基于碳纳米墙的半导体复合材料制备、表征及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
零维C_(60)和一维碳纳米管被发现以后,纳米结构碳材料的研究及应用引起了人们的广泛关注,但二维纳米结构的碳纳米墙的研究却较少。碳纳米墙可用于电子器件、超导、场发射等方面,特别是由于具有自支撑的开放式结构和高的表面积,非常适合作为催化剂的载体。TiO_2和WO_3均是半导体材料,因具有较强的光催化氧化能力和高的光化学稳定性,所以广泛地作为催化剂用于多相光催化中。但TiO_2和WO_3的光催化效率有待进一步提高以达到实用化目的,同时光催化剂在使用中遇到粉体光催化剂难于分离回收,而负载于致密载体的催化剂的比表面积较小。利用碳纳米墙的表面结构特点,将TiO_2和WO_3光催化剂与碳纳米墙复合,可有效提高光催化剂比表面积,而且光催化剂与碳纳米墙间形成的异质结构会有利于光致电子-空穴的分离。为此,采用偏压等离子体增强热丝化学气相沉积方法制备的碳纳米墙为基体,用化学气相沉积方法制备了TiO_2/碳纳米墙和WO_3/碳纳米墙复合材料,并对材料进行了系统表征和光催化性能的研究。本论文主要开展了以下几个方面的工作:
     (1)独立设计并建造了偏压等离子体增强热丝化学气相沉积装置,该装置的加热功率为3kW,热丝和基体间的外加偏压可以达到300V,最大成膜面积20cm~(-2)。利用该装置,以金属钛为基体,选用H_2和CH_4作为反应气体,可以大量制备质地均匀的碳纳米墙。反应过程中甲烷和氢气的流量分别为18sccm和6sccm,体系压强为3000Pa,基体温度为600℃,基体偏压100V,沉积时间为0.5h。采用扫描电子显微镜对样品进行分析结果表明,碳纳米墙具有自支撑的碳纳米片网状结构,完全独立的垂直于基体方向向外扩展。单个碳纳米墙的厚度约为10nm,长度在500 nm到1μm之间,高度约为2μm。透射电镜选区电子衍射分析和拉曼光谱分析表明碳纳米墙是以sp~2杂化形式为主的石墨类物质。碳纳米墙的形成主要决定于直流偏压所形成的电场,而等离子体氛围中碳粒子和原子氢的浓度也是形成碳纳米墙的关键因素。
     (2)以碳纳米墙为基体,使用加热钨丝的化学气相沉积方法,保持真空反应室内空气的压强为3000 Pa,控制加热电流为20 A,加热时间为5 min,可将WO_3非常均匀的包覆在碳纳米墙外壁,制备出WO_3/碳纳米墙复合材料。这种复合材料的形成得益于碳纳米墙所具有的开放的形貌结构。拉曼光谱和X射线衍射分析表明沉积在碳纳米墙上的WO_3的晶体结构为单斜晶系的WO_3。紫外-可见漫反射测试表明WO_3/碳纳米墙复合材料具有一定的光响应。在相同实验条件下,WO_3/碳纳米墙电极的光电流密度及光催化降解对硝基苯酚的降解效率高于所对照的三氧化钨纳米带阵列电极。
     (3)以碳纳米墙为基体,选择钛酸四丁酯为钛源,用金属有机化学气相沉积方法,制备出TiO_2/碳纳米墙复合材料。在TiO_2沉积过程中,通入500 sccm的氩气作为载气,沉积温度控制在320℃,钛酸四丁酯的用量为0.05 mL min~(-1)。当沉积过程结束后,将反应器的温度以2℃min~(-1)的速度从320℃升至430℃,保温1h。随着TiO_2沉积时间的延长,TiO_2/碳纳米墙的厚度可以从几十纳米增至近200nm。拉曼光谱和X射线衍射分析表明沉积在碳纳米墙上TiO_2为锐钛矿相晶体。手工半导体参数仪所测定的电流-电压(I-V)曲线表明TiO_2和碳纳米墙之间可以形成异质结构。表面光电压作用谱和光电流密度分析确定TiO_2和碳纳米墙间形成的异质结构有利于减少光生电子和空穴的复合。选择苯酚作为目标污染物,光催化降解苯酚的实验表明TiO_2/碳纳米墙电极的光催化活性高于二氧化钛纳米管阵列电极。TiO_2/碳纳米墙光电极所具有的开放式的高比表面积及异质结构可能是其具有高光催化性能的主要原因。
Carbon nanostructures, such as zero-dimensional fullerenes and one-dimensional carbon nanotubes, have attracted great interests because they are often superior to the conventional bulk carbon materials. However, as compared with the intensive research of fullerenes and carbon nanotubes, only a few studies have been carried out on two-dimensional carbon nanowalls (CNWs). Actually, the CNWs have unique field-emission and electron transport properties. In particular, the CNWs are the good candicates for catalyst supporting because they can form self-supported graphitic carbon network structure with an open boundary. TiO_2 and WO_3 have been regarded as the most attractive semiconductor materials with high Photocatalytic ability and long life stability. However, enhancing the Photocatalytic efficiency of photocatalyst to meet the practical application requirement is still a challenge, mostly because of low quantum yield caused by the rapid combination of photogenerated electrons and holes. Meanwhile, the Photocatalytic oxidation technology always suffers from the difficulties of separating suspended photocatalyst particles from aqueous solution as well as the surface area of supported photocatalyst exposed to the solution is lower than that of suspended photocatalyst in solution. In order to increase the Photocatalytic efficiency, attempt has been made to cover the TiO_2 and WO_3 on CNWs for increasing the surface area and the forming of a heterojunction which could provide a potential driving force for the separation of photogenerated charge carriers. Therefore, in present work, the TiO_2/CNW and the WO_3/CNW composite materials were prepared by chemical vapor deposition, and the Photocatalytic activity of these photocatalysis was evaluated. In this dissertation, the following several parts of work have been done:
     (1) A plasma enhanced hot filament chemical vapor deposition (PE-HFCVD) system was self-designed and self-made. The heat power, substrate bias voltage, and deposition area of this system is 3 kW, 300 V and 20 cm~(-2), respectively. This system was employed to prepare the CNWs. The substrate is a Ti sheet, and the hydrogen and methane is used as source gases. The gas flow rates of the H_2 and CH_4 are controlled at 6 and 18 sccm, respectively. The reactor is evacuated using a rotary vacuum pump, and the pressure of the system is kept at approximately 3000 Pa during the whole experimental process. When the substrate temperature is estimated by a thermocouple to be about 600℃, a negative substrate bias of 100 V is initiated between the hot filament (anode) and the substrate holder (cathode). The typical deposition time lasted 30 min. The CNWs appeare to distribute uniformly over the whole Ti sheet surface and each nanowall stood perpendicularly on the substrate, they can form self-supported graphitic carbon network structure with an open boundary. These self-aligned CNWs grow up to nearly 2μm and the length is in the range of 500 nm to 1μm. The thickness of the CNW is approximately 10 nm. Trassion electron micrography and Raman spectrum indicate that the CNWs are graphite with sp~2 hybird. The growth of CNWs depends on the electric field occurred by a DC source, and the concentration of carbon particals and hydrogen are the key factors.
     (2) The deposition of WO_3 on CNWs is carried out in a HFCVD system using tungsten filament as tungsten source. The WO_3 could be covered on CNWs uniformly by controlling the deposition duration. The formation of WO_3/CNWS is benefit from the form the self-supported graphitic CNW structure with an open boundary. Raman spectroscopy and X-ray diffraction indicate that the crystal phase of the WO_3 coating is monoclinic. The UV-vis diffusion reflection spectrum reveals that the WO_3/CNWS have Photocatalytic ability under visable light. The photocurrent density and the photocatalystic degradation rate of p-nitrophenol are higher for WO_3/CNW electrode than WO_3 nanobelt array electrode.
     (3) The deposition of TiO_2 on CNWs is carried out in a metal-organic chemical vapor deposition system (MOCVD) using titanium isopropoxide as titanium source. The CNW substrate is placed in a tubular-furnace quartz reactor. The argon is used as the carrier gas with a constant flow rate of 500 sccm. When the substrate temperature reach 320℃, the solution of the titanium isopropoxide is fed continuously into the tubular quartz reactor through a capillary at a rate of 0.05 mL min~(-1). After the deposition process, the argon flow is stopped and the film is annealed in the air at 430°C for 1 h with a heating rate of 2°C min~(-1). The excellent uniformity of TiO_2 has been obtained on the entire CNWs to form a TiO_2/CNW composite material by controlling the deposition duration, and the thinkness of TiO_2/CNWS increase from several ten nanometers to nearly 200 nm with deposition duration increasing. Raman spectroscopy and X-ray diffraction indicate that the crystal phase of the TiO_2 coating is anatase. The asymmetry of the current-voltage plot for the material reveals that a heterojunction is formed between the TiO_2 and the carbon nanowall. As a result of this heterojunction, enhanced separation of photogenerated electrons and holes is confirmed by surface photovoltage and photocurrent measurements. The investigation of Photocatalytic ability shows that the TiO_2/CNW electrode has a higher Photocatalytic activity than TiO_2 nanotube electrode for the degradation of phenol.
引文
[1]白春礼.纳米科技现在与未来.成都:四川教育出版社,2002.
    [2]张立德.第四次浪潮—纳米冲击波.北京:中国经济出版社,2003.
    [3]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [4]李玉宝,刘东主.纳米材料研究与应用.成都:电子科技大学出版社,2005.
    [5]倪星元,沈军,张志华.纳米材料的理化特性与应用.北京:化学工业出版社,2006.
    [6]陈敬中,刘剑洪.纳米材料科学导论.北京:高等教育出版社,2006.
    [7]李晓俊,刘丰,刘小兰.纳米材料的制备及应用研究.济南:山东大学出版社,2006.
    [8]施利毅.纳米材料.上海:华东理工大学出版社,2007.
    [9]戴遐明,艾德生,李庆丰等.纳米陶瓷材料及其应用.北京:国防工业出版社,2005.
    [10]曾令可,李秀艳.纳米陶瓷技术.广州:华南理工大学出版社,2006.
    [11]华中一.针尖上的计算机.上海:上海科学技术文献出版社,2004.
    [12]朱长纯,贺永宁.纳米电子材料与器件.北京:国防工业出版社,2006.
    [13]张阳德.纳米药物学.北京:化学工业出版社,2006.
    [14]张阳德.纳米生物分析化学与分子生物学.北京:化学工业出版社,2005.
    [15]杜磊,庄奕琪.纳米电子学.北京:电子工业出版社,2004.
    [16]阎子峰.纳米催化技术.北京:化学工业出版社材料科学与工程出版中心,2003.
    [17]刘太奇.纳米空气净化技术.北京:化学工业出版社,2004.
    [18]高志贤,李小强.纳米生物医药.北京:化学工业出版社,2007.
    [19]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002.
    [20]贾修伟.纳米阻燃材料.北京:化学工业出版社,2005.
    [21]高绪珊,吴大诚.纳米纺织品及其应用.北京:化学工业出版社,2004.
    [22]陈津,魏丽乔,许并社.纳米非金属功能材料.北京:化学工业出版社,2007.
    [23]陈光华,邓金祥.纳米薄膜技术与应用.北京:化学工业出版社,2004.
    [24]王中林.氧化物纳米结构的科学技术.纳米科技.2006,6:5-12.
    [25]徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002.
    [26]李凤生.纳米功能复合材料及应用.北京:国防工业出版社,2003.
    [27]王中林.从纳米技术到纳米制造.纳米科技.2006,1:5-10.
    [28]Frank S,Poncharal P,Wang Z Let al.Carbon nanotube quantum resistors.Science.1998,280:1744-1746.
    [29]Poncharal P,Wang Z L,Ugarte D.Electrostatic deflections and electromechanical resonances of carbon nanotubes.Science.1999,283:1513-1516.
    [30]Gao R,Pan Z,Wang Z L.Work function at the tips of multi-walled carbon nanotubes.Appllied Physics Letters.2001,78:1757-1759.
    [31]Pan Z W,Dai Z R,Wang Z L.Nanobelts of semiconducting oxides.Science.2001,291:1947-1949.
    [32]Kong X Y,Ding Y,Yang R et al.Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts.Science.2004,303:1348-1351.
    [33]Gao P X,Ding Y,Mai Wet al.Conversion of zinc oxide nanobelts into superlattice-structured nanohelices.Science.2005,309:1700-1704.
    [34]Pan A,Yang H,Liu R et al.Color-tunable photoluminescence of alloyed CdSxSel-x nanobelts.Journal of American Chemical Society.2005,127:15692-15693.
    [35]Wang Z L,Song J.Piezoelectric nanogenerators based on zinc oxide nanowire arrays.Science.2006,312:242-246.
    [36]Chen X,Mao S S.Titanium dioxide nanomaterials:synthesis,properties,modifications,and applications.Chemical Reviews.2007,107(7):2891-2959.
    [37]Teo B K,Sun X H.Silicon-based low-dimensional nanomaterials and nanodevices.Chemical Reviews.2007,107(5):1454-1532.
    [38]刘新锦,朱亚先,高飞.无机元素化学.北京:科学出版社,2005.
    [39]沈曾民.新型炭材料.北京:化学工业出版社,2003.
    [40]http://www.rpi.edu/dept/phys/SclT/FutureTechnologies/nano/images/graphite.JPG
    [41]http://www.electronics-cooling.com/assets/images/2001_August_techbrief f1.jpg
    [42]http://www.uwgb.edu/DutchS/PETROLGY/Diamond%20Structure.HTM
    [43]http://newton.ex.ac.uk/research/qsystems/people/sque/diamond/structure/
    [44]Shenderova O A,Zhirnov V V,Brenner D W.Carbon nanostructure.Critical Reviews in Solid State and Materials Science.2002,27:227-356.
    [45]Rohlfing E A,Cox D M,Kuldor A.Production and characterization of supersonic carbon cluster beams.The Journal of Chemical Physics.1984,81:3322-3330.
    [46]Kyoto H W,Heath J R,Obrien S C et al.C60:buckminsterfullerene.Nature.1985,318:162-163.
    [47]http://www.sussex.ac.uk/Users/kroto/FullereneCentre/gallery/main.html
    [48]马荣骏,邱电云.富勒烯碳分子的结构、性质与应用.矿冶工程.2000,20(4):4-6.
    [49]Hebard A F,Rosseins M J,Haddon R C,Murphy D W,Glarum S H,Palstra T T M.Superconductivity at 18 K in potassium-doped fullerene.Nature.1991,350:600-601.
    [50]Burgos E,Halac E,Ruben Wet al.New superhard phases for three-Dimensional C60-based fullerites.Physical Review Letters.2000,85:2382-2386.
    [51]Zhao T N,Liu J Q,Li Y Let al.C60 photoluminescence spectra related to gas adsorption.Applied Physics Letters.1992,61:1028-1032.
    [52]Haddon R C,Hebard A F,Rosseins M J et al.Conducting films of C_(60)and C_(70)by alkali metal doping.Nature.1991,350:320.
    [53]Yannoni C S,Hoinkis M,de Vries M S et al.Scandium clusters in fullerene cages.Science.1992,256:1191-1192.
    [54]Moshary F,Chen N H.Gap reduction and the collapse of solid C60 to a new phase of carbon under pressure.Physical Review Letters.1992,69:466-470.
    [55]Johnson R D,Yannoni C S,Dorn H C et al.C60 rotation in the solid state:Dynamics of a faceted spherical top.Science.1992,255:1235-1238.
    [56]Bethune D S,Johnson R D,Salem J R et al.The Structure and properties of endohedral fullerenes.Nature.1993,366:123-128.
    [57]Cataldo F.Photochlorination of C60 and C7o fullerenes.Carbon.1994,32:437-443.
    [58]Meletov K,Christofilos P,Kourouklis G A.Pressure-induced orientational ordering in C60single crystals studied by Raman spectroscopy.Physical Review B.1995,52:10090.
    [59]Palstra T T M,Haddon R C,Lyons K B.Electric current induced light emission from C_(60).Carbon.1997,35:1825-1831.
    [60]Zajac J,Groszek A J.Adsorption of C6o fullerene from its toluene solutions on active carbons:Application of flow microcalorimetry.Carbon.1997,35:1053-1060.
    [61]Mrzel A,Umek P,Cevc Pet al.Magnetic ordering at 20 K and below in the C_(60)and C_(70)based fullerene salts.Carbon.1998,36:603-606.
    [62]Blank V,Buga S.High-pressure polymerized phases of C60.Carbon 1998,36:319-343.
    [63]Pintschovius L,Blaschko O,Krexner G et al.Bulk modulus of C60 studied by single-crystal neutron diffraction.Physical Review B.1999,59:11020.
    [64]Hutchison K,Gao J,Schick G et al.Light bulbs:white light electroluminescence from a fluorescent C60 adduct-single layer organic LED.Journal of American Chemical Society.1999,121:5611-5612.
    [65]Nierengarten J F,Eckert J F,Felder D et al.Synthesis and electronic properties of donor-linked fullerenes:towards photochemical molecular devices.Carbon.2000,38:1587-1598.
    [66]Martin N,Sanchez L,Illescas Bet al.Photoinduced electron transfer between C_(60)and electroactive units.Carbon.2000,38:1577-1585.
    [67]Blank V D,Nuzdin A A,Bagramov R K et al.A comparison of some thermodynamic parameters between superhard fullerite,some metals and some covalent elements.Carbon.2001,39:905-908.
    [68]Makarova T L,Han K H,Esquinazi P et al.Magnetism in photopolymerized fullerenes.Carbon.2003,41:1575-1584.
    [69]Bjelakovic M S,Godjevac D M,Milic D R.Synthesis and antioxidant properties of fullero-steroidal covalent conjugates.Carbon.2007,45:2260-2265.
    [70]Iijima S.Helical microtubules of graphitic carbon.Nature.1991,354:56-58.
    [71]Iijima S,Ichihashi T.Single-shell carbon nanotubes of 1-μm diameter.Nature.1993,363:603-605.
    [72]Bethune D S,Kiang C H,de Vries M S et al.Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls.Nature.1993,363:605-607.
    [73]http://www.rdg.ac.uk/Physics/pgprogrammes/MSCprojects2006.htm
    [74]http://www.tipmagazine.com/tip/INPHFA/vol-10/iss-1/p24.html
    [75]Kiang C H,Goddard III W A,Beyers R et al.Carbon nanotubes with single-layer walls.Carbon.1995,33:903-914.
    [76]王茂章,杨全红,成会明.碳的结构及其同素异性体.炭素技术.2001,112:23-28.
    [77]成会明.纳米碳管制备、结构、物性及应用.北京:化学工业出版社,2002.
    [78]Dillon A C,Jones K M,Bekkedahl T A et al.Storage of hydrogen in single walled carbon nanotubes.Nature.1997,386:377-379.
    [79]Ruoff R S,Lorents D C,Chan B,Malhorta R,Subramoney S.Single-crystal metals encapsulated in carbon nanoparticles.Science.1993,259:346-350.
    [80]Banhart F,Cdharlier J C,Ajayan P M.Dynamic behavior of nickel atoms in graphitic networks.Physical Review Letters.2000,84(4):686-689.
    [81]Guerret-Piecourt C,Le Bouar Loiseau A,Pascard H.Relation electronic structure and morphology of metal-compounds between metal inside carbon nanotubes.Nature.1994,372:761-765.
    [82]Seraphin S,Zhou D,Jiao J,Withers J C,Loutfy R.Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters.Applied Physical Letters.1993,63:2073-2075.
    [83]Majetich S A,Artman J O,McHenry M E,Nuhfer N T,Staley S W.Preparation and properties of carbon-coated magnetic nanocrystallites.Physical Review B.1993,48(22):16845-16848.
    [84]Scraphin S,Zhou D,Jiao J,Withers J C,Loutfy R.Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters.Applied Physical Letters.1993,63(15):2073-2075.
    [85]Gao Y,Bando Y.Carbon nanothermometer containing gallium.Nature.2002,415(68.72):599-599.
    [86]Hirahara K,Suenaga K,Bandow S.One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes.Physical Review Letters.2000,85:5384-5387.
    [87]王新庆,王风飞,李振华等.单壁纳米碳管制备方法的新进展.纳米技术与精密工程.2004.2:93-97.
    [88]米万良,林跃生,张宝泉等.取向碳纳米管制备方法及其应用进展.化学进展.2004,16:843-848.
    [89]杨晓华,兑卫真,丁晓坤.纳米碳管制备方法及其微观形貌.电子显微学报.2005,24:255.
    [90]Wu Y,Yang B,Zong Bet al.Carbon nanowalls and related materials.Journal of Material Chemistry.2004,14(4):469-477.
    [91]Ebbesen T W,Ajayan P M.Large-scale synthesis of carbon nanotubes.Nature.1992,358(6383):220-222.
    [92]Iijima S,Wakabayashi T,Achiba Y.Structures of carbon soot prepared by laser ablation.Journal of Physical Chemistry.1996,100(14):5839-5843.
    [93]Ando Y,Zhao X,Ohkohchi M.Production of petal-like graphite sheets by hydrogen arc discharge.Carbon.1997,35(1):153-158.
    [94]http://www.organik.uni-erlangen.de/hirsch/endo_chem_html
    [95]http://www.aurora.wells.edu/~ccs/theses/chapin.ppt
    [96]Wu Y,Qiao P,Chong T et al.Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition.Advanced Materials.2002,14(1):64-67.
    [97]http://www.chm.bris.ac.uk/pt/diamond/stuthesis/chapterl.htm
    [98] Wang J, Ito T. High-current-density electron emission from nano-carbon films fabricated by high-power microwave-plasma chemical vapour deposition. Diamond and Related Materials. 2005,14:1469 -1473.
    [99] Chuang A T H, Boskovic B 0, Robertson J. Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapour deposition. Diamond and Related Materials. 2006,15: 1103 -1106.
    [100] Chen C C, Chen C F, Lee I H et al. Fabrication of high surface area graphitic nanoflakes on carbon nanotubes templates. Diamond and Related Materials. 2005,14:1469 - 1473.
    [101] Shiji K, Hiramatsu M, Enomoto A et al. Vertical growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition. Diamond and Related Materials. 2005,14: 831 - 834.
    [102] Wang J, Zhu M, Outlae R A et al. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon. 2004, 42(14): 2867 - 2872.
    [103] Zhu M, Wang J, Outlaw R A et al. Synthesis of carbon nanosheets and carbon nanotubes by radio frequency plasma enhanced chemical vapor deposition. Diamond and Related Materials. 2006,16(2): 196-201.
    [104] Hiramatsu M, Shiji K, Amano H et al. Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Applied Physical Letters. 2004, 84(23): 4708 - 4710.
    [105] http://www.azom.com/details.asp?ArticleID=185
    [106] Shang N G, Au F C K, Meng X M et al. Uniform carbon nanoflake films and their field emissions. Chemical Physics Letters. 2002,358:187 -191.
    [107] Cappelli E, Orlando S, Mattei G, Scilletta C, Corticelli F, Ascarelli P. Nano-structured oriented carbon films grown by PLD and CVD methods. Applied Physica A 2004, 79: 2063 - 2068.
    [108] Dikonimos T, Giorgi L, Giorgi R et al. DC plasma enhanced growth of oriented carbon nanowall films by HFCVD. Diamond and Related Materials. 2007,16:1240 -1243.
    [109] French B L, Wang J J, Zhu M Y et al. Structural characterization of carbon nanosheets via x-ray scattering. Journal of Applied Physics. 2005, 97:114317.
    [110] Wu Y, Yang B. Effects of localized electric field on the growth of carbon nanowalls. Nano Letters. 2002, 2(4): 355-359.
    [111] Wu Y, Yang B, Han G et al. Fabrication of a class of nanostructured materials using carbon nanowalls as templates. Advanced Functional Materials. 2002,12(8): 489 - 494.
    [112] Yang B, Wu Y, Zong B et al. Electrochemical synthesis and characterization of magnetic nanoparticles on carbon nanowall templates. Nano Letters. 2002,2(7): 751 - 754.
    [113] Giorgi L, Makris T D, Giorgi R et al. Electrochemical properties of carbon nanowalls synthesized by HF-CVD. Sensors and Actuators B. 2007,144 -152.
    [114] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972, 238(5358): 37- 38.
    [115]Cary J H,Lawrence J,Tosine H M.Photodechlorination of PCBs in the presence of titanium dioxide in aqueous.Bulletin of Environmental Contamination and Toxicology.1976,16(6):697-701.
    [116]Quan X,Yang S G,Ruan X Let al.Preparation of titania nanotubes and their environmental applications as electrode.Environmental Science and Technology.2005,39(10):3770-3775.
    [117]Palmisano G,Addamo M,Augugliaro Vet al.Influence of the substituent on selective photocatalytic oxidation of aromatic compounds in aqueous TiO_2 suspensions.Chemical Communications.2006,(9):1012-1014.
    [118]黄昱,李小明,杨麒等.高级氧化技术在抗生素废水处理中的应用.工业水处理.2006,26(8):13-17.
    [119]钟璟,邢卫红,徐南平等.废水中有机污染物高级氧化过程的降解.化工进展.1998,(4):51-53.
    [120]Liu G M,Wu T X,Zhao J C et al.Photoassisted degradation of dye pollutants.8.Irreversible degradation of alizarin red under visible light radiation in airequilibrated aqueous TiO_2dispersions.Environmental Science and Technology.1999,3:2081-2087.
    [121]Wu T X,Lin T,Zhao J C et al.TiO_2-assisted photodegradation of dyes.9.photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation.Environmental Science and Technology.1999,33:1379-1387.
    [122]Vinodgopal K,Wynkoop D E,Kamat P V.Environmental photochemistry on semiconductor surfaces:photosensitized degradation of a textile azo dye,acid Orange 7,on TiO_2 particles using visible light.Environmental Science and Technology.1996,30:1660-1666.
    [123]Ehret A,Stuhl L,Spitler M T.Spectral sensitization of TiO_2 nanocrystalline electrodes with aggregated cyanine dyes.Journal of Physical Chemistry B.2001,105:9960-9965.
    [124]Chen C C,Zhao W,Li J Yet al.Formation and identification of intermediates in the visiblelight-assisted photodegradation of sulforhodamine-B dye in aqueous TiO_2 dispersion.Environmental Science and Technology.2002,36:3604-3611.
    [125]Konstantinou I K,Albanis T A.TiO:-assisted photocatalytic degradation of azo dyes in aqueous solution:Kinetic and mechanistic investigations:a review.Applied Catalysis B:Environmental.2004,49:1-14.
    [126]Pulgarin C,Invernizzi M,Parra Set al.Strategy for the coupling of photochemical and biological flow reactors useful in mineralization of biorecalcitrant industrial pollutants.Catalysis Today.1999,54(2-3):341-352.
    [127]高铁,钱朝勇.TiO_2光催化氧化水中有机污染物研究进展.工业水处理.2000,20(4):10-13.
    [128]王君,郭宝东,张朝红.纳米锐钛型TiO_2催化超声降解SDBS溶液.水处理技术.2005,31(9):21-24.
    [129]张云怀.纳米TiO_2光催化剂的应用.贵州大学学报(自然科学版).2001,18(2):132-134.
    [130]刘平,林华香,付贤智等.掺杂TiO_2光催化膜材料的制备及其灭菌机理.催化学报.1999,20(3):325-328.
    [131]Gratzel M.Photoelectrochemical cells.Nature.2001,414(6861):338-344.
    [132]Duonghong D,Borgarello E,Gratzel M.Dynamics of light-induced water cleavage in colloidal systems.Journal of the American Chemical Society.1981,103(16):4685-4690.
    [133]Hoffmann M R,Martin S T,Choi W et al.Environmental applications of semiconductor photocatalysis.Chemical Reviews.1995,95(1):69-96.
    [134]付贤智,李旦振.提高多相光催化氧化过程效率的新途径.福州大学学报(自然科学版).2001,29(6):104-114.
    [135]El-Maazawi M,Finken A N,Nair A Bet al.Adsorption and photocatalytic oxidation of acetone on TiO_2:An in situ transmission FT-IR study.Journal of Catalysis.2000,191(1):138-146.
    [136]Raupp G B,Junto C T.Photocatalytic oxidation of oxygenated air toxics.Applied Surface Science.1993,72(4):321-327.
    [137]Sato S.Photocatalytic activity of NO_x-doped TiO_2 in the visible light region.Chemical Physics Letter.1986,123(1-2):126-128.
    [138]Asahi R,Morikawa T,Ohwaki T et al.Visible-light photocatalysis in nitrogen-doped titanium oxides.Science.2001,293(5528):269-271.
    [139]Choi W,Termin A,Hoffman M R.The role of metal-ion dopants in quantum-sized TiO_2:correlation between photoreactivity and charge-carrier recombination dynamics.Journal of Physical Chemistry.1994,98(51):13669-13679.
    [140]Vogel R,Hoyer P,Weller H.Quantun-sized PbS,CdS,Ag_2S,Sb_2S_3,and Bi_2S_3 particles as sensitizers for various nanoporous widebandgap semiconductors.Journal of Physical Chemistry.1994,98(12):3183-3188.
    [141]吴合进,吴鸣,谢茂松等.增强型电场协助光催化降解有机污染物.催化学报.2000,12(5):400-403.
    [142]Waldner G,Pourmodjib M,Basuer R et al.Photoelectrocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes.Chemosphere.2003,50(8):989-998.
    [143]Zhang Z,Yuan Y,Shi G et al.Photoelectrocatalytic activity of highly ordered TiO_2 nanotube arrays electrode for azo dye degradation.Environmental Science and Technology.2007,41(17):6259-6263.
    [144]Xie Y B.Photoelectrochemical application of nanotubular titania photoanode.Electrochimica Acta.2006,51(17):3399-3406.
    [145]赵慧敏,陈越,全燮等.Zn掺杂TiO_2纳米管电极制备及其对五氯酚的光电催化降解.科学通报.2007,52(2):158-162.
    [146]Masakazu A,Takahito S,Sukeya K et al.Photocatalytic hydrogenation of propyne with water on small-particle titania:size quantization effects and reaction intermediates.Journal of Physical Chemistry.1987,91(16):4305-4310.
    [147]Que W X,Uddin A,Hu X.Thin film TiO2 electrodes derived by sol-gel process for photovoltaic applications.Journal of Power Sources.2006,159(1):353-356.
    [148] Hitchman M L, Tian F. Studies of TiO_2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol. Journal of Electroanalytical Chemistry. 2002, 538-539:165-172.
    [149] Kasuga T, Hiramatsu M, Hoson A et al. Titania nanotube prepared by chemical processing. Advanced Materials. 1999,11(15): 1307-1311.
    [150] Gong D W, Grimes C A, Varghese O K et al. Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research. 2001,16(12): 3331-3334.
    [151] Kasuga T, Hiramatsu M, Hoson A et al. Formation of titanium oxide nanotube. Langmuir. 1998, 14(12): 3160-3163.
    [152] Lan Y, Gao X P, Zhu H Y et al. Titanate nanotubes and nanorods prepared from rutile power. Advanced Functional Materials. 2005,15(8): 1310-1318.
    [153] Nian J N, Teng H. Hydrothermal synthesis of single-crystalline anatase TiO_2 nanorods with nanotubes as the precursor. Journal of Physical Chemistry B. 2006,110(9): 4193-4198.
    [154] Yuan Z Y, Su B L. Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004, 241(1-3): 173-183.
    [155] Munoz A G. Semiconducting properties of self-organized TiO_2 nanotubes. Electrochimica Acta. 2007, 52(12): 4167-4176.
    [156] Tryba B, Morawski A W, Inagaki M. A new route for preparation of TiO_2-mounted activated carbon. Applied Catalysis B: Environmental. 2003, 46(1): 203 - 208.
    [157] Li Y, Zhang S, Yu Q et al. The effects of activated carbon supports on the structure and properties of TiO_2 nanoparticles prepared by a sol-gel method. Applied Surface Science. 2007, 253(23): 9254 - 9258.
    [158] Li Y, Li X, Li J et al. TiO_2-coated active carbon composites with increased photocatalytic activity prepared by a properly controlled sol-gel method. Materials Letters. 2005, 59(21): 2659 - 2663.
    [159] Zhang X, Zhou M, Lei L. Preparation of photocatalytic TiO_2 coatings of nanosized particles on activated carbon by AP-MOCVD. Carbon. 2005, 43(8): 1700 -1708.
    [160] Zhang X, Zhou M, Lei L. Enhancing the concentration of TiO_2 photocatalyst on the external surface of activated carbon by MOCVD. Materials Research Bulletin. 2005, 40(11): 1899 - 1904.
    [161] Zhang X, Zhou M, Lei L. TiO_2 photocatalyst deposition by MOCVD on activated carbon. Carbon. 2006, 44(2): 325 - 333.
    [162] Khan A Y, Mazyck D W. The effect of UV irradiation on adsorption by activated carbon/TiO_2 composites. Carbon. 2006,44(1): 182 - 184.
    [163] Zhang X, Zhou M, Lei L. Preparation of an Ag-TiO_2 photocatalyst coated on activated carbon by MOCVD. Materials Chemistry and Physics. 2005, 91(1): 73 - 79.
    [164] Brousse T, Marchand R, Taberna P L et al. TiO_2 (B)/activated carbon non-aqueous hybrid system for energy storage. Journal of Power Sources. 2006,158(1): 571 - 577.
    [165] Ao C H, Lee S C. Indoor air purification by photocatalyst TiO_2 immobilized on an activated carbon filter installed in an air cleaner. Chemical Engineering Science. 2005, 60(1): 103 - 109.
    [166] Tao Y, Wu C Y, Mazyck D W. Microwave-assisted preparation of TiO_2/activated carbon composite photocatalyst for removal of methanol in humid air streams. Industrial and Engineering Chemistry Research. 2006,45(14): 5110 - 5116.
    [167] Tsukasa T, Yasuhiro O, Norihiko T et al. Effect of activated carbon c ontent in TiO_2-loaded activated carbon on photodegradation behaviors of dichloromethane. Journal of Photochemistry and Photobiology A: Chemistry. 1997,103(1-2): 153 -157.
    [168] Li Y, Li X, Li J et al. Photocatalytic degradation of methyl orange by TiO_2-coated activated carbon and kinetic study. Water Research. 2006, 40(6): 1119 -1126.
    [169] Cordero T, Chovelon J M, Duchamp C et al. Surface nano-aggregation and photocatalytic activity of TiO_2 on H-type activated carbons. Applied Catalysis B: Environmental. 2007, 73(3-4): 227-235.
    [170] Tryba B, Morawski A W, Inagaki M. Application of TiO_2-mounted activated carbon to the removal of phenol from water. Applied Catalysis B: Environmental. 2003,41(4): 427 - 433.
    [171] Kim S H, Ngo H H, Shon H K et al. Adsorption and photocatalysis kinetics of herbicide onto titanium oxide and powdered activated carbon. Separation and Purification Technology. 2008, 58(3): 335-342.
    [172] Lee D K, Kim S Cl, Kim S J et al. Photocatalytic oxidation of microcystin-LR with TiO_2-coated activated carbon. Chemical Engineering Journal. 2004,102(1): 93 - 98.
    [173] Lee D K, Kim S C, Cho I C et al. Photocatalytic oxidation of microcystin-LR in a fluidized bed reactor having TiO_2-coated activated carbon. Separation and Purification Technology. 2004, 34(1-3): 59 - 66.
    [174] Cordero T, Duchamp C, Chovelon J et al. Influence of L-type activated carbons on photocatalytic activity of TiO_2 in 4-chlorophenol photodegradation. Journal of Photochemistry and Photobiology A: Chemistry. 2007,191(2-3): 122 - 131.
    [175] Wang W, Silva C G, Faria J L. Photocatalytic degradation of Chromotrope 2R using nanocrystalline TiO_2/activated-carbon composite catalysts. Applied Catalysis B: Environmental. 2007,70(1-4): 470-478.
    [176] Yuan R, Guan R, Shen W et al. Photocatalytic degradation of methylene blue by a combination of TiO_2 and activated carbon fibers. Journal of Colloid and Interface Science. 2005, 282(1): 87 -91.
    [177] Zou X j, Maesako N, Nomiyama T, Horie Y, Miyazaki T. Photo-rechargeable battery with TiO_2/carbon fiber electrodes prepared by laser deposition. Solar Energy Materials and Solar Cells. 2000, 62(1-2): 133 - 142.
    [178] Kang S H, Kim J Y, Sung Y E. Role of surface state on the electron flow in modified TiO_2 film incorporating carbon powder for a dye-sensitized solar cell. Electrochimica Acta. 2007, 52(16): 5242-5250.
    [179] Rincon M E, Trujillo-Camacho M E, Cuentas-Gallegos A K et al. Surface characterization of nanostructured TiO_2 and carbon blacks composites by dye adsorption and photoelectrochemical studies. Applied Catalysis B: Environmental. 2006, 69(1-2): 65 - 74.
    [180] Kamat P V, Bedja I, Hotchandani S. Photoinduced charge transfer between carbon and semiconductor clusters. one-electron reduction of C60 in colloidal TiO_2 semiconductor suspensions. Journal of Physical Chemistry. 1994, 98(37): 9137 - 9142.
    [181] Kamat P V, Gevaert M, Vinodgopal K. Photochemistry on semiconductor surfaces. Visible light induced oxidation of C60 on TiO_2 nanoparticles. Journal of Physical Chemistry. 1997,101: 4422-4427.
    [182] Hasobe T, Imahori H, Fukuzumi S et al. Light energy conversion using mixed molecular nanoclusters. Porphyrin and C60 cluster films for efficient photocurrent generation. Journal of Physical Chemistry B. 2003,107:12105 - 12112.
    [183] Zhu S, Xu T, Fu H et al. Synergetic effect of Bi_2WO_6 photocatalyst with C_(60) and enhanced photoactivity under visible irradiation. Environmental Science and Technology. 2007, 41(17): 6234 - 6239.
    [184] Jang S R, Vittal R, Kim K J. Incorporation of functionalized single-wall carbon nanotubes in dye-sensitized TiO_2 solar cells. Langmuir. 2004. 20(22): 9807 - 9810.
    [185] Jitianu A, Cacciaguerra T, Benoit R et al. Synthesis and characterization of carbon nanotubes-TiO_2 nanocomposites. Carbon. 2004, 42(5-6): 1147-1151.
    [186] Orlanducci S, Sessa V, Terranova M L et al. Nanocrystalline TiO_2 on single walled carbon nanotube arrays: Towards the assembly of organized C/TiO_2 nanosystems. Carbon. 2006, 44(13): 2839-2843.
    [187] Yu H, Quan X, Chen S et al.TiO_2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability. Journal of Physical Chemistry C. 2007,111(35): 12987-12991.
    [188] Song H, Qiu X, Li F et al. Ethanol electro-oxidation on catalysts with TiO_2 coated carbon nanotubes as support. Electrochemistry communications. 2007, 9(6): 1416 - 1421.
    [189] Xia X H, Jia Z J, Yu Y et al. Preparation of multi-walled carbon nanotube supported TiO_2 and its photocatalytic activity in the reduction of CO_2 with H_2O. Carbon. 2007, 45(4): 717 - 721.
    [190] Guirado-Lopez R A, Sanchez M, Rincon M E. Interaction of acetone molecules with carbon-nanotube-supported TiO_2 nanoparticles: Possible applications as room temperature molecular sensitive coatings. Journal of Physical Chemistry C. 2007,111(1): 57-65.
    [191] Huang H, Zhang W K, Gan X P et al. Electrochemical investigation of TiO_2/carbon nanotubes nanocomposite as anode materials for lithium-ion batteries. Materials Letters. 2007, 61(1): 296-299.
    [192] Lee T Y, Alegaonkar P S, Yoo J B. Fabrication of dye sensitized solar cell using TiO_2 coated carbon nanotubes. Thin Solid Films. 2007,515(12): 5131 - 5135.
    [193] Ding L, Ge W K, Wong P K et al. Enhancement of photocatalytic activity of mesoporous TiO_2 by using carbon nanotubes. Applied Catalysis A: General. 2005, 289(2): 186 - 196.
    [194] Yu Y, Yu J C, Chan C Y et al. Enhancement of adsorption and photocatalytic activity of TiO_2 by using carbon nanotubes for the treatment of azo dye. Applied Catalysis B: Environmental. 2005, 61(1-2): 1 -11.
    [195] Cui H N, Costa M F, Teixeira V et al. Electrochromic coatings for smart windows. Surface Science. 2003, (532-535): 1127-1131.
    [196] Sivakumar R, Raj A M E, Subramanian B et al. Preparation and characterization of spray deposited n-type WO_3 thin films for electrochromic devices. Materials Research Bulletin. 2004, 39:1479-1489.
    [197] Figueroa R, Kleinke M, Cruz T G S et al. Influence of the microstructure on the electrochemical performance of thin film WO_3 cathode. Journal of Power Sources. 2006,162: 1351 -1356.
    [198] Karuppasamy A, Subrahmanyam A. Studies on electrochromic smart windows based on titanium doped WO_3 thin films. Thin Solid Films. 2007, 516:175 - 178.
    [199] Deb S K. Opportunities and challenges in science and technology of WO_3 for electrochromic and related applications. Solar Energy Materials and Solar Cells. 2008,92: 245 - 258.
    [200] Khatko V, Llobet E, Vilanova X et al. Gas sensing properties of nanoparticle indium-doped WO_3 thick films. Sensors and Actuators B: Chemical. 2005, (111-112): 45 - 51.
    [201] Labidi A, Jacolin C, Bendahan M et al. Impedance spectroscopy on WO_3 gas sensor. Sensors and Actuators B: Chemical. 2005,106: 713 - 718.
    [202] Stankova M, Vilanova X, Calderer J et al. Sensitivity and selectivity improvement of rf sputtered WO_3 microhotplate gas sensors. Sensors and Actuators B: Chemical. 2006, 113: 241 -248.
    [203] Dai C L, Liu M C, Chen F S et al. A nanowire WO_3 humidity sensor integrated with micro-heater and inverting amplifier circuit on chip manufactured using CMOS-MEMS technique. Sensors and Actuators B: Chemical. 2007,123: 896 - 901.
    [204] Rajeswari J, Viswanathan B, Varadarajan T K. Tungsten trioxide nanorods as supports for platinum in methanol oxidation. Materials Chemistry and Physics. 2007,106:168 - 174.
    [205] Gao R, Dai W, Yang X et al. Highly efficient tungsten trioxide containing mesocellular silica foam catalyst in the O-heterocyclization of cycloocta-l,5-diene with aqueous H_2O_2. Applied Catalysis A: General. 2007,332:138 -145.
    [206] Inomata H, Shimokawabe M, Arai M. An Ir/WO_3 catalyst for selective reduction of NO with CO in the presence of O_2 and/or SO_2. Applied Catalysis A: General. 2007,332:146 -152.
    [207] Marsen B, Miller E L, Paluselli D et al. Progress in sputtered tungsten trioxide for photoelectrode applications. International Journal of Hydrogen Energy. 2007, 32: 3110-3115.
    [208] Radecka M, Sobas P, Wierzbicka M et al. Photoelectrochemical properties of undoped and Ti-doped WO_3. Physica B: Condensed Matter. 2005,364: 85 - 92.
    [209] Siokou A, Ntais S, Papaefthimiou S et al. Influence of the substrate on the electrochromic characteristics of lithiated a-WO_3 layers. Surface Science. 2004,566 - 568:1168-1173.
    [210] Broclawik E, Gora A, Liguzinski P et al. Quantum chemical modelling of the process of lithium insertion into WO_3 films. Catalysis Today. 2005,101:155 -162.
    [211] Park K, Song Y, Lee J et al. Influence of Pt and Au nanophases on electrochromism of WO_3 in nanostructure thin-film electrodes. Electrochemistry Communications. 2007, 9: 2111 - 2115.
    [212] Subrahmanyam A, Karuppasamy A. Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO_3) thin films. Solar Energy Materials and Solar Cells. 2007, 91: 266 - 274.
    [213] Yoo S J, Jung Y H, Lim J W et al. Electrochromic properties of one-dimensional tungsten oxide nanobundles. Solar Energy Materials and Solar Cells. 2008, 92:179 -183.
    [214] Lu Y, Hu C. The colored and bleached properties of tungsten oxide electrochromic films with different substrate conductivities. Journal of Alloys and Compounds. 2008,449: 389 - 392.
    [215] Ling Z., Leach C, Freer R. A time resolved study of the response of a WO_3 gas sensor to NO_2 using AC impedance spectroscopy. Sensors and Actuators B: Chemical. 2002, 87: 215 - 221
    [216] Choi Y, Sakai G, Shimanoe K et al. Wet process-prepared thick films of WO_3 for NO_2 sensing. Sensors and Actuators B: Chemical. 2003, 95: 258 - 265.
    [217] Wang S, Chou T, Liu C. Nano-crystalline tungsten oxide NO_2 sensor. Sensors and Actuators B: Chemical. 2003, 94: 343 - 351.
    [218] Choi Y, Sakai G, Shimanoe K et al. Wet process-based fabrication of WO_3 thin film for NO_2 detection. Sensors and Actuators B: Chemical. 2004,101:107-111.
    [219] Stankova M, Vilanova X, Calderer J et al. Detection of SO_2 and H_2S in CO_2 stream by means of WO_3-based micro-hotplate sensors. Sensors and Actuators B: Chemical. 2004,102: 219 - 225.
    [220] Azad A, Hammoud M. Fine-tuning of ceramic-based chemical sensors via novel microstructural modification: I: Low level CO sensing by tungsten oxide, WO_3. Sensors and Actuators B: Chemical. 2006,119:384-391.
    [221] Guerin J, Aguir K, Bendahan M. Modeling of the conduction in a WO_3 thin film as ozone sensor. Sensors and Actuators B: Chemical. 2006,119: 327 - 334.
    [222] Stankova M, Vilanova X, Llobet E et al. On-line monitoring of CO_2 quality using doped WO_3 thin film sensors. Thin Solid Films. 2006, 500: 302-308.
    [223] Boulmani R, Bendahan M, Lambert-Mauriat C et al. Correlation between rf-sputtering parameters and WO_3 sensor response towards ozone. Sensors and Actuators B: Chemical. 2007,125:622-627.
    [224] Luo S, Fu G, Chen H et al. Gas-sensing properties and complex impedance analysis of Ce-added WO_3 nanoparticles to VOC gases. Solid-State Electronics. 2007,51: 913 - 919.
    [225] Ke D, Liu H, Peng T et al. Preparation and photocatalytic activity of WO_3/TiO_2 nanocomposite particles. Materials Letters. 2008, 62: 447 - 450.
    [226] Zou L, Zhong Q, Liu Q. Preparation and Characterization of Microporous Nano-Tungsten Trioxide and Its Photocatalytic Activity after Doping Rare Earth. Journal of Rare Earths. 2006, 24: 60 - 66.
    [227] Luo J, Hepel M. Photoelectrochemical degradation of naphthol blue black diazo dye on WO_3 film electrode. Electrochimica Acta. 2001, 46: 2913 - 2922.
    [228] Berger S, Tsuchiya H, Ghicov A et al. High photocurrent conversion efficiency in self-organized porous WO_3. Applied physics letter. 2006, 88: 203119.
    [229] Guo Y, Quan X, Lu N et al. High photocatalytic capability of self-assembled nanoporous WO_3 with preferential orientation of(002) planes. Environmental and Science Technology. 2007, 41:4422-4427.
    [230] Pan J H, Lee W I. Preparation of Highly Ordered Cubic Mesoporous WO_3/TiO_2 Films and Their Photocatalytic Properties. Chemistry Materials. 2006,18: 847 - 853.
    [231] Akiyama M, Zhang Z, Tamaki J et al. Tungsten oxide-based semiconductor sensor for detection of nitrogen oxides in combustion exhaust. Sensors and Actuators B: Chemical. 1993,14: 619-620.
    [232] Leftheriotis G, Papaefthimiou S, Yianoulis P et al. Structural and electrochemical properties of opaque sol-gel deposited WO_3 layers. Applied Surface Science. 2003, 218: 276 - 281.
    [233] Cremonesi A, Bersani D, Lottici P P et al. WO_3 thin films by sol-gel for electrochromic applications. Journal of Non-Crystalline Solids. 2004, (345-346): 500 - 504.
    [234] Deepa M, Sharma R, Basu A et al. Effect of oxalic acid dihydrate on optical and electrochemical properties of sol-gel derived amorphous electrochromic WO_3 films. Electrochimica Acta. 2005, 50: 3545 - 3555.
    [235] Huang K, Jia J, Pan Q et al. Optical, electrochemical and structural properties of long-term cycled tungsten oxide films prepared by sol-gel. Physica B: Condensed Matter. 2007, 396:164 -168.
    [236] Patra A, Auddy K, Ganguli D et al. Sol-gel electrochromic WO_3 coatings on glass. Materials Utters. 2004, 58:1059 -1063.
    [237] Yang H, Shang F, Gao L et al. Structure, electrochromic and optical properties of WO_3 film prepared by dip coating-pyrolysis. Applied Surface Science. 2007, 253: 5553 - 5557.
    [238] Barreca D, Bozza S, Carta G et al. Structural and morphological analyses of tungsten oxide nanophasic thin films obtained by MOCVD. Surface Science. 2003,532-535: 439 - 443.
    [239] Hoel A, Reyes L F, Heszler P et al. Nanomaterials for environmental applications: novel WO_3-based gas sensors made by advanced gas deposition. Current Applied Physics. 2004, 4: 547-553.
    [240] Ponzoni A, Comini E, Ferroni M et al. Nanostructured WO_3 deposited by modified thermal evaporation for gas-sensing applications. Thin Solid Films. 2005, 490: 81 - 85.
    [241] Mahan A H, Parilla P A, Jones K M et al. Hot-wire chemical vapor deposition of crystalline tungsten oxide nanoparticles at high density. Chemical Physics letters. 2005, 413: 88 - 94.
    [242] Garg D, Henderson P B, Hollingsworth R E et al. An economic analysis of the deposition of electrochromic WO_3 via sputtering or plasma enhanced chemical vapor deposition. Materials Science and Engineering B. 2005,119:224 - 231.
    [243] Stankova M, Vilanova X, Llobet E et al. Influence of the annealing and operating temperatures on the gas-sensing properties of rf sputtered WO_3 thin-film sensors. Sensors and Actuators B: Chemical. 2005,105: 271 - 277.
    [244] Ghimbeu C M, Landschoot R C, Schoonman J et al. Tungsten trioxide thin films prepared by electrostatic spray deposition technique. Thin Solid Films. 2007, 515: 5498 - 5504.
    [245] Ashraf S, Binions R, Blackman C S et al. The APCVD of tungsten oxide thin films from reaction of WCl_6 with ethanol and results on their gas-sensing properties. Polyhedron. 2007, 26: 1493 -1498.
    [246] Sivakumar R, Gopalakrishnan R, Jayachandran M et al. Preparation and characterization of electron beam evaporated WO_3 thin films. Optical Materials. 2007, 29: 679 - 687.
    [247] Reyes L F, Hoel A, Saukko S et al. Gas sensor response of pure and activated WO_3 nanoparticle films made by advanced reactive gas deposition. Sensors and Actuators B: Chemical. 2006,117: 128 -134.
    [248] Wu Y, Xi Z, Zhang G et al. Growth of hexagonal tungsten trioxide tubes. Journal of Crystal Growth. 2006,292:143 - 148.
    [249] Abdullah S F, Radiman S, Hamid M A. Ibrahim N B. Effect of calcination temperature on the surface morphology and crystallinity of tungsten (VI) oxide nanorods prepared using colloidal gas aphrons method. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006,280:88-94.
    [250] Shankar N, Yu M F, Vanka S P et al. Synthesis of tungsten oxide (WO_3) nanorods using carbon nanotubes as templates by hot filament chemical vapor deposition. Materials Letters. 2006, 60: 771-774.
    [251] Gillet M, Delamare R, Gillet E. Growth, structure and electrical conduction of WO_3 nanorods. Applied Surface Science. 2007, 254: 270 - 273.
    [252] Finlayson A P, Ward E, Tsaneva V N et al. Bi_2O_3-WO_3 compounds for photocatalytic applications by solid state and viscous processing. Journal of Power Sources. 2005,145: 667 - 674.
    [253] Moodley D J, Schalkwyk C, Spamer A et al. Coke formation on WO_3/SiO_2 metathesis catalysts. Applied Catalysis A: General. 2007,318:155 - 159.
    [254] Ippolito S J, Ponzoni A, Kalantar-Zadeh K, et al. Layered WO_3/ZnO/36° LiTaO_3 SAW gas sensor sensitive towards ethanol vapour and humidity. Sensors and Actuators B: Chemical. 2006,117:442-450.
    [255] Oka K, Nishiguchi T, Kanai H et al. Active state of tungsten oxides on WO_3/ZrO_2 catalyst for steam reforming of dimethyl ether combined with CuO/CeO_2. Applied Catalysis A: General. 2006,309:187-191.
    [256] Natile M M, Glisenti A. WO_3/CeO_2/YSZ nanocomposite as a potential catalyst for methanol reforming. Journal of Power Sources. 2005,145: 644 - 651.
    [257] Ivanov P, Hubalek J, Malysz K et al. A route toward more selective and less humidity sensitive screen-printed SnO_2 and WO_3 gas sensitive layers. Sensors and Actuators B: Chemical. 2004,100:221-227.
    [258] Sivakumar R, Jayachandran M, Sanjeeviraja C. Studies on the effect of substrate temperature on (VI-VI) textured tungsten oxide (WO_3) thin films on glass, SnO_2:F substrates by PVD:EBE technique for electrochromic devices. Materials Chemistry and Physics. 2004, 87: 439 - 445.
    [259] Irie H, Mori H, Hashimoto K. Interfacial structure dependence of layered TiO_2/WO_3 thin films on the photoinduced hydrophilic property. Vacuum. 2004, 74: 625 - 629.
    [260] Kim J, Bondarchuk 0, Kay B D et al. Preparation and characterization of monodispersed WO_3 nanoclusters on TiO_2(110). Catalysis Today. 2007,120:186 -195.
    [261] Ling Z, Leach C. The effect of relative humidity on the NO_2 sensitivity of a SnO_2/WO_3 heterojunction gas sensor. Sensors and Actuators B: Chemical. 2004,102:102 -106.
    [262] Park J H, ParkO O, Kim S. Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide. Applied Physics letters. 2006, 89:163106.
    [263] Miyauchi M, Nakajima A, Watanabe T et al. Photoinduced hydrophilic conversion of TiO_2/WO_3 layered thin films. Chemistry Materials. 2002,14:4714-4720.
    [264] Moreno-Castilla C, Perez-Cadenas A F, Maldonado-Hodar F J et al. Skeletal isomerization of 1-butene on tungsten oxide catalysts supported on activated carbons with various surface oxygen contents. Carbon. 2003, 41: 863 - 866.
    [265] Perez-Cadenas A F, Maldonado-Hodar F J, Fierro J L G et al. Influence of carbon-chlorine surface complexes on the properties of tungsten oxide supported on activated carbons. 1. Dispersion, distribution, and chemical nature of the metal oxide phase. Journal of Physics Chemistry B. 2003,107(21): 4997 - 5002.
    [266] Perez-Cadenas A F, Maldonado-Hodar F J, Fierro J L G et al. Influence of carbon-chlorine surface complexes on the properties of tungsten oxide supported on activated carbons. 2. Surface acidity and skeletal isomerization of 1-butene. Journal of Physics Chemistry B. 2003, 107(21): 5003-5007.
    [267] Alvarez-Merino M A, Joly J P, Carrasco-Marin F et al. Application of ammonia intermittent temperature-programmed desorption to evaluate surface acidity of tungsten oxide supported on activated carbon. Journal of Colloid and Interface Science. 2003, 260: 449 - 453.
    [268] Perez-Cadenas A F, Moreno-Castilla C, Maldonado-Hodar F J et al. Tungsten oxide catalysts supported on activated carbons: effect of tungsten precursor and pretreatment on dispersion, distribution, and surface acidity of catalysts. Journal of Catalysis. 2003, 217: 30 - 37.
    [269] Alvarez-Merino M A, Ribeiro M F, Silva J M et al. Activated carbon and tungsten oxide supported on activated carbon catalysts for toluene catalytic combustion. Environmental Science and Technology. 2004, 38(17): 4664 - 4670.
    [270] Moreno-Castilla C, Alvarez-Merino M A, Carrasco-Marin F. Decomposition reactions of methanol and ethanol catalyzed by tungsten oxide supported on activated carbon. Reaction Kinetics and Catalysis Letters. 2000, 71:137- 142.
    [271] Pietruszka B, Gregorio F D, Keller N et al. High-efficiency WO_3/carbon nanotubes for olefin skeletal isomerization. Catalysis Today. 2005,102-103: 94 -100.
    [272] Wang W, Serp P, Kalck P et al. Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method. Applied Catalysis B: Environmental. 2005, 56: 305 - 312.
    [273] Yu Y, Yu J C, Yu J G et al. Enhancement of photocatalytic activity of mesoporous TiO_2 by using carbon nanotubes. Applied Catalysis A: General. 2005, 289:186 -196.
    [274] Kongkanand A, Dominguez R M, Kamat P V. Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Letters. 2007, 7:676-680.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700