介孔非均相催化剂的合成、性能研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代社会,全球经济快速发展,伴随而来的是对全球环境造成了巨大的压力,我国政府相应提出了可持续发展的概念。化学工业对各国经济发展起着举足轻重的作用,为了保护环境和社会经济的可持续发展,人们提出了绿色与可持续化学的概念。
     在现代合成领域,90%以上的反应是催化反应,包括占绝大多数的金属和有机金属催化的化学反应以及少数酶催化的化学反应。毫无疑问,绿色催化剂的设计与制备成了研究的热点之一,将催化剂进行固载化能够实现催化剂与产物的分离,它是当今绿色有机催化的一个重要发展方向。
     非均相催化剂由于易从产品中分离,从而容易实现工业化,但是由于对其表面的认识仍然不足,使得设计具有可控性能的催化剂仍比较困难。
     从绿色化学的背景出发,基于以上问题,我们设计制备了几组非均相催化剂,第一组采用水热法合成以无机硅为载体的非均相催化剂,应用在水介质清洁有机合成反应中;第二组通过调变载体上配体含量制得具有不同构型的非均相催化剂,应用在碳碳偶联有机反应中;第三组通过构造适宜的载体微环境,制得生物酶非均相催化剂,应用在医药中间体的合成中。通过分析活性数据与催化剂表征探讨结构与性能的关系,结合以上思路,本论文围绕三部分展开。
     1.通过水热法制备,采用热陈化技术将无机硅源和功能化有机硅源在酸性条件下共缩聚,合成了一系列二硫配位基团修饰的功能化SBA-15材料,并以此作为载体通过浸渍法制备纳米金催化剂。该催化剂在水介质中的苯乙炔水合反应中表现出较好的催化活性。高的催化活性归因于金活性位的有效分散和规整有序的介孔结构,减小了反应底物的扩散阻力。同时,由于SBA-15材料修饰的二硫基团的疏水性能,更加有利于反应分子的扩散与吸附,从而有利于反应活性的提高。
     2.在酸性条件下,以P123为表明活性剂,通过正硅酸乙酯TEOS与有机硅烷共缩聚,合成了一系列二苯基磷基团修饰的功能化SBA-15材料,并以此作为载体通过后嫁接法制备了具有有序介孔结构的非均相有机钯催化剂。不同系列(具有不同构型)的介孔有机金属钯催化剂在经典的钯催化碳碳偶联反应中表现出不同的催化活性和稳定性,在结构形貌大体一致(相差不远)的基础上,我们认为催化剂的不同活性是由于钯活性中心所处的微环境不同从而导致不同构型的钯活性中心的生成最后表现在催化剂催化活性和稳定性的区分上。
     3.通过原位聚合法首先在酶分子表面包裹上一层软的高分子层,通过调变制得适合的厚度,然后以MCF为载体通过传统的吸附法将酶凝胶吸附制得非均相催化剂,通过吸附前后稳定性试验的对比,可以发现,酶在pH方面的稳定性有了一定的提高,我们认为是由于这两步软硬的结合导致的。
Nowadays, global economy develop rapidly, bringing great pressure to global environment.Accordingly, many governments proposed the concept of sustainable development.As we all know, the chemistry industry plays an important role in the enconomic development of countries. In order to protect the environment and develop the enconomy sustainably, the concept of green and sustainable chemistry arised.
     In the field of modern synthesis, more than 90 % percent of reactions are completed through catalysis, including the majority of metals and organic metals-catalyzed chemical reactions and a small amount of enzymes-catalyzed reactions. With no doubt, the design and preparation of green catalyst have become one of the most hot researches, it is a very vital development direction in the field fo green catalysis. Through the immobilization of catalyst, products and catalysts could be separated easily.
     It is more easy for heterogeneous catalyst to achieve industrialization owing to the easy separation from the products, however, it is still difficult to design a catalyst with contronable properties due to the insufficient understanding of the surface.
     Based on the above issues and the background of green chemistry, we have prepared several groups of heterogeneous catalysts. The first group has been preparaed by the hydrothermal method with inorganic silica as the support, applying in the clean organic synthesis with water as the medium. The second group was used in the carbon-carbon coupling reactions. We have obtained catalysts with different configurations by modulating the ligand concentration on the support. The last group–the enzyme heterogeneous catalyst, constructed by modulating a proper microenvironment, was applied in the synthesis of pharmaceutical intermediates By analyzing the results and discussing the relationship between the structure and the properties, we will focus on three sections.
     1. Periodic mesoporous SBA-15 modified with disulfide groups were synthesized by hydrothermal method through the con-condensation between the inorgnic silane and orgnic silane under acid conditions, which were used as a support to immobilize Au(0) catalyst by impregnation. The as-prepared Au(0)-S-S-SBA-15 showed high conversion in the hydration of phenylacetylene.The high activity could be attributed to the high dispersion of Au(0) active sites and ordered mesopore channels which effectively diminished the steric hindrance and thus, diffusion limit. Meanwhile, the disulfide groups in the support wall could enhance surface hydrophobicity, which promoted the adsorption for organic reactant molecules.
     2. The diphenylphosphine functionalized mesoporous SBA-15 were synthesized by sufactant-P123 induced self- assembly of tetraethoxysilane (TEOS)and organosilane. which were used as a support to immobilize Pd(II) catalyst by grafting. The as-prepared Pd-PPh2-SBA-15 exhibited different catalytic avtivity and durability in the classic palladium-catalyzed acrbon-carbon coupling reactions. Based on the almost same structure, It seems reasonable to conclude that the differences should be attributed to the differences of the microenvironment around the palladium active sites, resulting in the palladium with different configurations.
     3. A proper layer of soft polymer by modulating was modified on the surface of the enzyme molecules by in situ polymerization. A heterogeneous catalyst have been obtained by traditional absorbing method with MCF as the support. The stability of enzyme after absorbing have improved to some extent. We attributed it to the combination of soft and hard methods.
引文
[1] G. Centi, S. Perathoner, Catalysis and sustainable (green) chemistry, Catal. Taday., 2003, 77, 287-297.
    [2] P. T. Anastas, J. C. Warner, Green Chemistry: Theory and Practise, Oxford University Press, 1998.李朝军,王东,绿色化学:理论和应用,科学出版社,2002.
    [3] I. E. Maxwell, Driving forces for innovation in applied catalysis, Stud. Surf. Sci. Catal., 1996, 101, 1-9.
    [4]王桂茹,催化剂与催化作用,大连理工大学出版社,2007, P152.
    [5]市川腾,均相催化与多相催化入门-未来的催化化学.陆世维译,宇航出版社, 1990.
    [6] B. R. James, Homogeneous Hydrogenation, John Wiley and Sons, 1973, P106.
    [7] P. Meakin, J. P. Jesson, C. A. Tolman, Nature of chlorotris(triphenylphosphine)rhodium in solution and its reaction with hydrogen, J. Am. Chem. Soc., 1972, 94, 3240-3242.
    [8] J. Halpern, T. Okamato, A. Zakhariev, Mechanism of the chlorotris(triphenylphosphine) rhodium (I)-catalyzed hydrogenation of alkenes. The reaction of chlorodihydridotris(triphenyl-phosphine)rhodium(III) with cyclohexene, J. Mol. Catal., 1977, 2, 65-68.
    [9] T. S. Janick, M. F. Pyszczek, J. D. Atwood, Catalytic homogeneous hydrogenation of terminal olefins by RCo(CO)2(P(OCH3)3)2 (R = CH3 or CH3C(O)), J. Mol. Catal., 1981, 11, 33-39.
    [10] G. W. Parshall, Homogeneous Catalysis, John Wiley and Sons, 1980.
    [11] J. K. Stille, R. Divakaruni, Mechanism of the wacker process. stereochemistry of the hydroxypalladation, J. Organomet. Chem., 1979, 169, 239-248.
    [12] D. Forster, Mechanistic pathways in the catalytic carbonylation of methanol by rhodium and iridium complexes, Adv. Organomet. Chem., 1979, 17, 255-267.
    [13] G. A. Somorjai, Modern concepts in surface science and heterogeneous catalysis, J. Phys. Chem., 1990, 94, 1013-1023.
    [14] M. W. Roberts, Catal. Lett., 2000, 67, 1-4.
    [15] D. Filmore, Today,s Chemist At Work, 2002, 11, P33.
    [16] M. Haruta, T. Kobayashi, H. Sano et al. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 oC, Catal. Lett., 1987, 16, 405-408.
    [17] G. J. Hutchings, Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts, J. Catal., 1985, 96, 292-295.
    [18] G. J. Hutchings, M. Haruta, A golden age of catalysis: a perspective, Appl. Catal., A, 2005, 291, 2-5.
    [19] E. E. Stangland, K. B. Stavens, R. P. Andres, W. N. Delgass, Characterization of gold–titania catalysts via oxidation of propylene to propylene oxide, J.Catal., 2000, 191, 332-347.
    [20] P. Landon, P. J. Collier, A. J. Papworth, C. J. Kiely and G. J.Hutchings, Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst, Chem. Commun., 2002, 2058-2059.
    [21] B. Nkosi, M. D. Adams, N. J. Coville and G. J. Hutchings, Hydrochlorination of acetylene using carbon-supported gold catalysts: a study of catalyst reactivation, J.Catal., 1991, 128, 378-386.
    [22] A. Abad, P. Concepcion, A. Corma and H. Garcia, A collaborative effect between gold and a support induces the selective oxidation of alcohols, Angew. Chem. Int. Ed., 2005, 44, 4066-4069.
    [23] S. Carretin, J. Guzman and A. Corma, Supported gold catalyzes the homocoupling of phenylboronic acid with high conversion and selectivity, Angew. Chem. Int. Ed., 2005, 44, 2242-2245.
    [24] A. Corma, P. Serna, Chemoselective hydrogenation of nitro compounds with supported gold catalysts, Science, 2006, 313, 332-334.
    [25] (a) K. Esumi, T. Hosoya, A. Suzuki, K. Torigoe, Spontaneous formation of gold nanoparticles in aqueous solution of sugar-persubstituted poly(amidoamine)dendrimers, Langmuir, 2000, 16, 2978-2980. (b) P. Mukherjee, C. R. Patra, R. Kumar, M. Sastry, Entrapment and catalytic activity of gold nanoparticles in amine-functionalized MCM-41 matrices synthesized by spontaneous reduction of aqueous chloroaurate ions, Phys. Chem. Commun., 2001, 4, 1-2. (c) P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, R. Ramani, Bioreduction of AuCl4? Ions by the fungus, verticillium sp. and surface trapping of the gold nanoparticles formed, Angew. Chem. Int. Ed., 2001, 40, 3585-3588.
    [26] P. Mukherjee, C. R. Patra, A. Ghosh, M. Sastry, Characterization and catalytic activity of goldnanoparticles synthesized by autoreduction of aqueous chloroaurate ions with fumed silica, Chem. Mater., 2002, 14, 1678-1684.
    [27] A. Ghosh, C. R. Patra, P. Mukherjee, R. Kumar, Preparation and stabilization of gold nanoparticles formed by in situ reduction of aqueous chloroaurate ions within surface-modified mesoporous silica, Microporous Mesoporous Mater., 2003, 58, 201–211.
    [28] Y. Jin, P. J. Wang, D. H. Yin, N. Y. Yu, Gold nanoparticles stabilized in a novel periodic mesoporous organosilica of SBA-15 for styrene epoxidation, Microporous Mesoporous Mater., 2008, 111, 569–576.
    [29] D. Villemin, B. Moreau, F. Simeon, G. Maheut, C. Fernandez, V. Montouillout, V. Caignaert, A one step process for grafting organic pendants on alumina via the reaction of alumina and phosphonate under microwave irradiation, Chem. Commun., 2001, 2060-2061.
    [30] B. A. Harper, D. A. Knight, C. George, S. L. Brandow, W. J. Dressick, C. S. Dalcey, T. L. Schull, Coordination chemistry of the water-soluble ligand TPPTP and formation of a [Mo(CO)5(m-TPPTP)] monolayer on an alumina surface, Inorg. Chem., 2003, 42, 516-524.
    [31] N. E. Leadbeater, M. Marco, Preparation of polymer-supported ligands and metal complexes for use in catalysis, Chem. Rev., 2002, 102, 3217-3274.
    [32] D. C. Sherrington, Preparation, structure and morphology of polymer supports, Chem. Commun., 1998, 2275-2286.
    [33] J. M. Thomas, R. Raja, Catalytically active centres in porous oxides: design and performance of highly selective new catalysts, Chem. Commun., 2001, 675-687.
    [34] J. Blumel, Linkers and catalysts immobilized on oxide supports: New insights by solid-stste NMR spectroscopy, Coord. Chem. Rev., 2008, 252, 2410-2423.
    [35] A. Sayari, Catalysis by crystalline mesoporous molecular sieves, Chem. Mater., 1996, 8, 1840-1852.
    [36] A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev., 1997, 97, 2373-2420.
    [37] A. Hagfeldt, M. Gratzel, Molecular Photovoltaics, Acc. Chem. Res., 2000, 33, 269-277.
    [38] A. P. Wight, M. E. Davis, Design and preparation of organic-inorganic hybrid catalysts, Chem. Rev., 2002, 102, 3589-3614.
    [39] Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Mesopore-modified zeolites: preparation,characterization, and applications, Chem. Rev., 2006, 106, 896-910.
    [40] K. Ariga, A. Vinu, J. P. Hill, T. Mori, Coordination chemistry and supramolecular chemistry in mesoporous nanospace, Coord. Chem. Rev., 2007, 251, 2562-2591.
    [41] X. Roy, M. J. MacLachlan, Coordination chemistry: new routes to mesostructured materials, Chem. Eur. J., 2009, 15, 6552-6559.
    [42] (a) G. Tsiavaliaris, S. Haubrich, C. Merckle, J. Blümel, New bifunctional chelating phosphine ligands for immobilization of metal complexes on oxidic supports, Synlett., 2001, 391-393; (b) R. Fetouaki, A. Seifert, M. Bogza, T. Oeser, J. Blümel, Inorg. Chim. Acta., 2006, 359, 4865.
    [43] F. Piestert, R. Fetouaki, M. Bogza, T. Oeser, J. Blümel, Easy one-pot synthesis of new dppm-type linkers for immobilizations, Chem. Commun., 2005, 1481-1483.
    [44] M. Bogza, T. Oeser, J. Blümel, Synthesis, structure, immobilization and solid-state NMR of new dppp-and tripod-type chelate linkers, J. Organomet. Chem., 2005, 690, 3383-3389.
    [45] T. Posset, J. Blümel, New mechanistic insights regarding Pd/Cu catalysts for the sonogashira reaction: HRMAS NMR studies of silica-immobilized systems, J. Am. Chem. Soc., 2006, 128, 8394-8395.
    [46] (a) L. Bemi, H. C. Clark, J. A. Davies, C. A. Fyfe, R. E. Wasylishen, Studies of phosphorus (III) ligands and their complexes of nickel (II), palladium (II), and platinum (II) immobilized on insoluble supports by high-resolution solid-state phosphorus-31 NMR using magic-angle spinning techniques, J. Am. Chem. Soc., 1982, 104, 438-445; (b) L. Bemi, H. C. Clark, D. Drexler, C. A. Fyfe, R. E. Wasylishen, The detection and characterization of surface immobilized phosphine ligands and transition metal catalysis by high resolution 31P solid state NMR using magic angle spinning techniques, J. Organomet. Chem., 1982, 224, C5-C9.
    [47] K. D. Behringer and J. Blumel, Immobilization and chelation of metal complexes with bifunctional phosphine ligands: a solid-state NMR study, Chem. Commun., 1996, 653-654.
    [48] T. Posset and J. Blumel, New mechanistic insights regarding Pd/Cu catalysts for the sonogashira reaction: HRMAS NMR studies of silica-immobilized systems, J. Am. Chem. Soc., 2006, 128, 8394-8395.
    [49] Y. Yang, B. Beele and J. Blumel, Easily immobilized di- and tetraphosphine linkers: rigid scaffolds that prevent interactions of metal complexes with oxide supports, J. Am. Chem. Soc.,2008, 130, 3771-3773.
    [50] B. Beele, J. Guenther, M. Perera, J. Blumel, New linker systems for superior immobilized catalysts, New J. Chem., 2010, 34, 2729-2731.
    [51] Bradford, Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding, Anal Biochem, 1976, 72, 248–250.
    [52]刘秀伟,司芳,郭林,赵怡丽,樊森,酶固定化研究进展,化工技术经济, 2003, 21, 12-17.
    [53] J. J. Edsall, R. H. Maybury, R. Simpson, B. Straessle, Dimerization of serum mecaptalbumin in presence of mercuries: studies with a bifunctional organic mercurial, J. Am. Chem. Soc., 1954, 76, 3131-313.
    [54] I. H. Sihnan, E. Katchalski, Water insoluble derivative of enzymes: antigens and antibodies, Annu. Rev. Rev. Biochem., 1966, 35, 773-790.
    [55]薛屏,卢冠忠,郭杨龙,王筠松,含环氧基亲水性固定化青霉素酞化酶共聚载体的合成与性能研究,高等学校化学学报, 2004, 25, 361-365.
    [56]宋建彬,任孝修,以壳聚糖为载体固定化青霉素酞化酶的研究,北工进展,2004, 23, 181-184.
    [57] P. Asmita, S. Hephzibah, Immobilization of penicillin acylase in porous beads of polyacrylamide gel, Appl. Biochem. Biotechnol., 1991, 30, 265-272.
    [58] Q. L. Ye, Y. X. Li, Studies on a phenolic resin as a carrier for the immobilization of penicillin acylase, Polym. Adv. Technol., 1997, 8, 727-730.
    [59] G. G. Dodson, Catalysis in penicillin G amidase–a member of the Ntn (N Terminal Nucleophile) hydrolase family, Conference Paper, Croatica. Chemica. Acta.,2000, 73, 901-908.
    [60] A. K. Chandel, L. V. Rao, M. L. Narasu and et al, The realm of penicillin G acylase in beta-lactam antibiotics. Enzyme. Microb. Technol., 2008, 42, 199–207.
    [61] L. Q. Cao, F. Van-rantwijk, R. A. Sheldon, Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase, Org. Lett., 2000, 2, 1361–1364.
    [62] A. I. Kallenberg, F. Van-rantwijk, R. A. Sheldon, Immobilization of penicillin G acylase: the key to optimum performance, Adv. Synth.. Catal., 2005, 347, 905–926.
    [63] A. M. Wang, H. Wang, S. M. Zhu and et al, An efficient immobilizing technique of penicillin acylase with combining mesocellular silica foams support and p-benzoquinone crosslinker, Bioprocess. Biosyst. Eng., 2008, 31, 509–517.
    [64] L. Wilson, A. Illanes, O. Abian and et al, Co-aggregation of penicillin G acylase and polyionic polymers: an easy methodology to prepare enzyme biocatalysts stable in organic media, Biomacromolecules, 2004, 5, 852–857.
    [65] A. Kotha, R. C. Raman, S. Ponrathnam and et al, Beaded reactive polymer-immobilization of penicillin G acylase on glycidyl methacrylatedivinyl benzene copolymers of differing pore size and its distribution, React. Funct. Polym., 1996, 28, 235-242.
    [66] I. Yosef, R. Abu-Reziq, D. Avnir, Entrapment of an organometallic complex within a metal: a concept for heterogeneous catalysis, J. Am. Chem .Soc., 2008, 130, 11880-11882.
    [67] T. J. M. Luo, R. Soong, E. Lan, B. Dunn, C. Montemagno, Photo-induced proton gradients and ATP biosynthesis produced by vesicles encapsulated in a silica matrix, Nature Mater., 2005, 4, 220-224.
    [68] M. Haruta, Gold rush, Nature, 2005, 437, 1098– 1099.
    [69] A. Corma, P. SERNA, Chemoselective hydrogenation of nitro compounds with supported gold catalysts, Science, 2006 , 313, 332– 334.
    [70] A. S. K. Hashmi, G. J. Hutchings, Gold catalysis, Angew. Chem. Int. Ed., 2006, 45, 7896– 7936.
    [71] P. Mukherjee, C. R. Patra, A. Ghosh, et al, Characterization and catalytic activity of gold nanoparticles synthesized by autoreduction of aqueous chloroaurate ions with fumed silica, Chem. Mater., 2002, 14, 1678–1684.
    [72] W. H. Hang, X. N. Zhang, Z. L. Hua, et al. Synthesis, bifunctionalization, and application of isocyanurate-based periodic mesoporous organosilicas, Chem. Mater., 2007, 19, 2663–2670.
    [73] D. Margolese , J. A. Melero, S. C. Christiansen, et al. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups, Chem. Mater., 2000, 12, 2448–2459.
    [74] C. M. Yang, B. Zibrowius, W. Schmidt, et al. Consecutive generation of mesopores and micropores in SBA-15, Chem. Mater., 2003, 15, 3739–3741.
    [75] Y. C. Negishi, T. Tsukuda, One pot preparation of subnanometer-sized gold clusters via reduction and stabilization by meso-2,3-dimercaptosuccinic acid, J. Am. Chem. Soc., 2003, 125, 4046– 4047.
    [76] Z. L. Lu, E. Lindner, H. A. Mayer, Applications of sol-gel-processed interphase catalysts,Chem. Rev., 2002, 102, 3543-3578.
    [77] P. Mcmorn, G. J. Hutchings, Heterogeneous enantioselective catalysts: strategies for the immobilisation of homogeneous catalysts, Chem. Soc. Rev., 2004, 33, 108-122.
    [78] (a) S. Kotha, K. Lahiri, D. Kashinath, Recent applications of the Suzuki–Miyaura cross-coupling reaction in organic synthesis, Tetrahedron., 2002, 58, 9633–9695; (b) A. Suzuki, Cross-coupling reactions via organoboranes, J. Organomet. Chem., 2002, 653, 83–90; (c) F. Bellina, A. Carpita, R. Rossi, Palladium catalysts for the suzuki cross-coupling reaction: an overview of recent advances, Synthesis., 2004, 15, 2419–2440.
    [79] J. L. Huang, F. X. Zhu, W. H. He, F. Z., W. Wang and H.X. Li, Periodic mesoporous organometallic silicas with unary or binary organometals inside the channel walls as active and reusable catalysts in aqueous organic reactions, J. Am. Chem. Soc., 2010, 132, 1492-1493.
    [80] B. M. Choudary, K. R. Kumar, Z. Jarnil, G. Thyagarajan, A novel‘anchored’palladium (II) phosphinated montmorillonite: the first example in the interlamellars of smectite clay, Chem.Commun., 1985, 13, 931-932.
    [81] O. Krocher, R. A. Koppel, M. Froba, A. Baiker, Silica hybrid gel catalysts containing group (VIII) transition metal complexes: preparation, structural, and catalytic properties in the synthesis of N,N-dimethylformamide and methyl formate from supercritical carbon dioxide, J. CATAL., 1998, 178, 284-298.
    [82] J. J. Yang, I. M. El-Nahhal, I. S. Chuang, et al. Synthesis and solid-state NMR structural characterization of polysiloxane-immobilized phosphine, phosphine-amine and phosphine-thiol ligand systems, J. Non-Cryst.Solids., 1997, 212, 281-291.
    [83] P. F. W. Simon, R. Ulrich, H. W. Spiess, et al. Block copolymer-ceramic hybrid materials from organically modified ceramic precursors, Chem. Mater., 2001, 13, 3464-3486.
    [84] R. A. Komoroski, A. J. Magistro, P. P. Nicholas, Phosphorus-31 and carbon-13 solid-state NMR of tertiary phosphine-palladium complexes bound to silica, Inorg. Chem., 1986, 25, 3917-3925.
    [85] H. X. Li, F. Zhang, Y. Wan, Y. F. Lu, Homoallylic alcohol isomerization in water over an immobilized Ru (II) organometallic catalyst with mesoporous structure, J. Phys. Chem. B., 2006,, 110, 22942-22946.
    [86] F. Zhang, G. H. Liu, W. H. He, et al. Mesoporous silica with multiple catalytic functionalities, Adv. Funct. Mater., 2008,, 18, 3590–3597.
    [87] N. Miyaura, A. Suzuki, Palladium-catalyzed cross-coupling reactions of organoboron compounds, Chem. Rev., 1995, 95, 2457-2483.
    [88] C. Mateo, J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, R. Fernandez-Lafuente, Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme Microb. Technol., 2007, 40, 1451-1463.
    [89] B. Philip, Enzymes: by chance, or by design, Nature, 2004, 431, 396-397.
    [90] J. M. Woodley, New opportunities for biocatalysis: making pharmaceutical processes greener, Trends in Biotech., 2008, 26, 321-327.
    [91] D. Avnir, T. Coradin, O. Lev, J. Livage, Recent bio-applications of sol–gel materials, J. Mater. Chem., 2006, 16, 1013-1030.
    [92] R. A. Sheldon, Enzyme immobilization : the quest for optimum performance, Adv. Synth. Catal., 2007, 349, 1289-1307.
    [93] T. Shiroya, N. Tamura, M. Yasui, K. Fujimoto, H. Kawaguchi, Enzyme immobilization on thermosensitive hydrogel microspheres, Colloids Surf. B, 1995, 4, 267-274.
    [94] M. Yan, J. Ge, Z. Liu, Y. P. K. Ou, Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability, J. Am. Chem. Soc., 2006, 128, 11008-11009.
    [95] M. Yan, Z. X. Liu, D. N. Lu, Z . Liu, Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature, Biomacromolecules, 2007, 8, 560-565.
    [96] K. L. Heredia, D. Bontempo, T. Ly, J. T. Byers, S. Halstenberg, H. D. Maynard, In situ preparation of protein-"smart" polymer conjugates with retention of bioactivity, J. Am. Chem. Soc., 2005, 127, 16955-16960.
    [97]闫明,高分子修饰酶的分子模拟与制备方法研究[博士学位论文],清华大学化学工程系, 2007.
    [98] J. W. Lee, J. B. Kim, J. Y. Kim, Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials hosting crosslinked enzyme aggregates, Small, 2005, 1, 744-753.
    [99] L. T. Chiem, L. Huynh, J. Ralston, D. A. Beattie, An in situ ATR–FTIR study of polyacrylamide adsorption at the talc surface, J. Colloid Interface Sci., 2006, 297, 54-61.
    [100] M. Hartmann, D. Jung, Biocatalysis with enzymes immobilized on mesoporous hosts: thestatus quo and future trends, J. Mater. Chem., 2010, 20, 844-857.
    [101] (a) J. B. Kim, J. W. Lee, T. W. Hyeon, Separable highly stable enzyme system based on nanocomposites of enzymes and magnetical nanoparticles shipped in hierarchically ordered, mesocellullar mesoporous silica, Small, 2005, 1, 1203-1207. (b) J. W. Lee, H. B. Na, T. W. Hyeon, J. B. Kim, Magnetically-separable and highly-stable enzyme system based on crosslinked enzyme aggregates shipped in magnetite-coated mesoporous silica, J. Mater. Chem., 2009, 19, 7864-7870.
    [102] J. S. Lettow, Y. J. Han, P. Schmidt-Winkel, P. Yang, D. Zhao, G. D. Stucky, J. Y. Ying, Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas, Langmuir, 2000, 16, 8291-8295.
    [103] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998, 279, 548-552.
    [104]赵自成, 6-氨基青霉烷酸(6-APA)生产工艺研究,天津大学硕士学位论文, 2006, P 7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700