptibility to isolate 17-B-1; AtTM32, AtTM34, AtTM40, AtTM113were higher susceptibility to isolate W040604 and AtTM31, AtTM244 were mediatesusceptibility to isolate W040604 and AtTM114, AtTM144, AtTM243, AtTM246 werelower susceptibility to isolate W040604; AtTM31 were higher susceptibility to isolateW041002 and AtTM 32, AtTM34, AtTM40, AtTM113, AtTM243, AtTM246 weremediate susceptibility to isolate W041002 and AtTM114, AtTM144, AtTM244 werelower susceptibility to isolate W041002; AtTM32, AtTM40 were higher susceptibilityto isolate W041904 and AtTM34, AtTM144, AtTM243, AtTM246 were mediatesusceptibility to isolate W041904 and AtTM31, AtTM113, AtTM114, AtTM243werelower susceptibility to isolate W041904; AtTM31, AtTM32, AtTM40, AtTM246 werehigher susceptibility to isolate W041406 and AtTM34, AtTM114, AtTM243, AtTM244were mediate susceptibility to isolate W041406 and AtTM113, AtTM144 were lowersusceptibility to isolate W041406.
     Thermal asymmetric interlaced PCR (TAIL-PCR) was efficiently used to amplifythe T-DNA flanking regions. Arbitrary primers AD1, AD2, AD4 and specific primers(Lex2, Lex4 and Lex5),(Lex3, Lex4 and Lex5) were the most suitable combination.Among 10 specific tertiary TAIL-PCR products sequenced, 2 mutants were found with T-DNA insertion within gene regions and 2 with T-DNA insertion in the region betweentwo genes and 5 with vector sequences.
     In AtTM 34, T-DNA was inserted at 133bp in chromosomeⅢand was in the exonof gene AT3G13620.1 which was Amino acid permease family protein. In AtTM 246,T-DNA was inserted at 2672bp in chromosome V and was in the fifth exon of geneAT5G24830.1. The function was pentatricopeptide repeat containing protein.
     Southern blotting analysis showed that AtTM 34 have one copy of T-DNAinsertion and AtTM 246 have two copies of T-DNA insertions.
引文
[1] Flor H. Current status of the gene-for-gene concept[J]. Annual Review of Phytopathology, 1971, 9: 275~296.
    [2] 王忠华,贾育林,夏英武.植物抗病分子机制研究进展[J].植物学通报,2004,21(5):521~530.
    [3] 孟金陵.拟南芥及分子生物学的研究[J].遗传,1995,17(增刊):41~45.
    [4] Cao H, Bowling S A, Dong X, et al. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance[J]. The Plant Cell, 1994, 6: 1583~1592.
    [5] Delaney T P, Friedrich L, Ryals J A. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance [J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92: 6602~6606.
    [6] Glazebrook J, Ausubel F M. Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(19): 8955~9.
    [7] Glazebrook J, Rogers E E, Ausubel F M. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening[J]. Genetics, 1996, 143(2): 973~82.
    [8] Glazebrook J, Zook M, Mert F, et al. Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildewresistance[J]. Genetics, 1997, 46(1): 381~92.
    [9] Parker J E, Holub E B, Frost L N, et al. Characterization of edsl, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPPgenes [J]. The Plant Cell, 1996, 8(11): 2033~46.
    [10] Shah J, Tsui F, Klessig D F. Characterization of a salicylic acid-insensitive mutant (sail) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene[J]. Molecular Plant-Microbe Interaction, 1997, 10(1): 69~78.
    [11] Yu G L, Katagiri F, Ausubel F M. Arabidopsis mutations at the RPS2 locus result in loss of resistance to Pseudomonas syringae strains expressing the avirulence gene avrRpt2[J]. Molecular Plant-Microbe Interaction, 1993, 6(4): 434~43.
    [12] David W M, Jmichael C, Caroline D, et al. Arabidopsis thaliana: Amodel plant for genomeanalysis[J]. Science, 1998, 282: 662~682.
    [13] The Arabidopsis Genome initiative. Analysis on the genome sequence of the flowering plantArabidopsisthaliana[J]. Nature, 2000, 408: 796~815.
    [14] 李志邈,张海扩,曹家树,等.拟南芥激活标记突变体库的构建及突变体基因的克隆[J].植物生理与分子生物学学报,2005,31(5):499~506.
    [15] Weigel D, Ahn J H, Blazquez M A, et al. Activation tagging in Arabidopsis [J]. Plant Phsiology, 2000, 122: 1003~1013.
    [16] Matsuhara S, Jingu F, Takahashi T, et al. Heat-shock tagging: a simple method for expression and isolation of plant genome DNA flanked by T-DNA insertions [J]. Plant Journal, 2000, 22: 79~86.
    [17] Jeong D H, An S, Kang H G, et al. T-DNA insertional mutagenesis for activation tagging in rice[J]. Plant Journal, 2000, 22: 561~570.
    [18] Kakimoto T. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction[J]. Science, 1996, 274: 982~985.
    [19] Kardailsky I, Shukla V K, Alan J H, et al. Activation tagging of the floral inducer FT[J]. Science, 1999, 286: 1962~1965.
    [20] Borevitz J O, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J]. The Plant Cell, 2000, 12: 2383~2394.
    [21] Ito T, Meyerowitz E M. Overexpression ofa gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in Arabidopsis[J]. The Plant cell, 2000, 12: 1541~1550.
    [22] Van der GraaffE, Dulk-Ras A D, Hooykaas P J, et al. Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana [J]. Development, 2000, 127: 4971~4980.
    [23] Huang S, Cemy R E, Bhat D S, et al. Cloning of an Arabidopsis patatin-like gene, STURDY, by activation T-DNA tagging[J]. Plant Physiology, 2001,125: 573~584.
    [24] Busov V B, Meilan R, Pearce D W, et al. Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from Poplar that regulates tree stature[J]. Plant Physiology, 2003, 132: 1283~1291.
    [25] Mathews H, Clendennen S K, Caldwell C G, et al. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport[J]. The PlantCell, 2003, 15: 1689~1703.
    [26] Zubko E, Adams CJ, Machaekova I, et al. Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants[J]. Plant Journal, 2002, 29: 797~808.
    [27] Streatfield S J, Magallanes M E, Beifuss K K, et al. Analysis of the maize polyubiquitin-1 promoter heat shock elements and generation of promoter variants with modified expression characteristics[J]. Transgenic Research, 2004, 13: 299~312.
    [28] Aoyama T, Chua N H. A glucocorticoid-mediated transcriptional induction system in transgenic plants[J]. Plant Journal, 1997, 11: 605~612.
    [29] Caddick M X, Greenland A J, Jepson I, et al. An ethanol inducible gene switch for plants used to manipulate carbon metabolism[J]. Nature Biotechnology, 1998, 16: 177~180.
    [30] Zuo J, Niu Q W, Chua N H. Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants[J]. Plant Journal, 2000, 24 (2): 265~273.
    [31] 张健,徐金相,左建儒,等.化学诱导激活型拟南芥突变体库的构建及分析.遗传学报,2005,32(10):1082~1088.
    [32] Zuo J, Niu Q W, Frugis G, et al. The WUSCHEL Gene Promotes Vegetative-to-Embryonic Transition in Arabidopsis[J]. Plant Journal, 2002, 30: 349~59.
    [33] Sun J, Niu Q W, Tarkowski P, et al. The Arabidopsis AtIPT8/PGA22 Gene Encodes an Isopentenyl Transferase that is Involved in de Novo Cytokinin Biosynthesis[J]. Plant Physiology, 2003, 131: 167~176.
    [34] Liu J, Zhu J K. An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance[J]. PNAS, 1997, 94: 14960~14964.
    [35] Does M P, Dekker BMM, de Groot MJA, et al. A quick method to estimate the T-DNA copy number in transgenic plants at an early stage after transformation using inverse PCR[J]. PlantMolBiology, 1991, 17: 151~153.
    [36] Behringer F J, Medford J I. A plasmid rescue technique for the recovery of plant DNA disrupted by T-DNA insertion[J]. Plant Molecular Biology Reporter, 1992, 10: 190~198.
    [37] Sessions A, Burke E, Presting G, et al. A high-throughputArabidopsis reverse genetics system[J]. The Plant Cell, 2002, 14: 2985~2994.
    [38] 杜伟.诱导型激活拟南芥突变体库的构建以及AtCRK3生化、表达分析[D].武汉大学,2005.
    [39] 姚裕琪,巩秀峰.马铃薯晚疫病抗性鉴定及评价[J].内蒙古农业科技,2001(2):8~9.
    [40] Duncan J M. Phytophthora-an abiding treat to our crops[J]. Microbiology Today, 1999, 26: 114~116.
    [41] Kunkel B N. A useful weed put to work: Genetic analysis of disease resistance in Arabidopsis thaliana[J]. Trends in Genetics, 1996, 12: 63~69.
    [42] 朱杰华,杨志辉,邵铁梅,等.中国部分地区马铃薯晚疫病菌生理小种的组成及分布[J].中国农业科学,2003,36(2):169~172.
    [43] J.萨姆布鲁克,D.W.拉塞尔等著(黄培堂等译).分子克隆实验技术指南[M].北京:科学出版社,2002.
    [44] Bundock P, Den D R, Beijersbergen A, et al. Trans-kingdom T-DNA transfer, from Agrobacterium to Saccharomyces Cerevisiae [J]. EMBO Journal, 1995, 14(3): 3206~3214.
    [45] 贺春萍.稻瘟病菌T-DNA插入的突变表性分析和插入位点定位[D].华南热带农林大学,2005.
    [46] Errampalli D, Patton D, Castle L, et al. Embryonic lethals and T-DNA insertional mutagenesis in Arabidopsis[J]. The Plant Cell, 1991, 11: 149~157.
    [47] 廖鸣娟,董爱华,王正栋,等.植物转座子及其在功能基因组学中的应用[J].遗传,2000,22(5):345~348.
    [48] Mullins E D, Chen P X, Kang S, et al. Agrobacterium-mediated transformation of Fusarium oxysporum: An Efficient Tool for Insertional Mutagenesis and Gene Transfer[J]. Phytopathology, 2001, 91(2): 173~180.
    [49] 李宏宇.稻瘟病菌T-DNA插入突变研究[D].福建农林大学,2003.
    [50] Liu Y G, Whitter R F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragment from PI and YAC clones for chromosome walking [J]. Genomics. 1995, 25:674~681.
    [51] 洪登峰,万丽丽,杨光圣.侧翼序列克隆方法评价[J].分子植物育种,2006,4(2):280~288.
    [52] Liu Y G, Huang N. Efficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR[J]. Plant Molecular Biology Reporter, 1998, 16 (2): 175~181.
    [53] Liu Y G, Norihiro M, Ternko O, et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR[J]. The PlantJonrnal, 1995, 8(3): 457~463.
    [54] 贺春萍.稻瘟病菌T-DNA插入的突变表性分析和插入位点定位[D].华南热带农林大学,2005.
    [55] Forman M A, Dush M K, Martin G R. Rapid production of full-length cDNA rare transcripts: amplification using a single gene-specific oligonucletide prime [J]. PNAS, 1988, 85: 8998~9002.
    [56] Ohara O, Dorit R L, Gilhert. One-sided polymerase chain reaction: the amplification of cDNA[J]. PNAS, 1989, 86: 5673~5677.
    [57] 罗丽娟,施季森.一种DNA侧翼序列分离技术—TAIL-PCR[J].南京林业大学学报,2003,27(4):87~90.
    [58] Mullins E D, Chen X, Kang S, et al. Agrobacterium-mediated transformation of Fusarium oxysporum: An Efficient Tool for Insertional Mutagenesis and Gene Transfer[J]. Phytopathology, 2001, 91(2): 173~180.
    [59] Walden R, Fritze K, Hayashi H, et al. Activation tagging: a means of isolating genes implicated as playing a role in plant growth and development[J]. Plant Molecular Biology, 1994, 26: 1521~1528.
    [60] Park D H, Lim P O, Kim J K, et al. The Arabidopsis COG1 gene encodes a Dof domain transcription factor and negatively regulates phytochrome signaling[J]. Plant Journal, 2003, 34: 161~171.
    [61] NakazawaM, IchikawaT, IshikawaA, etal. Activation tagging, a novel tool to dissect the functions ofa gene family[J]. Plant Journal, 2003, 34: 741~750.
    [62] Nakazawa M, Yabe N, Ichikawa T, et al. DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elogation and lateral root formation, and positively regulates the light response of hypocotyls length[J]. Plant Journal, 2001, 25: 213~221.
    [63] Niwa Y, Goto S, Nakano T, et al. Arabidopsis mutants by activation tagging in which photosynthesis genes are expressed in dedifferentiated calli[J]. Plant Cell Physiology, 2006, 47: 319~331.
    [64] Ohshima S, Murata M, Sakamoto W, et al. Cloning and molecular analysis, of the Arabidopsis gene Terminal Flower 1 [J]. Molecular General Genetics, 1997, 254.. 186~194.
    [65] Kirik V, Kolle K, Misera S, et al. Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants[J]. Plant Molecular Biology, 1998, 37: 819~827.
    [66] Mathews H, Clendennen S K, Caldwell C G, et al. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport [J]. ThePlant Cell, 2003, 15: 1689~1703.
    [67] Israelsson M, Mellerouicz E, Chono M, et al. Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects on gibberellin homeostasis and development[J]. Plant Physiology, 2004, 135: 221~230.
    [68] 郁晓敏.拟南芥低氮耐性突变体的筛选及其生理特性研究[D].浙江大学,2004.
    [69] 李志邈.两个与抗病、抗逆和发育相关的拟南芥激发标签突变体asrl和dail的研究[D].浙江大学,2004.
    [70] 郑继刚,李成梅,肖英华,等.激活标签法及其在植物基因工程上的应用[J].遗传,2003,25(4):471~474.
    [71] Errampali D, patton D. Embryonic lethals and T-DNA insertional muta-gensis in Arabidopsis[J]. The Plant cell, 1991, 11: 149~157.
    [72] Kumar C S, Narayanan K K. Plant transposable elements and functional genomics[J]. Plant Biotechnology, 1998, 15 (4), 159~165.
    [73] Small I D, Peeters N. The PPR motif-a-TPR-related motif prevalent in plant organellar proteins[J]. Trends in Biochemical Sciences, 2000, 25: 46~47.
    [74] Aubourg S, Boudet N, Kreis M, et al. In Arabidopsis thaliana, 1% of the genome codes for a novel protein family unique to plants[J]. Plant Molecular Biology, 2000, 42: 603~613.
    [75] 徐相波,邱登林,李新华,等.PPR基因家族的研究进展.遗传,2006,28(6):726~730.
    [76] Meierhoff K, Felder S, Nakamura T, et al. HCF 152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs[J]. The Plant Cell, 2003, 15: 1480~1495.
    [77] Nakamura T, Meierhoff K, Westhoff P, et al. RNA-binding properties of HCF152, an Arabidopsis PPR protein involve in the processing of chloroplast RNA[J]. European Journal of Biochemistry, 2003, 270: 4070~4081.
    [78] Yamazaki H, Tasaka M, Shikanai T. PPR motifs of the nucleus encoded factor, PGR3, function in the selective and distinc steps of chloroplast gene expression in Arabidopsis[J]. Plant Journal, 2004, 38: 152~163.
    [79] Williams P M, Barkan A. A chloroplast-localized PPR protein required for plastid ribosome accumulation[J]. Plant Journal, 2003, 36: 675~686.
    [80] Daniel A C, Nancy R F, Daniel R G, et al. Arabidopsis emb175 and other ppr knockout mutants reveal essential roles for pentatricopeptide repeat(PPR) proteins in plantembryogenesis[J]. Planta, 2005, 211: 424~436.
    [81] Fisk D G, Walker M B, Barkan A. Molecular cloning of the maize gene crpl reveals similarity between regulators of mitochondrial and chloroplast gene expression[J]. EMBO Journal, 1999, 18: 2621~2630.
    [82] Hashimoto M, Endo T, Peltier G, etal. A nucleus encoded factor, CRR2, is essential for the expression of chloroplast ndh B in Arabidopsis[J]. Plant Journal, 2003, 36: 541~549.
    [83] Manthey M G, Mcewen J E. The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron containing RNAs derived from the mitochondrial COX1 locus of Saccharomy cescerevisiae[J]. EMBO Journal, 1995, 14: 4031~4043.
    [84] Coffin J W, Dhillon R, Ritzel R G, et al. The Neurospora crassa cya25 nuclear gene encodes a protein with a region of homology to the Saccharomy cescerevisiae PET309 protein and is required in a post transcriptional step for the expression of the mitochondrially encoded COXI protein[J]. Current Genetics, 1997, 32: 273~280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700