无线Mesh网流量负载均衡关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线Mesh网是重要的下一代无线接入技术。流量负载均衡技术能实现无线Mesh网吞吐量及QoS性能的提升,是无线Mesh网技术研究的热门课题。无线Mesh网体系结构中,无线骨干层处于核心地位,对无线Mesh网性能有重要影响。由于无线骨干层由网关和Mesh路由器节点组成,无线Mesh网流量负载均衡有赖于两个方面:其一是网关之间的负载均衡,其二是Mesh路由器之间的负载均衡。因此,本文关于无线Mesh网流量负载均衡技术的研究工作基于两个方面展开,即网关负载均衡技术和Mesh路由器负载均衡技术。针对网关负载均衡问题,本文从网络设计阶段着手,提出负载均衡的网关部署问题,同时考虑网络QoS因素和部署费用;针对Mesh路由器负载均衡问题,本文研究具有负载感知能力的路由度量及其协议,以及QoS优化的多路径路由路径流量分配策略。本文围绕网关及Mesh路由器负载均衡问题进行了深入研究,主要工作如下:
     (1)针对负载均衡的网关部署问题,提出负载均衡的网络分簇算法,设计遗传算法达到数量及负载均衡的双重优化
     本文定义网关负载均衡度量,提出负载均衡的网关部署问题。为实现网关的负载均衡部署,提出网关部署的贪婪算法Greedy_Partition,该算法通过调整簇结构贪婪地减小网关之间负载的差别。为达到网关数量与负载均衡的双重优化,利用遗传算法在多目标寻优方面的优势,设计遗传算法GA_Placement求解网关数量最少、负载均衡的部署方案。在遗产算法GA_Placement设计中,力求与Greedy_Partition算法相结合,以实现在较少迭代次数下得到网关数量和负载均衡两方面优化的网关部署方案。
     (2)针对网关部署费用的差别,提出基于邻接矩阵和部署性价比的网关部署算法,实现网关负载均衡部署中的费用优化
     本文提出费用最小且负载均衡的网关部署问题,针对网关性能存在差别这一特点,设计新的网关负载均衡度量。提出费用优化及网关负载均衡的网关部署算法CLGP,该算法基于邻接矩阵和部署性价比进行网关选择,并对网关部署费用及负载均衡进行迭代优化。仿真实验验证了算法的有效性,算法执行复杂性较低。
     (3)基于图论支配集理论,提出有限支配集概念,把费用最小网关部署问题归结为图的最小权有限支配集问题,并提出相应的求解算法
     本文基于网关部署问题与图论支配集问题的相关性,提出有限支配集的概念,并把费用最小满足QoS约束的网关部署问题转化为最小权有限支配集问题。提出求解问题的贪婪算法Greedy_LDS和粒子群优化算法PSO_LDS。Greedy_LDS具有较低的算法复杂性,PSO_LDS以执行时间增加为代价可以找到较优的解。两算法各有优势,具有重要的参考价值。
     (4)基于无线Mesh网流量自相似性,进行流量预测,并综合当前流量与预测流量信息到路由度量及协议中,实现路由选择的负载自适应
     本文利用自相似流量的可预测性,进行流量预测;提出节点可负载度的概念,并作为路由度量,该度量包含了当前流量和预期流量的信息,可以很好地反映在将来的一段时间里节点仍可接受负载的能力,由此实现路由选择的前瞻性和预见性;提出具有负载均衡的路由协议LBDSR,该协议以路由中节点可负载度均值来衡量路由的好坏,从而达到网络的负载均衡。仿真实验表明,当网络负载较重时,LBDSR协议与其它协议相比,有更好的网络吞吐量和端到端时延。
     (5)基于网络演算理论分析路径时延及其抖动上界,并提出时延及抖动优化的多路径流量分配算法
     本文基于多媒体应用的服务质量研究多路径路由协议中路径流量分配策略。首先基于网络演算理论分析了路径时延上界及路径间时延抖动上界;然后,基于路径时延及路径间时延抖动上界提出满足时延约束、抖动优化的路径流量分配算法DCJOTA,并分析了算法实现的可行性和方法;最后,把DCJOTA算法应用到AOMDV路由协议中,并在NS-2网络模拟器中验证了算法的有效性。
Wireless mesh networks (WMNs) have been an important technology for next-generation wireless networking. As an important technology, load balancing can improve the throughput and QoS performance in WMNs, and becomes one of the hot issues in the research of WMNs. In the architechture of WMNs, wireless backbone is the key point in WMNs, and has much impact on the network performance. Since wireless bachbone is made up of gateways and mesh routers, the load balancing technology should be considered from two sides. One is the balancing of load on the gateways, and the other is the load balancing among the mesh routers. Consequently, in our work, there are two routes in the research process of load balancing. The first route is how to realize the load balancing among the gateways, and the second one focus on the load balancing among mesh routers. To the first one, we pay attention to the gateway placement technologies in network design, and propose the load balancing gateway placement problem, considering the QoS and the placing cost. In the second route of our research, we put emphasis on the traffic-aware routing metric and the related protocols, and the QoS optimized traffic allocation strategy for the paths in multipath routing. Through the two researching routes, the load balancing technologies on the gateways and the mesh routers are studied deeply in this thesis. The main work and contributions are presented in the following aspects:
     (1) We address the load balancing gateway placement problem in WMNs, and propose the related algorithms to realize the balancing of the load on the gateways.
     The most existing work puts emphasis on reducing the number of gateways in a WMN, while ensuring QoS requirements. But, the load balancing among the gateways is little considered. In this thesis, we define the metric for load balancing on the gateways, and address the load balancing gateway placement problem. In order to realize the load balancing among the gateways, we propose a greedy algorithm Greedy_Partition, which iteratly reduces the load difference among the gateways through the adjustment of cluster structure. In order to get the two goals of minimum gateways and load balance in gateway placement at the same time, a genetic algorithm GA_Placement is designed, which is integrated with the greedy algorithm Greedy_Partition in the genetic operators.
     (2) Taking the placing cost into account, we propose minimum cost and load balancing gateway placement problem and related algorithms.
     In reality, the facility performance and the placing cost of the gateways are different from each other, and the minimum number of gateways never means the minimum cost of gateway placement. In some case (i.e. the cost or the facility performance are limited), we should consider the cost optimization problem in the gateway placement. In this thesis, we address minimum cost and load balancing gateway placement problem. Due to the facility difference of the gateways, we design a new metric for load balancing among the gateways, and propose the gateway placement algorithm CLGP, which selects the gateway candidates based on the adjacent matrix and performance/cost ratio of the gateways, and iteratly does the optimization of load balancing. Simulation results show that the proposed algorithm has better performance and complexity than the other algorithms in placing cost and load balancing.
     (3) Based on the theory of dominating set in graph, we propose a new model and the algorithms for cost optimized placement of gateways in WMNs.
     The previous work in gateway placement modeled the problem as linear programming, which is of high complexity to be solved requiring some rigor conditions. Different from the existing work, based on the analysis of the relationship between gateway placement and dominating set in graph, we present the concept of limited dominating set (LDS), and address the cost-minimum gateway placement problem as the minimum weighted LDS problem. In order to find the minimum weighted LDS, we propose a greedy algorithm Greedy_LDS and a particle swarm optimization (PSO) algorithm PSO_LDS. Greedy_LDS has lower computing complexity, and PSO_LDS has better quality of the result. Thus, we provide a trade-off for minimum cost gateway placement in WMNs.
     (4) Based on the self-similarity of traffic in WMNs, we propose a traffic-aware and load-adaptive routing metric and protocol.
     The self-similarity of traffic in WMNs has been validated by some researchers. Based on the predictability of self-similar traffic, we introduce a statistical methodology to predict the traffic. Then, we combine the measured traffic and the predicted traffic to form a new metric named loadability degree, which can be used to evaluate the node's ability to handle traffic and can adjust itself to the change of traffic. At last, we present a load-adaptive routing protocol LBDSR using the new metric for route selection. This protocol can effectively balance the traffic and improve throughput in WMNs. Simulation results show that when the network traffic is heavy, LBDSR outperform others on the network throughput and end-to-end delay.
     (5) Based on network calculus theory, we propose a delay-constrained and jitter-optimized traffic allocation algorithm for multipath routing.
     In WMNs, traffic allocation algorithm in multipath routing has an important impact on network performance and load balancing. In order to improve the QoS for multimedia application, we focus on the delay-constrained and jitter-optimized traffic allocation problem in multipath routing. First of all, based on the network calculus theory, we make a deep analysis on the upper bound of end-to-end delay and jitter in the transmission. Then, based on the upper bound of delay and jitter, we propose a delay-constrained and jitter-optimized traffic allocation algorithm DCJOTA, and the implement methods of DCJOTA are analyzed. Experimental results show that the DCJOTA embedded multipath routing protocol outperforms AOMDV at the term of end-to-end delay and jitter.
引文
[1]AKYILDIZ I.F., WANG X. A survey on wireless mesh networks[J]. Communications Magazine, IEEE,2005,43(9):23-30.
    [2]WANG X., LIM A.O. IEEE 802.11s wireless mesh networks:Framework and challenges[J]. Ad Hoc Networks 2008,6(6):970-984.
    [3]刘志敏,杨毅,徐颖清.无线网状网组网技术及实验研究[J].中兴通讯技术,2008,14(2):39-43.
    [4]杨峰,黄俊,罗小华.无线Mesh网络综述[J].数据通信,2009(1):15-17.
    [5]郑彦光,徐平平,常瑞.无线Mesh网络技术及其应用[J].电力系统通信,2007,28(7):16-20.
    [6]WU X., LIU J., CHEN G. Analysis of Bottleneck Delay and Throughput in Wireless Mesh Networks[A]. IEEE MASS[C]; 2006; p.765-770.
    [7]张勇,蔡杰,宋梅,et al.无线mesh网络公平性研究[J].中国科学技术大学学报,2007,37(2):164-170.
    [8]杨盘隆,陈贵海.无线网状网容量分析与优化理论研究[J].软件学报,2008,19(1):111-125.
    [9]JUN J., SICHITIU M.L. Fairness and QoS in multihop wireless networks[A]. Vehicular Technology Conference[C]; 2003; p.2936-2940
    [10]宋文,方旭明.无线网状网研究与发展[J].铁道学报,2007,29(2):96-103.
    [11]山秀明张.洪.任.基于无线Mesh网络的交通信息系统[J].电信科学2007,23(12):78-82.
    [12]陈芳,蒋新华,邹复民,et al.铁路无线Mesh网络数据包转发策略的设计与实现[J].科学技术与工程,2009,9(11):2919-2924.
    [13]王玮,郭成城,李松.无线Mesh网络在矿井通信中的应用[J].计算机工程,2008,34(19):130-132.
    [14]BAUMANN R., HEIMLICHER S., LENDERS V., et al. Routing Packets into Wireless Mesh Networks [A]. Wireless and Mobile Computing, Networking and Communications[C]; 2007; p.38-38
    [15]TAO X., KUNZ T., FALCONER D. Traffic Balancing in Wireless MESH Networks[A]. International Conference on Wireless Networks, Communications and Mobile Computing[C]; 2005.
    [16]JOHNSON D.B., MALTZ D.A. Dynamic Source Routing in Ad Hoc Wireless Networks[J]. Mobile Computing,1996,353:153-181.
    [17]PERKINS C.E., ROYER E.M. Ad hoc On-Demand Distance Vector Routing[A]. the 2nd IEEE Workshop on Mobile Computing Systems and Applications[C]; 1999; New Orleans, LA; p.90-100.
    [18]ROBINSON J., KNIGHTLY E.W. A Performance Study of Deployment Factors in Wireless Mesh Networks[A]. IEEE INFOCOM[C]; 2007; p.2054-2062
    [19]WONG J.L., JAFARI R., POTKONJAK M. Gateway Placement for Latency and Energy Efficient Data Aggregation[A]. Local Computer Networks,29th Annual IEEE International Conference[C]; 2004; p.490-497.
    [20]CHANDRA R., QIU L., JAIN K., et al. Optimizing the Placement of Integration Points in Multi-hop Wireless Networks[A]. Proceedings of IEEE ICNP[C]; 2004; Berlin.
    [21]BEJERANO Y. Efficient integration of multihop wireless and wired networks with QoS constraints[J]. Networking,IEEE/ACM Transactions,2004,12(6):1064-1078.
    [22]AOUN B., BOUTABA R., IRAQI Y, et al. Gateway Placement Optimization in Wireless Mesh Networks With QoS Constraints [J]. IEEE Journal on Selected Areas in Communications,2006,24(11):2127-2136.
    [23]HE B., XIE B., AGRAWAL D.P. Optimizing the Internet Gateway Deployment in a Wireless Mesh Network[A]. Mobile Adhoc and Sensor Systems[C]; 2007; p.1-9.
    [24]LI F., WANG Y, LI X.-Y Gateway Placement for Throughput Optimization in Wireless Mesh Networks[A]. ICC[C]; 2007.
    [25]PRASAD R., WU H. Minimum-cost gateway deployment in cellular Wi-Fi networks[A]. IEEE Consumer Communications and Networking Conference[C]; 2006; p.706-710.
    [26]IBARS C., COSO A.D., GRUNENBERGER Y, et al. Increasing the Throughput of Wireless Mesh Networks with Cooperative Techniques [A]. Mobile and Wireless Communications Summit,16th IST[C]; 2007; p.1-5.
    [27]ZHANG H., TSANG D.H.K. Traffic Oriented Topology Formation and Load-balancing Routing in Wireless Mesh Networks[A]. International Conference on Computer Communications and Networks, ICCCN 2007 [C]; 2007; p.1046-1052
    [28]RAMACHANDRAN K.N., BUDDHIKOT M.M., CHANDRANMENON G On the Design and Implementation of Infrastructure Mesh Networks[A]. WiMESH'05[C]; 2005.
    [29]DRAVES R., PADHYE J., ZILL A.B. Routing in multi-radio, multi-hop wireless mesh networks[A]. ACM Mobicom[C]; 2004.
    [30]IANNONE L., KHALILI R. Cross-layer routing in wireless mesh networks[J]. 2004.
    [31]MOHIT V., QI D., SHAMBHU U., et al. A New paradigm for Load Balancing in Wireless Mesh Networks. Department of Computer Science and Engineering, University at Buffalo; 2006.
    [32]BIN X., YINGBING Y, ANUP K., et al. Load-balancing and Inter-domain Mobility for Wireless Mesh Networks[A]. GLOBECOM'06[C]; 2006; p.1-6.
    [33]NANDIRAJU D., SANTHANAM L., NANDIRAJU N., et al. Achieving Load Balancing in Wireless Mesh Networks Through Multiple Gateways[A]. Mobile Adhoc and Sensor Systems[C]; 2007; p.807-812
    [34]LAKSHMANAN S., SUNDARESAN K., SIVAKUMAR R. On Multi-Gateway Association in Wireless Mesh Networks[A]. IEEE WIMESH[C]; 2006.
    [35]PARK V.D., CORSON M.S. Temporally-Ordered routing algorithm (TORA) version 1 functional specification[J]. IETF draft,2001.
    [36]PERKINS C, BHAGWAT P. Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers [A]. ACM SIGCOMM Conference on Communications Architectures, Protocols and Applications[C]; 1994; p.234-244.
    [37]MURTHY S., GARCIA-LUNA-ACEVES J.J. An Efficient Routing Protocol for Wireless Networks [J]. Mobile Networks and Applications,1996,1(2):183-197.
    [38]ADYA A., BAHL P., PADHYE J., et al. A Multi-Radio Unification Protocol for IEEE 802.11 Wireless Networks[A]. IEEE International Conference on Broadband Networks [C]; 2004; San Jose, CA, USA; p.344-354.
    [39]DRAVES R., PADHYE J., ZILL B. Comparison of Routing Metrics for Static Multi-Hop Wireless Networks[A]. ACM SIGCOMM[C]; 2004.
    [40]COUTO D.S.J.D., AGUAYO D., BICKET J., et al. A High-Throughput Path Metric for Multi-Hop Wireless Routing[A]. ACM Mobicom[C]; 2003.
    [41]YANG Y, WANG J., KRAVETS R. Interference-aware Load Balancing for Multihop Wireless Networks. University of Illinois at Urbana-Champaign; 2005.
    [42]MA L., ZHANG Q., AN F., et al. DIAR:A Dynamic Interference Aware Routing Protocol for IEEE 802.11-based Mobile Ad Hoc Networks[A]. MSN 2005[C]; 2005.
    [43]HASSANEIN H., ZHOU A. Routing with load balancing in wireless ad hoc networks[A]. the 4th ACM international workshop on Modeling, analysis and simulation of wireless and mobile systems[C]; 2001; Rome, Italy p.89-96.
    [44]MARINA M.K., DAS S.R. On-demand multipath distance vector routing in ad hoc networks[A]. Ninth International Conference on Network Protocols[C]; 2001 11-14 Nov; p.14-23.
    [45]LEE S.J., GERLA M. AODV-BR:Backup Routing in Ad Hoc network[A]. IEEE WCNC 2000[C]; 2000; p.1311-1316.
    [46]WANG L., ZHANG L., SHU Y, et al. Multipath source routing in wireless ad hoc networks[A]. Canadian Conference on Electrical and Computer Engineering [C]; 2000 7-10 March p.479-483
    [47]KING D.P.J.B., ETORBAN A.A., IBRAHIM I.S. A DSDV-based Multipath Routing Protocol for Mobile Ad-Hoc Networks[J]. PGNET,2007.
    [48]PHAM P.P., PERREAU S. Performance Analysis of Reactive Shortest Path and Multi-path Routing Mechanism With Load Balance[A]. INFOCOM[C]; 2003; p. 251-259
    [49]PAPADIMITRATOS P., HAAS Z.J., SIRER E.G Path Set Selection in Mobile Ad Hoc Networks[A]. International Symposium on Mobile Ad Hoc Networking & Computing [C]; 2002:ACM; p.1-11
    [50]ZAFAR H., HARLE D., ANDONOVIC I., et al. Performance evaluation of shortest multipath source routing scheme[J]. IET Communications,2009,3(5):700-713
    [51]NANDIRAJU N.S., NANDIRAJU D.S., AGRAWAL D.P. Multipath Routing in Wireless Mesh Networks[A]. IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS)[C]; 2006; p.741-746.
    [52]MOSKO M., GARCIA-LUNA-ACEVES J.J. Multipath Routing in Wireless Mesh Networks[A]. WIMESN'05[C]; 2005; Santa Clara, CA.
    [53]HIEU C.T., KIM D.S., HONG C.S., et al. On-demand Multi-Path Balancing in Wireless Mesh Networks [A]. International Conference on Information Networking[C]; 2009 21-24 Jan; p.1-4.
    [54]安辉耀,卢锡城,彭伟,et al. MANET中基于动态拓扑的多路径自适应流量分配算法[J].通信学报,2006,27(7):20-26.
    [55]李姗姗,廖湘科,朱培栋,et al.无线传感器网络中一种拥塞感知的多路径流量分配算法[J].计算机工程与科学,2008,30(3):86-88.
    [56]王辉,单剑锋,俞能海.一种新的无线Ad hoc网络中的多路径路由[J].中国科学技术大学学报,2009,39(2):125-131.
    [57]YIN S., LIN X. Multipath Minimum Energy Routing in Ad Hoc Network[A]. IEEE International Conference on Communications (ICC'05)[C]; 2005 16-20 May p. 3182-3186
    [58]CHEN C., MA J., WU W., et al. A Modeling Framework for Multipath Routing in Ad Hoc Networks[A]. IEEE Global Telecommunications Conference (GLOBECOM'05)[C]; 2005 2-2 Dec; p.2594-2598.
    [59]董超,陈贵海,王海.无线网状网的QoS研究[J].软件学报,2009,20(6):1539-1552.
    [60]Y. D., H. P. Gateway Placement with QoS Constraints in Wireless Mesh Networks[A]. Seventh International Conference on Networking [C]; 2008; p. 46-51.
    [61]YOUSSEF W., YOUNIS M. Intelligent Gateways Placement for Reduced Data Latency in Wireless Sensor Networks[A]. IEEE International Conference on Communications (ICC) [C]; 2007; p.3805-3810.
    [62]VANHATUPA T., HANNIKAINEN M., HAMALAINEN T.D. Performance model for IEEE 802.11s wireless mesh network deployment design[J]. Journal of Parallel and Distributed Computing 2008,68(3):291-305
    [63]TANG M. Gateways Placement in Backbone Wireless Mesh Networks:Scientific Research Publishing; 2009.
    [64]JUN J., SICHITIU M.L. The nominal capacity of wireless mesh networks[J]. Wireless Communications, IEEE,2003,10(5):8-14.
    [65]COLEY, A D. Roulette Wheel[M]. In:An Introduction to Genetic Algorithms for Scientists and Engineers. Singapore:River Edge, NJ World Scientific Publishing Co.; 1999:23-24.
    [66]卢开澄,卢华明.图论及其应用(第二版):清华大学出版社;1995.
    [67]ANGELINE P.J. Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences [A]. Proceedings of the 7th International Conference on Evolutionary Programming [C]; 1998; p.601-610
    [68]J K., C E.R. Particle swarm optimization[A]. Proceedings of IEEE International Conference on Neural Networks [C]; 1995; p.1942-1948.
    [69]C E.R., J K. A new optimizer using particle swarm theory [A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science [C]; 1995; p. 39-43.
    [70]J K., C E.R. A discrete binary version of the particle swarm algorithm[A]. Proceedings of the 1997 Conference on Systems, Man, and Cybernetics [C]; 1997; p.4104-4109.
    [71]J K., M S.W. Matching algorithms to problems:an experimental test of theparticle swarm and some genetic algorithms on the multimodal problem generator[A]. IEEE international Conference on Evolutionary Computation[C]; 1998; p.78-83.
    [72]C E.R., J K. Swarm Intelligence:Morgan Kaufmann 2001.
    [73]SUNG-JU L., MARIO G. Dynamic Load-Aware Routing in Ad Hoc Networks[A]. IEEE International Conference on Communications[C]; 2001; p.3206-3210
    [74]K W., J H. Load-sensitive routing for mobile ad hoc networks[A]. Computer Communications and Networks [C]; 2001; Tenth Intl; p.540-546
    [75]LIANG Q. Ad hoc wireless network traffic-self-similarity and forecasting[J]. Communications Letters,IEEE,6(7):297-299.
    [76]YU J., PETROPULU A.P. On the propagation of self-similar traffic via a wireless gateway [A]. the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers [C]; 2004 7-10 Nov; p.1927-1931
    [77]YIN S., LIN X. Traffic self-similarity in mobile ad hoc networks[A]. Wireless and Optical Communications Networks[C]; 2005; p.285-289.
    [78]尹首一,林孝康.无线Mesh网络流量自相似性研究[J].电信科学,2005,21(4):53-55.
    [79]邵立松,窦文华.自相似网络通信量模型研究综述[J].电子与信息学报,2005,27(10):1671-1676.
    [80]YUAN G., GUANGHUI H., C H.J. On Exploiting Traffic Predictability in Active Queue Management[A]. IEEE INFOCOM[C]; 2002; p.1630-1639.
    [81]FALL K., VARADHAN. K. Ns Manual. In:The VINT Project, http://www.isi.edu/nasam/ns/doc; 2001.
    [82]沈强,方旭明.无线Mesh网中一种基于综合准则的DSR扩展路由方法[J].电子学报,2007,35(4):614-620.
    [83]郭晓峰,陈跃泉,陈贵海.一种累计多路径的移动自组网络路由策略[J].软件学报,2004,15(4).
    [84]符云清,王松健,吴中福.基于链路状态加权的无线Mesh网络路由协议[J].计算机研究与发展,2009,46(1):137-143.
    [85]樊凯,李令雄,龙冬阳.无线mesh网中网络编码感知的按需无线路由协议的研究[J].通信学报,2009,30(1):128-134.
    [86]任娟,裘正定.多信道无线Mesh网络中基于路径尺度的负载平衡路由[J].计算机研究与发展,2008,45(12):2079-2086.
    [87]赵蕴龙,马延龙,李香.无线Mesh网链路不相交多路径路由策略[J].哈尔滨工程大学学报,2008,29(9):967-972.
    [88]丁旭阳,范明钰,罗惠琼.无线Mesh网络链路非相关多径发现算法[J].计算机研究与发展,2007,44(10):1751-1756.
    [89]BANNER R., ORDA A. Multipath Routing Algorithms for Congestion Minimization[J]. IEEE/ACM Transactions on Networking,2007,15(2):413-424.
    [90]安辉耀,卢锡城.移动自主网络多路径路由技术研究进展[J].计算机工程与科学,2006,28(2):4-9.
    [9l]陈志刚,张连明,邓晓衡,et al.基于分形漏桶整形器的通用处理器共享系统性能分析[J].通信学报,2006,27(6):29-35.
    [92]张信明,陈国良,顾钧.基于网络演算的流量整形模型[J].软件学 报,2002,13(12):2225-2230.
    [93]王子君,许维胜,王中杰.控制网络的确定性延迟演算理论研究[J].电子学报,2006,34(2):380-384.
    [94]欧振猛,张光昭,刘军民,et al.基于有效到达包络的转发设备时延边界分析[J].通信学报,2008,29(1):15-21.
    [95]谭献海,温碧丽,金炜东.分组交换网络语音回放控制及性能分析[J].计算机科学,2007,34(7):113-115.
    [96]潘中英,王中杰,闫博.改进的WRR策略在交换式工业以太网中的最大时延计算[J].2007,16(1):84-87.
    [97]高岭,李增智,王峥.缓冲区有限流量整形器性能参数的最小加代数表示[J].西安交通大学学报,2005,39(10):1068-1071.
    [98]张连明,陈志刚,赵明,et al.基于分形整形器的GPS系统性能确定上界研究[J].通信学报,2007,28(2):51-57.
    [99]张连明,陈志刚.基于网络演算的GPS系统性能边界模型与分析[J].计算机工程,2007,33(6):30-32.
    [100]唐宇波,段金蓉,刘玉嘉.基于网络演算的测控局域网时延性能分析方法研究[J].飞行器测控学报,2006,25(6):74-80.
    [101]王子君,许维胜,王中杰,et al.基于网络演算的网络控制系统确定性延迟模型[J].控制与决策,2006,21(1):13-18.
    [102]张奇智,张彬,张卫东.基于网络演算计算交换式工业以太网中的最大延迟[J].控制与决策,2005,20(1):117-120.
    [103]辛建波,上官帖.数字化变电站信息传输时延上界计算方法[J].继电器,2007,35(11):44-48.
    [104]付朝晖,艾钧华.质量保证型服务界值研究及其在HALM中的应用[J].科学技术与工程,2006,6(24):3871-3873.
    [105]AGHAREBPARAST F., LEUNG V.C.M. Modeling Wireless Link Layer by Network Calculus for Efficient Evaluations of Multimedia QoS[A]. IEEE International Conference on Communications[C]; 2005; p.1256-1260.
    [106]AGHAREBPARAST F., LEUNG V.C.M. Optimal Shaping for Transmission over Wireless Fading Channels [A]. IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks [C]; 2007; p.1-4.
    [107]李庆华,陈志刚,张连明.基于网络演算的无限自组网QoS性能确定上界研究[J].通信学报,2008,29(9):32-39
    [108]漆华妹,陈志刚.一种有效的无线Mesh网络流量整形模型[J].小型微型计算机系统,2009,30(2):219-224.
    [109]L C.R. A calculus for network delay, part Ⅰ and Ⅱ[J]. IEEE Transactions on Information Theory,1991,37(1):114-141.
    [110]MAO S., PANWAR S.S., HOU Y.T. On Minimizing End-to-End Delay With Optimal Traffic Partitioning[J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,2006,55(2):681-690.
    [111]CHANG C.-S. Stability, queue length, and delay of deterministic and stochastic queueing networks[J]. IEEE Transactions on Automatic Control,1994,39(5):913-931

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700