有机基质调控碳酸钙的仿生合成及其改性PVC研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸钙(CaCO_3)是一种价格低廉、补强性能好、光泽度高、磨损率低的无机填料,可以有效地降低制品的成本、提高制品的力学性能、改善制品的外观。目前,CaCO_3已经被应用于塑料、橡胶、造纸、涂料、油墨等诸多行业,但由于CaCO_3与有机基材的相容性较差,在一定程度上限制了CaCO_3的使用。本文通过仿生合成的方法制备CaCO_3,以期改变其形貌,提高其相容性,并将其添加于普遍适用、需求量大的通用型树脂聚氯乙烯(PVC)中,研究在本论中所有机基质存在下合成的碳酸钙对PVC力学性能的影响规律,并与无有机基质存在下合成的碳酸钙对PVC力学性能的影响进行对比研究,探索前种方法合成的碳酸钙对PVC的力学性能的有益影响是否优于后者,并揭示其机理。
     首先,以十二烷基苯磺酸钠(SDBS)、乙二醇、聚乙烯醇(PVA)和聚乙二醇400(PEG-400)为有机模板,分别采用三种不同的方法:复分解法、尿素水解法、碳化法仿生合成了CaCO_3,并采用电子扫描显微镜(SEM)、傅里叶变换红外光谱仪(FTIR)、粉末X射线衍射仪(XRD)进行表征。结果表明,仿生合成的CaCO_3在晶体形貌上有较大改观,在复分解法中,合成的CaCO_3主要呈纺锤形;在尿素水解法中,分别得到了规则的正六边形、细长条形、花形三种CaCO_3形貌;在碳化法中,合成的CaCO_3呈不规则块状。
     第二部分将用复分解法仿生合成的CaCO_3应用于PVC中,并测试其拉伸性能和抗冲性能。结果表明:复分解法仿生合成CaCO_3的加入对PVC的拉伸性能、断裂伸长率、抗冲性能都有显著地提高,明显优于普通CaCO_3。(1)一般用量在5~10份时拉伸强度达到最大值:添加量为5份时,以SDBS为有机基质的CaCO_3样品比相同含量下无有机基质的CaCO_3样品提高了约12%;添加量为10份时,以SDBS/乙二醇为有机基质的CaCO_3样品比相同含量下无有机基质的CaCO_3样品提高了约12%;此外以乙二醇为有机基质的CaCO_3样品,在添加量为20份时,比相同含量下无有机基质的CaCO_3样品提高了约11%。(2)添加仿生合成CaCO_3的PVC的断裂伸长率都大于未添加CaCO_3的115%,在碳酸钙的添加量相同时,以PVA为有机基质的CaCO_3比相同含量下无有机基质的CaCO_3样品相比提高了93%左右。(3)在抗冲性能方面:添加量为10份时,以SDBS和SDBS/乙二醇为有机基质的CaCO_3样品不能被抗冲机冲断,性能最优;添加量为5份时,以乙二醇为有机基质的CaCO_3样品比相同含量下其他样品提高了88%;添加量为30份时,以PEG-400为有机基质的CaCO_3样品比相同含量下无有机基质的CaCO_3样品提高了约63%。
Calcium carbonate (CaCO_3) is one kind of widely used inorganic filler with low-cost, excellent reinforcing effect, high gloss and low wearabiligy. CaCO_3 can effectively reduce the cost, improve the mechanical properties and the appearance of the products. Currently, CaCO_3 has been widely used in plastic, rubber, papermaking, coatings, printing ink et.. As widely used inorganic filler, the poor compatibility of CaCO_3 with polymers restricts its extensive application. In this work, CaCO_3 was synthesized by a biomimetic method to achieve crystals with different shape. The synthesized CaCO_3 were applied to polyvinyl chloride (PVC) to improve its mechanical properties. Research the influence of calcium carbonate using organic matrix for the mechanical properties of PVC, and comparative with the ordinary CaCO_3, explore the former method for PVC synthesis if better than that of the latter or not, and reveals its mechanism.
     Part I: for the biomimetic synthesis of CaCO_3, sodium dodecyl benzene sulfonate (SDBS), glycol, polyvinyl alcohol (PVA) and polyethylene glycol 400 (PEG-400) were used as the organic templates, respectively. Three methods were used to synthesize CaCO_3: metathesis method, urea hydrolysis method and cabonization method, last we character them with scanning electron microscope, fourier transform infrared spectroscopy, X-ray powder diffraction. The results show that the crystal morphology of CaCO_3 changes a lot, we get spindle-shaped CaCO_3 by metathesis method; regular hexagon, slightness bar, flower shape CaCO_3 by urea hydrolysis method; irregular square block by cabonization.
     Part II: The synthesized CaCO_3 by biomimetic method were applied to PVC, and the tensile properties and impact strength were characterized. (1) Compared with the addition of commercial used CaCO_3, the addition of CaCO_3 significantly improved the tensile strength, the elongation at break and impact strength. The tensile strength reached the maximum at loading of 5 ~ 10%. At the same amount (5%) of CaCO_3, the tensile strength was improved by 12% for the SDBS modified CaCO_3 than the common CaCO_3. When the CaCO_3 loading is 10%, the tensile strength was improved by 12% for the SDBS/glycol modified CaCO_3 added system than the original CaCO_3 one. When the CaCO_3 loading is 20%, the tensile strength was improved by 11% for the glycol modified CaCO_3 added system than the original CaCO_3 one. (2) The elongation at break was improved by 115% for the biomimetic synthesized CaCO_3 . (3) For the impact strength, after the addition of SDBS and SDBS/glycol modified CaCO_3, the impact strength is beyond the range of the impact machine, indicating the high toughness.
引文
[1] LowenstamH.A. Minerals formed by organisms[J]. Science, 1981, 211(13): 1126-1131.
    [2]甘勇.明胶基质作用下无机生物活性材料的仿生合成[D].北京:北京化工大学, 2010.
    [3] Severin K, Johnsson K. 37th EFS/EUCHEM Conferenceon Stereochemistry[J]. CHIMIA, 2002, 56: 7-8.
    [4] Young J R, Davis S A, Bown P R, etal. Coccolith ultrastructure and bioimineralization[J], Structural Biology, 1999, 126: 95-215.
    [5]阎变青.碳酸钙仿生材料的制备[D].扬州:扬州大学, 2009.
    [6] Mann S. Biomineraliztion: Principles and concepts in bioinorganic materials chemistry[M]. Oxford University Press, 2001, 6-23.
    [7]杨士林,高倩,王海棠.酸性氨基酸调控碳酸钙仿生矿化过程研究[J].黑龙江大学自然科学学报, 2010, 27(4): 495-503.
    [8] H.C.lfen. Precipitation of Carbonates: Recent Progress in Controlled Production of Complex Shapes[J]. Current Opinion in Colloid and Interface Science, 2003, 8(1): 23-31.
    [9] Mann S. Moleeular reeognition in biominerallization. Nature, 1998, 332(10): 119-124.
    [10]徐筱杰.超分子建筑—从分子到材料[A].北京:科学技术文献出版社, 2000, 49-79.
    [11]张艺川,徐庆彬,彭小寅.仿生合成在有机合成中的研究进展[J].广州化工, 2008, 36(5): 13-14.
    [12]屈红强,武伟红,焦运红.纳米CaCO_3对阻燃型软质聚氯乙烯的增韧增强作用[J].中国塑料, 2005, 19(7): 36-40.
    [13]赵振璇.规整形貌的多孔CaCO_3和MgO的可控合成与性能研究[D].北京:北京工业大学, 2010.
    [14] Chinmay Damle, Ashavanni Kumar, S R Sainkar, et al. Growth of calcium carbonate crystals within fatty acid bilayer stacks [J]. American Chemical Society, 2002, 18(16): 6075-6080.
    [15]钟雪丽,娄帅,李文斌等.聚合物在仿生合成中的应用研究进展[J].高分子通报, 2007, 3: 50-54.
    [16] S.R.Letellier, M.Lochhead, V.Vogel. Oriented growth of calcium oxalate monohydrate crystals beneath phospholipid monolayers. Biochim Biophy Acta-GenSubject[J]. Biochim Biophy Acta, 1998, 1380(1): 31-45.
    [17] S.Whipps, S.R.Khan, F.J.O’Palko, etal. Growth of calcium oxalate monohydrate at phospholipids Langmuir monolayers[J]. J Cryst Growth, 1998, 192(1-2): 243-249.
    [18] Dhathathreyan, D.Mobius. Physico-Chemical Characterization of Natural and Ex-Situ Reconstructed Sea-Surface Microlayers[J]. Colloid Interface Sci, 208(1): 191-202.
    [19] Takayuki Hirai, Shuichi Hariguchi, Isao Komasawa. Biomimetic synthesis of calcium carbonate particles in a pseudo vesicular double emulsion[J]. American Chemical Society, 1997, 13: 6650-6653.
    [20] Richard H Holm, Edward I Solomon. Biomimetic inorganic chemistry [J]. Chemical Reciews, 2004,104(2): 347-348.
    [21] S Weiner, L Addadi. Design strategies in mineralized biological materials[J]. Materials Chemistry, 1997, 7(55): 689-702.
    [22] S.Mann. Webb J. Biomineralization: Chemical and Biochemical perspectives[M]. New York: VCH Publishers, 1989, 124.
    [23] H.Lin, H.Sakamoto, W.S.Seo, etal. Crystal growth of lepidocrocite and magnetite under langmui nomolayer[J]. Cryst.Growth, 1998, 192: 250-256.
    [24] Qunhui Sun, Yulin Deng. Synthesis of micrometer to nanometer CaCO_3 particles via mass restriction method in an emulsion liquid membrane process[J]. Journal of Colloid and Interface Science, 2004(278): 376-382.
    [25] Takayuki Hirai. Shuichi Hariguchi and Isao Komasawa.Biomimetic Synthesis of Calcium Carbonate Particlesina Pseudovesicular Double Emulsion[J]. Langmuir, 1997, 13, 6650-6653.
    [26]刘海涛,杨郦,张树军等.无机材料合成(第一版)[M].北京:化学工业出版社, 2003, 343.
    [27] L.A.Aksay, M.Trau, S.Manne. Biomimetic Pathways for AssemblingInorganic Thin Films[J]. Science 1996, 273(5277), 892-898.
    [28] H.Yang, A.Kuperman, N.Coombs. Synthesis of oriented films of mesoporous silica on mica[J]. Nature, 1996, 379, 703-705.
    [29]潘琰.具有特殊形貌的碳酸钙材料的仿生合成及表征[D].长春:吉林大学, 2004.
    [30]陈银霞,赵改青,王晓波.聚合物控制碳酸钙晶型形貌的研究[J].化学进展, 2009, 21: 1619-1625.
    [31]周立,李超,钟宏.纳米碳酸钙合成工艺及应用研究进展[J].广东化工, 2009, 36(192): 75-86.
    [32] Fendler, J.H.. Membrane-Mimetic Approch to Advanced Materials, Advandes in polymer Science Series[M]. Berlin,Springer and Verlag, 1994, 113.
    [33] MurphyC.L, JanaN.R.Controllingthe Aspect RatioofInorganic Nanorodsand Nanowires[J]. Adv.Mater, 2002, 14: 80-82.
    [34] C.T.Kresge, M.E.Leonowicz , etal. Ordered mesoporous molecular sieves synthe by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712.
    [35] OzinGA, OliverS. Skeletons in the beaker:synthetic hierarchical inorganic material Adv, Mater, 1995, 7: 943-947.
    [36] Stephen Mann, Geoffrey A. Ozin.Synthesis of inorganic materials with complex. Nature, 1996, 382: 313-318.
    [37] D.Walsh, S.Mann. Fabrication of hollow porous shells of calcium carbonate from self-organizing media[J]. Nature, 1995, 377(28): 320-324.
    [38] Sellinger, P.M.Weiss, A.Nguyen, etal. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre[J]. Nature, 1998, 394: 256-260.
    [39] S.Oliver, A.Kuperman, N.Coombs, etal. Lamellar alumino phosphates with surface patterns that mimicdiatomand radiolarian micro skeletons[J]. Nature, 1995, 378: 47-50.
    [40] C.T.Kresge M.E.Leonowicz W.J. etal. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712.
    [41] OzinGA, OliverS.. Skeletonsinthebeaker: synthetic hierarchi calinorganic materials[J]. Adv.Mater., 1995, 7: 943-947.
    [42] Meldrum F.C, Wada V.J, Nimmo D.L, Synthesis of Inorganic Materials in Supr Protein in Cages. Nature, 1991, 349(16): 684-687.
    [43] Stephen Mann, Geoffrey A. Ozin Synthesis of inorganic materials with comples form[J]. Nature, 1996, 382: 313-318.
    [44] Jiaguo Yu, Jimmy C. Yu,Lizhi Zhang,etal.Facile fabrication and characterization of hierarchically porous calcium carbonate microspheres[J]. Chem.Commun, 2004, 24: 2414-2415.
    [45] P.malkaj, E.Dalas, D.G.Kanellopoulou, etal. Calcite particles formation in the presence of soluble polyvinyl-alcohol matrix[J]. Powder Technology, 2007, 177: 17-76.
    [46] YanPan, Xu Zhao, Ye Sheng, etal. Biomimetic synthesisof dendrite-shaped aragonite particles with single-crystal feature by polyacrylic acid[J]. Colloids and Surfaces A: Physicochem.Eng. Aspets, 2007, 297: 198-202.
    [47] Liying Zhu, Qingrui Zhao, Xiuwen Zheng ,etal. Formation of star-Shapedcalcite crystals with Mg2+ inorganic mineralizer without organic template[J]. Solid State Chemistry, 2006, 179: 1247-1252.
    [48] Chengyu Wang, Jingzhe Zhao, Xu Zhao, etal. Synthesisi of nanosized calcium carbonate(aragonite) via a polyarylamide inducing process[J]. Powder Technology, 2006, 163: 134-138.
    [49]姚松年,王春林,张操墨等.卵磷脂-水有序结构对CaCO_3晶型的影响[J].物理化学学报, 1997, 13(3): 270-273.
    [50]王静梅,姚松年.胆固醇/卵磷脂/壳聚糖体系中碳酸钙模拟生物矿化的研究[J].无机化学学报, 2001, 17(2): 202-208.
    [51] Kang-Seok Seo, ChoonHan, Jung-Ho Wee, etal. Synthesis of calcium carbonate in a pure ethanoand aqueous ethanol solution as the solvent[J]. Crystal Growth, 2005, 276: 680-687.
    [52]郎萌萌,焦运红,谢吉星.仿生合成碳酸钙的制备及其在PVC中的应用[J].保定:河北大学, 2010.
    [53] Luyan Wang, Xiao Chen, Jie Zhan, et al. Synthesis of gold nano and microplates in hexagonal liquid crystals [J]. J. phys. Chem.B, 2005, 109: 3189-3194.
    [54] Helmut Colfen, Markus Antonietti. Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers [J]. American Chemical Society, 1998, 14: 582-589.
    [55] Lifeng Zhang, Adi Eisenberg. Multiple morphologies of“crew-cut”aggregates of polystyrene- b- poly(acrylic acid) block copolymers[J]. Science, 1995, 268: 1728-1731.
    [56] Dupont L, Portemer F, Figlarz M. Synthesis and study of a well crystallized CaCO_3 vaterite showing a new habitus [J]. J.Mater. Chem., 1997, 7(5): 797-800.
    [57] Jiaguo Yu, Ming Lei, Bei Cheng, etal. Effects of PAA additive and temperature on morphology of calcium carbonate particles[J]. Journal of Solid State Chemistry, 2004, 177: 681-689.
    [58] Jiao Y F, Feng Q L, Li X M. The co-effect of collagen and magnesium ions on calcium carbonate Biomineralization[J]. Mater Sci Eng C, 2006, 26: 648-652.
    [59] Y.Zhao, Z.H.Chen, H.Y.Wang, J.J.Wang. Crystallization control of CaCO_3 by ionic liquids in aqueous solution.Cryst. Growth Des, 2009, 9(11): 4984-4986.
    [60] P.Li, C.Z Wu, Q.S.Wu,J.Li, H.Li. Biosynthesis of different morphologies of CaCO_3 nanomaterial assisted by thermophilic strains HEN-Qn1. J.Nanopart.Res, 2009, 11: 903-908.
    [61] C.Y.Wang, Y.Sheng, X.Zhao, Y.Pan, H.-Bala, Z.C.Wang. Synthesis of hydrophobic CaCO_3 nanoparticles. Mater.Lett. 2006, 60: 854-857.
    [62] A.-J.Xie, Z.-W.Yuan, Y.-H.Shen. Biomimetic morphogenesis of calcium carbonate in the presence of a new amino-carboxyl-chelating-agent. J.Cryst.Growth. 2005, 276: 265-274.
    [63] C.D.Lendrum, K.M.McGrath. Calcite nucleation on mixed acid/alcohol monolayers.Cryst Growth Des, 2009, 9(10): 4391-4400.
    [64] Yue L H, Zheng Y F, Jin D L. Spherical porous framework of calcium carbonate prepared in the presence of precursor PS-PAA as template[J]. Micropor Mesopor Mat, 2008, 113: 538-541.
    [65] Falini G. Crystallization of calcium carbonates in biologically inspired collagenous matrices[J]. Int J Inorg Mater, 2000, 2: 455-461.
    [66] Njegic-Dzakula B, Brececic L, Falini G, etal. Calcite Crystal Growth Kinetics in the Presence of Charged Synthetic Polypeptides[J]. Cryst Growth Des, 2009, 9: 2425-2434.
    [67] Njegic-Dzakula B, Falini G, Brecevic L, etal. Effects of initial supersaturation on spontaneous precipitation of calcium carbonate in the presence of charged poly-L-a-mino acids[J]. J Colloid Interf Sci, 2010, 343: 553-563.
    [68] G.W.Yan, J.H.Huang, J.F.Zhang, C.J.Qian. Aggregation of hollow CaCO_3 spheres by calcite nanoflakes. Mater.Res.Bull, 2008, 43: 2069-2077.
    [69] Y.S.Han, M.S.Fuji, D.Shchukin, etal. A new model for the synthesis of hollow particles via the bubble templating method. Cryst Growth Des, 2009, 9(8): 3771-3775.
    [70] J.T.Han, X.Xu, K.Cho. Sequential formation of calcium carbonate superstructure:From solid/hollow spheres to sponge-like/solid films.J. Cryst.Growth. 2007, 308: 110-116.
    [71] F.Guo, Y.Li, H.-X. Xu. Size-controllable synthesis of calcium carbonate nanoparticles using aqueous foam films as templates. Mater.Lett, 2007, 61: 4937-4939.
    [72] Zhang Z P, Gao D m, Zhao H, etal. Biomimetic Assembly of Polypeptide-Stabilized CaCO_3 Nanoparticles[J]. J Phys Chem B, 2006, 110: 8613-8618.
    [73] Gao Y X, Yu S H, Guo x h. Double Hydrophilic Block Copolymer Controlled Growth an Self-Assembly of CaCO_3 Multilayered Structures at the Air/Water Interface[J]. Langmuir, 2006, 22: 6125-6129.
    [74] Qi L M, Li J, Ma J M. Biomimetic Morphogenesis of Calcium Carbonate in Mixed SolutionsSurfactants and Double-Hydrophilic Block Copolymers[J]. Adv Mater, 2002, 14: 300-303.
    [75] H.Tang, J.G.Yu, X.F.Zhao. Controlled synthesis of crystalline calcium carbonate aggregates with unusual morphologies involving the phase transformation from amorphous calcium carbonate. Mater. Res. Bull, 2009, 44: 831-835.
    [76] J.H.Xiang, H.Q.Cao, J.H.Warner. Crystallization and self-assembly of calcium carbonate architectures. Cryst. Growth Des, 2008, 8(12): 4583-4588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700