柴达木北缘西段中、新生代多旋回叠加改造型盆地构造演化及对油气成藏的控制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉积盆地是地壳的基本构造单元之一,其演化受地球动力学所制约。受地球深部热一构造体制变化,岩石圈表层的板块在地质历史过程中反复分离和汇聚,同时拼合后发生多阶段陆内俯冲作用,地壳运动表现为多阶段性和多旋回性。受多旋回地壳运动的动力学机制控制,盆地的演化有着复杂的构造体制转换和频繁的旋回性,制约了盆地的形成环境、沉降机制、沉积充填。中国中西部含油气盆地的演化多经历多个成盆期,油气资源丰富,而由于大陆构造的多样性、复杂性和分层性,对盆地变革过程中构造变形机制、演化及动力学过程的探讨已超出经典的“二维”板块构造理论,而需从“三维”的新思维上去认识。因此对多旋回叠加改造型盆地的构造演化研究不仅具有重要的实际意义,同时对盆地发育演化过程中构造体制转换的探讨亦有着重要的大陆动力学意义。
     柴达木盆地位于青藏高原东北缘,大地构造位置处于亚洲中轴构造域和特提斯—喜马拉雅构造域的结合部位,为阿尔金山、祁连山和昆仑山所围限,中、新生代有着复杂的成盆机制和构造演化过程。柴达木盆地北缘西段为盆地侏罗系含油气系统的分布区,油气资源丰富,中、新生代以来的成盆作用主要与阿尔金山和祁连山相关。受周缘造山带的多旋回造山运动,柴达木盆地北缘西段中、新生代以来有着多期成盆作用和复杂的构造演化,从而导致了盆地的复杂构造变形,制约了烃源岩的分布和演化、生储盖组合的形成、圈闭的形成和分布、油气的成藏与改造过程,也决定了研究区油气的多期次聚集、改造与重建,因此使得油气形成和分布复杂。尽管围绕油气勘探工作在研究区开展了许多地质研究,但由于受盆地复杂的结构构造所制约,许多认识到目前为止还没有统一,如成盆动力学机制、构造演化过程、成藏富集规律等。对于多旋回叠加改造型盆地,构造演化是控制油气成藏的主导因素,直接制约着油气形成、运聚成藏及改造、保存,即对该类盆地的成藏研究需以构造为先导,通过构造的研究以带动对成藏规律的认识。针对柴达木盆地北缘西段成藏研究中主要的问题,论文基于多旋回叠加改造型盆地的成盆和成藏理论,通过野外地质调查、地震剖面的解释、岩石组构分析、物源分析、EsR测年和裂变径迹热年代学分析以及典型油气藏成藏期次和形成过程的剖析,在柴达木盆地北缘西段的盆地结构、成盆机制与演化、构造演化对成藏的控制作用及油气分布规律等方面取得了以下新的成果和认识:
     1、平面上,将柴达木盆地北缘西段划分为赛什腾—绿梁山隆起、赛昆坳陷和马海隆起等三个一级构造单元,且基于变形强度和变形运动学特征,在一级构造单元的基础上划分出10个二级构造单元。研究区的构造变形具分带、分段和分层的特点,沿着南祁连山构造作用方向,可分为逆冲推覆构造带、逆冲断褶构造带和滑脱拆离构造带;垂直于构造作用方向,沿马仙断裂将分为东西两个构造段;纵向上,根据卷入地层变形样式的不同分为上、下两个构造形变层。并基于构造样式的分类原则并结合构造变形特征,将研究区构造样式分为山前基底逆冲、山前断层褶皱、下形变层基底逆冲、扭动构造和上形变层逆冲—褶皱组合和深浅层断裂组合等六类。
     2、NE—SW向和SE—NW向两条剖面共21个样品的磷灰石裂变径迹热年代学的研究表明,裂变径迹年龄大于地层年龄的样品揭示了母岩物源区存在多次构造热事件,其对应的时间分别为52~57 Ma、106~110 Ma、133.3~161.9 Ma和208.9Ma,其中208.9Ma的年龄值为阿尔金山隆升的体现,而其它三个年龄段直接体现了南祁连山的隆升。在裂变径迹年龄小于地层年龄的样晶中,样品的年龄集中于三个年龄段:12Ma、50~63 Ma和89~118Ma,反映了研究区的三次构造热事件。综合全部磷灰石裂变径迹热年代学数据可知,柴达木盆地北缘西段在中、新生代存在四期隆起事件,其时间为晚侏罗世—白垩纪、古新世、渐新世和中新世,而周缘造山带在晚三叠世还存在一期隆起。结合研究区构造变形特征可知,晚侏罗世—白垩纪主要为一种单纯的隆升作用,古新世和中新世的构造事件主体为隆升,断裂褶皱作用不明显,而渐新世以及O和C同位素所揭示的上新世—第四纪则是柴达木盆地北缘西段发生强烈断裂褶皱的两个时期。
     3、野外地质调查表明,柴达木北缘西段节理、断裂及裂缝中充填物具有方解石→石英→(石膏、沥青)的充填时序,其时间分别为晚侏罗世—白垩纪、古新世—渐新世、上新世,显示多期构造活动。研究区古近系与上侏罗统角度不整合、古近系与白垩系平行不整合和白垩系与侏罗系平行不整合接触,反映晚侏罗世—白垩纪存在差异隆升过程。岩石组构分析显示,侏罗纪和白垩纪时期构造运动处于相对较强烈时期,也是构造变形持续时间较长时期;白垩纪以后一直到始新世时期构造运动强度呈现减弱趋势,而渐新世时期构造运动又呈现有增强的趋势;中新世又呈现构造运动减弱趋势。
     4、通过古水流和重矿物综合研究,并结合磷灰石裂变径迹热年代学和盆地构造变形分析,认为柴达木盆地北缘西段为受阿尔金山和南祁连山非同步或非同性质造山运动共同作用的中、新生代盆地,其阿尔金山和南祁连山有着多个造山运动旋回。多旋回的造山运动促使了多期成盆作用,基于多期原型盆地在空间上的叠加、后期构造运动对早期盆地的改造作用,在此提出了多旋回叠加改造型盆地的概念,认为:①印支期受秦岭—祁连海槽的关闭和祁连山的逆冲挤压作用,原型盆地为前陆盆地;②早燕山期受地壳均衡垂向调整作用形成局部伸展环境,形成断陷与坳陷;③晚燕山期由于新特提斯洋的打开,形成挤压作用下的坳陷型盆地;④早喜马拉雅期,在印度板块与欧亚板块碰撞作用下,阿尔金山和南祁连山复活,共同作用形成走滑—前陆型盆地;⑤晚喜马拉雅期青藏高原再次隆升和扩展,走滑—前陆型盆地进一步发展。
     5、根据柴达木盆地北缘西段中、新生代盆山关系,将盆地构造演化分为三个构造旋回,四个亚构造旋回。印支构造旋回以逆冲推覆、隆升剥蚀为主要特征;早燕山亚旋回为拉张作用,造成局部小型断陷发育;晚燕山亚旋回以差异隆升为主要特征,同时还伴有弱的逆冲作用;早喜马拉雅亚旋回为逆冲推覆、断裂褶皱和扭动构造作用:晚喜马拉雅亚旋回的构造演化方式与早喜马拉雅亚旋回相似,但构造作用更为强烈。
     6、多旋回叠加改造型盆地油气成藏与构造演化相响应,构造演化对油气成藏起着建造和改造作用。综合柴达木盆地北缘西段中、新生代构造演化与油气成藏特征,认为燕山期和早喜马拉雅期构造演化对成藏起着建造作用,晚喜马拉雅期构造作用则为建造—改造作用。燕山期的建造作用表现为促进了生烃洼陷的发育、形成了有利于油气聚集的古隆起和油气侧向运移的不整合面输导通道;早喜马拉雅期的建造作用为加速了烃源岩的热演化和生排烃作用、形成构造圈闭和断裂输导体系;晚喜马拉雅期为建造与改造并存,改造作用方式为油藏抬升和断裂活动,针对侏罗系和古近系油气藏,使其具有多期成藏,晚期调整的成藏模式,建造作用对象为新近系油气藏,构造作用促进了构造圈闭和断裂输导体系的发育,具有断裂输导,晚期成藏的成藏特征。
     7、根据构造演化和典型油气藏的解剖,认为柴达木盆地北缘西段的油气成藏受控于为有效烃源岩的分布和有效的输导体系。受地壳垂向均衡调整所控制,研究区发育多个生烃洼陷,处于生烃洼陷周缘的构造将易于捕获油气,且各洼陷烃源岩的发育规模控制着周缘油气藏规模大小,而烃源岩的成熟度则制约着油气相态的分布。研究区绝大多数油气藏与烃源岩区都具有一定的空间距离,油气都是通过烃源岩中排出沿一定的输导体系经过一定距离的运移、聚集到圈闭中而成藏,由断裂、不整合面和砂岩输导层所组成的网络状输导运移体系,对油气起着垂向和侧向运移作用,而输导体系的输导能力直接关系到油气运聚成藏。
     8、在多旋回叠加改造型盆地中,构造演化控制着盆地油气分布,而这种控制作用具体体现在对生烃洼陷分布、烃源岩热演化过程、有效封闭体系规模、输导体系形成和构造圈闭发育等方面的制约上。综合构造演化特征,认为柴达木北缘西段中、新生代多旋回叠加改造型盆地的油气分布存在三方面规律:烃源岩的分布及成烃演化控制着油气藏的分布和相态;晚燕山期古隆起和早喜马拉雅期发育的构造是深层油气运移的有利指向;深、浅层断裂共同组成的有效输导体系控制着新近系油气成藏
The basin is one of the basic structural units developed on the continental lithosphericsurface, which evolution is controlled by the earth geodynamic mechanism. Because of thetransformation of the earth's heat and tectonic system, the plate, lies on the lithosphere surface, diverged and converge time after time, and happen multistage intracontinental subduction aftercollision, then, the lithospheric movement has the characteristic of multistage and multicycle. Forthe control of multicycle crustal movement, the basin evolution underwent complicated tectonicsystem transform and showed frequent cyclicity, and the developmental environment, sedimentation mechanism and fill mode frequently changed in the cause of evolution. The basin, which have abundant hydrocarbon resources in the West China, have many original basin phasesin Mesozoic-Cenozoic, but due to multiformity, complexity and delamination of the continentalstructure, the study about tectonized mechanism, evolution and dynamic course in the process oforiginal basin's transform is beyond classical two-dimension plate tectonic theory, it need newtheory to support the research on the bases of three-dimension. Consequently, it not only hasimportant practicability to study the tectonic evolution to the multicycle superimposedreformation basin, and it is helpful to develop continental geodynarnics in the research of thetectonic system transform in the basin evolution.
     Qaidam basin lies in the northeast margin of Qinghai-Tibet Plateau, and located in theconjoint zone of Asian structural domain and Thetys-Himalayan one in the geotectonic situation, and surrounded by Altyn Mountain, Qilian Mountain and Kunlan Mountain, so its evolution hascomplicated geodynamic mechanism and reformation characteristic in Mesozoic-Cenozoic. Thewest of Northern Qaidam basin is the distributed area of Jurassic petroleum system, and hasabundant hydrocarbon resources. The basin formation processes correlates mainly with AltynMountain and Qilian Mountain in Mesozoic-Cenozoic. Because of multicycle orogenicmovement of periphery orogene, The west of Northern Qaidam basin has multiple phase basinformation and complicated tectonic evolution, and to lead the intricate tectonic reformation, control the distribution and evolvement of source rock, the form of source-reservoir-capcombination, the development and distribution of trap, hydrocarbon accumulation and reformation, and restrict the petroleum multiphase migration, accumulation, reformation andreconstruct, therefore, the distribution of oil and gas in the strata is very complicated. With thegeologic researches had been doing connected with oil exploratory, however, was restrained bythe target of the project, and there are so many cognitions need to unify and so many geologicproblems need to do further research, such as, basin formation dynamic mechanism, tectonicevolution, the distribution regularity of petroleum reservoir etc. In multicycle superimposedreformation basin, tectonic evolution is the ruling factor to control hydrocarbon accumulation, itdirectly restrict hydrocarbon generation, migration, accumulation, reconstruction andpreservation, so the research of hydrocarbon accumulation to the basin must make certain thetectonic evolution above all, and the understand to the distribution regularity of petroleumaccumulation must base on the study to structure. Aim at this main problem in the study ofhydrocarbon accumulation in the west of Northern Qaidam basin, bases on the theory of basinformation and petroleum accumulation, the paper carded the field geologic investigation, theexplanation of seismic profile, analysis of sediment provenance, ESR dating and fission trackthermchronoiogy analysis, analyzing the typical petroleum reservoir forming period and process.Throughout above analysis, this paper acquired some new achievements on basin structure, basinformation mechanism and evolution, the control about tectonic evolution to hydrocarbonaccumulation and the contribution regularity of petroleum reservoir.
     1、The west of Northern Qaidam basin could be divided three stair structural units:Saishiteng-Lvliangshan uplift, Kunsai depression and Mahal uplift, and according to deformationintensity and kinematics, ten secondary structural units are divided on the basis of stair ones. Thestudy area structure is characterized by segmentation along the strike, zonation in the dipdirection and structural layer vertically. Along the deformation direction of Southern QilianMountain, three structural zones are compartmentalized, from north toward south, thethrust-overthrust structural zone, the fault-fold structural zone and the decollement-detachmentstructural zone. The study are divided two structural segmentations fault from west from east byMaxian. According to the difference of structural deformation style, two tectonic deformationlayers can be sure vertically. On the basis of classify principle of structural style and thecharacteristic of tectonic evolution, there are five structural styles in the study area, such aspiedmont basement thrust, piedmont fault-fold, basement thrust of upper deformation layer, shearstructure and thrust-fold of lower deformation layer etc.
     2、Apatite fission track dating evidences from 21 samples, which distributed in two crosssections of NE-SW direction and SE-NW direction in the study area, shows that the sampleswhich fission track ages are older than their respective strata ages reflect the provenance ages ofthese apatite, the time of tectonothermal episodes is 52~57 Ma、106~110 Ma、133.3~161.9 Maand 205.9Ma. In the dating, the time of 208.9Ma shows the uplift of Altyn Mountain, other showthe uplift of Southern Qilian Mountain. The samples which fission track ages are younger thantheir respective strata ages shows that the maximum burial temperatures for these samplesexceeded the total annealing temperatures of the fission tracks, and reflect three tectonothermalepisodes which happened in 12Ma、50~63 Ma and 89~118Ma respectively. The dating show that there are four uplift phases which corresponding period is late Jurassic-Cretaceous,Paleocene, Oligocene and Miocene in the west of Northern Qaidam basin, but the peripheralorogen have also a uplift phase in later Triassic. Combined with the characteristic of structuralreformation, it is clear that the reformation mode is only uplift in late Jurassic- Cretaceous, upliftmainly and fault-folding weakly in Paleocene and Miocene, fault-folding consumingly inOligocene and Pliocene-Quaternary which is supported by the isotopes of O and C.
     3、The field investigation indicated that the filler in joint, fault and fracture has the fillsequence: calcite→, quartz→(gypsum, bitumen) in the west of Northern Qaidam basin, and themineral fill corresponding period is Late Jurassic-Cretaceous, Palaeocene-Oligocene andPliocene which indicates multiple phase tectonic movement. There are the angle disconformitybetween Eogene and Upper Jurassic, nonangular unconformity between Eogene and Cretaceous,and between Cretaceous and Jurassic in the study area, then, the formation relation reflect that thecharacteristic of tectonic evolution is differential uplift in Late Jurassic-Cretaceous. The analysisquartz c-axis fabricshow show Jurassic-Cretaceous is the tectonic violence activity period, andtectonic deformation endurance long-lasting period, Cretaceous-Eogene tectonic activitybecome reducible, and Oligocene violence activity again, Miocene reducible.
     4、Based on the comprehensive research of palaeocurrent and heavy mineral, and combineapatite fission track dating and basin tectonic deformation analysis, we consider the west ofNorthern Qaidam basin is a Mesozoic-Cenozoic basin which is controlled by the conjunctaction of Altyn Mountain and Qilian Mountain which underwent several multicycle orogeny.Multicyclic orogeny led to multiphase basin formation, consequently, based on multiphaseoriginal basin superimposition in space and later stage tectonic activity to early original basin,the concept of multicycle superimposed reformation basin is proposed, consider that:①becauseof the close of Qinling-Qilian ocean trough and the thrust of Qilian Mountain, the original basinis foreland basin in Indo-Chinese epoch;②Early Yanshan epoch, controlled by vertical balancedadjust of crust, the fault depression and depression form in local extendible environment;③Dueto the new Tethyan's open in Late Yanshan epoch, the feeble compressional environment form,the original basin is depression;④Early Himalayan epoch, owing to the collision between Indiablock and Eurasia block, Altyn Mountain and Southern Qilian Mountain revive, Joint actionleads to strike slip-foreland basin formation.⑤Tibet highland epoch uplift and expand again,strike slip-foreland basin further forms in Late Himalayan.
     5、According to Mesozoic-Cenozoic basin-mountain system in the west of Northern Qaidambasin, the tectonic evolution could be divided into three cycle, four subcycle. Indosinian cycle ischaracterized by thrust-overthrusting and uplifting-erosion. Early Yanshanian subcycle representextension tectonics and develops miniature fault depression. Late Yanshanian subcycle ischaracterized by differential uplifting attend by mildly thrusting. Early Himalayan subcyclemainly take place thrust-overthrusting, fault-folding and strike-sliding. The tectonic evolutioncharacter of Late Himalayan subcycle is the same as Early Himalayan, but become stronger.
     6、In multicycle superimposed reformation basin, hydrocarbon accumulation responds totectonic evolution, the latter play the role of building and reconstructing for reservoirs. According to the analysis of tectonic evolution and hydrocarbon accumulation in the west of NorthernQaidam basin, The author consider that the tectonic evolution effect constructively on reservoirformation in Yanshan epoch and early Himalayan epoch, and acting as construct-reconstructingin late Himalayan epoch. The constructing of Yanshan epoch behaves as promoting the formationof hydrocarbon-generation sag, coming into being paleo-uplift which is propitious tohydrocarbon accumulating, and making for unconformity transporting pathway for petroleumlateral migration. The constructing of Himalayan represent as accelerating hydrothermalevolution of source rock and generation-expulsion of hydrocarbon, forming structural trap andfault transporting pathway. Construction and reconstruction take place synchronously in LateHimalayan. The reconstructing is characteristic of reservoir uplifting and faulting. As to Jurassicand Paleogene hydrocarbon accumulation, it shows that multi-stage formation and late-stageadjustment for hydrocarbon accumulation. The constructing act on Neogene hydrocarbonaccumulation figure as promoting the formation of structural trap and fault transportingpathway, and characterize by fault transporting and late-stage accumulation of hydrocarbon.
     7、Based on the evolution of tectonic and analysis of typical reservoirs, consider that thereservoirs are controlled by distribution of effective hydrocarbon source rock and effectivesystems of transmission in the west of Northren Qaidam basin. It is controlled by verticalbalanced adjust of crust, there are several hydrocarbon generating depressions in the region ofstudy, then, the trap may apt to capture hydrocarbon in margin of hydrocarbon generatingdepression, and the scale of hydrocarbon source rock controls the scale of surrounding reservoirs,at the same time, the maturity of hydrocarbon source rock control the distribution of phase ofhydrocarbon. In study area, there is always definite distance between reservoir and hydrocarbonsource region, so the petroleum blow off from hydrocarbon source rock, migrate through somesystems of transmission and accumulate in traps to form reservoirs. The net systems oftransmission which compose of faults, unconformity and transmission layer of sandstone play asignificant role to vertical and lateral migration of petroleum. The transmission capability ofsystems of transmission restrict the migration, accumulation, and forming reservoirs directly.
     8、In multicycle superimposed reformation basin, the tectonic evolution controls thedistribution of hydrocarbon, and the controlling is embodied as restraint to the distribution ofhydrocarbon generating depression, the thermal evolution of source rock, the scale of effectivesealed systems, the formation of transmission systems, and the development of structural traps.Combined tectonic evolution, consider that the distribution of hydrocarbon has three regularpattern in the west of Northern Qaidam basin: the distribution of source rock and the hydrocarbongenerating evolution control the distribution and phase of reservoirs, palaeohigh of later Yanshanperiod and the structure which developed in Himalayan period are the region to which deeppetroleum apt to migrate, the effective systems of transmission which compose of deep andshallow faults control the formation of reservoirs in Neogene.
引文
[1] 刘和甫.盆地演化与地球动力学旋回[J].地学前缘,1997,4(3~4):233-239.
    [2] 朱夏.活动论构造历史观[J].石油实验地质,1991,13(3):201-209.
    [3] 王鸿祯.地球的节律与大陆动力学的思考[J].地学前缘,1997,4(3~4):1-10.
    [4] 翟光明,宋建国,靳久强,等.板块构造演化与含油气盆地形成和评价[M].北京:石油工业出版社,2002:1-467.
    [5] M.Bulnes, K. R.McClay. Structural analysis and kinematic evolution of the inverted central South Celtic Sea Basin[J]. Marine and Petroleum Geology. 1998, 15:667-687.
    [6] M. Sepehr, J.W. Cosgrove. Structural framework of the Zagros Fold-Thrust Belt, Iran[J]. Marine and Petroleum Geoiogy, 2004, 21: 829-843.
    [7] Wilber Hermoza, Stephane Brusset, Patrice Baby, et al.Tbe Huallaga foreland basin evolution: Thrust propagation in a deltaic environment, northern Peruvian Andes[J]. Journal of South American Earth Sciences, 2005, 19: 21-34.
    [8] M. Taflraflpoancafl, D. Garcia-Castellanos, G. Benotti, et al. Role of the 3-D distributions of load and lithospheric strength in orogenic arcs: polystage subsidence in the Carpathians foredeep[J]. Earth and Planetary Science Letters, 2004, 221:163-180.
    [9] Peter A.Ziegler, Sierd Cloetingh, Jan Diederik. Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples[J]. Tectonophysics, 1995, 252:7-59.
    [10] Fabiano Gamberi, Andrea Argnani. Basin formation and inversion tectonics on top of Egadi foreland thrust belt (NW Strait of Sicily)[J]. Tectonophysics, 1995, 252:285-294.
    [11] Franz Nemes, Franz Neubauer, Sierd Cloetingh, et al. The Klagenfurt Basin in the Eastern Alps: an intra-orogenic decoupled flexurai basin?[J]. Tectonophysics, 1997, 282:189-203.
    [12] 金之钧,张明利,汤良杰,等.柴达木中新生代盆地演化及其控油气作用[J].石油与天然气地质,2004,25(6):603-608.
    [13] 何登发,贾承造,李德生,等.塔里木多旋回叠合盆地的形成与演化[J].石油与天然气地质,2005,26(1):64-77.
    [14] 张朝军,何登发,吴晓智,等.准噶尔多旋回叠合盆地的形成与演化[J].中国石油勘探,2006,1:47-58.
    [15] 杨华,席胜利,魏新善,等.鄂尔多斯多旋回叠合盆地演化与天然气富集[J].中国石油勘探,2006,1:17-24.
    [16] 吴冲龙,杜远生,梅廉夫,等.中国南方印支—燕山期复合盆山体系与盆地原型改造[J].石油与天然气地质,2006,27(3):305-315.
    [17] 赵文智,张光亚,何海清,等.中国海相石油地质与叠合含油气盆地[M].北京:地质出版社,2002:45-61.
    [18] 靳久强,宋建国.中国板块构造对油气盆地演化和油气分布特征的控制[J].石油与天然气地质, 2005,26(1):2-8
    [19] 王金琪.小陆拼接、多旋回、陆内构造——中国大陆石油地质三根基柱[J].成都理工学院学报,1998,25(2):182-190.
    [20] 张义勋.黄汲清著作选集(第三卷):地质学及大地构造学[C].北京:地质出版社,1992.
    [21] 金之钧.中国典型叠合盆地油气成藏研究新进展(之二)——以塔里木盆地为例[J].石油与天然气地质,2006,27(3):281-289.
    [22] 汤良杰,金之钧,贾承造,等.叠合盆地构造解析几点思考[J].石油实验地质,2001,23(3):251-255.
    [23] 韩保清,罗群,黄捍东,等.叠合盆地及其基本地质特征[J].石油天然气学报,2006,28(4):12-15.
    [24] 刘光鼎.试论残留盆地[J].勘探家,1997,2(3):1-4.
    [25] 刘池阳.后期改造强烈—中国沉积盆地的重要特点之一[J].石油与天然气地质,1996,17(4):255-261.
    [26] 贾承造,魏国齐.塔里木盆地古生界古隆起和中、新生界前陆逆冲带构造及其控油意义[A].童晓光,梁狄刚,贾承造.塔里木盆地石油地质研究新进展[C].北京:科学出版社,1996,225-234.
    [27] 袁剑英,周炎如,李相博,等.残余盆地构造分析与油气地质评价[J].石油与天然气地质,2000,21 (1):15-18.
    [28] 何登发,贾承造,童晓光,等.叠合盆地概念辨析[J].石油勘探与开发,2004,31(1):1-7.
    [29] 金振民,姚玉鹏.超越板块构造——我国构造地质学要做些什么?[J].地球科学,2004.29(6):644-650.
    [30] 郭安林,张国伟,程顺有.超越板块构造——大陆地质研究新机遇评述[J].自然科学进展,2004,14 (7):729-733.
    [31] Wang Zuoxun. A Meso-Cenozoic continental kinematic model and newconcept of continental dynamic mechanism[J]. Journal of Southeast Asian Earth Sciences, 1996, 13(3-5): 287-298.
    [32] J. Plomerova, L. Margheriti, J. Park, et al. Seismic anisotropy beneath the Northern Apennines (Italy): Mantle flow or lithosphere fabric?[J]. Earth and Planetary Science Letters, 2006, 247: 157-170.
    [33] 王良书,刘绍文,李成,等.岩石圈热——流变结构与大陆动力学[J].地球科学进展,2004,19(3):382-386.
    [34] 王岳军,张琴华.中国大陆动力学研究进展[J].地质科技情报,1995,12(2):7-11.
    [35] Bally A W, Snelson S. Realms of subsidence [A]. In: Miall A D, ed. Facts and princiles of world petroleum occurrence [C]. Canadian Society of Petroleum Geological Memoir, 1980, 6: 9-94.
    [36] N. De Paola, R. E. Holdsworth, K. J. W. McCaffrey, et al. Partitioned transtension: an alternative to basin inversion models[J]. Journal of Structural Geology, 2006, 28: 1-19.
    [37] P. G. ERIKSSON, FL VAN DER MERWE, A. J. BUMBY. The Palaeoproterozoic Woodlands Formation of eastern Botswana-northwestern South Africa: lithostratigraphy and relationship with Transvaal Basin inversion structures[J]. Journal of African Earth Sciences, 1998, 27(3): 349-358.
    [38] Donna L. Cathro, Garry D. Kamer. Cretaceous-Tertiary inversion history of the Dampier Sub-basin, northwest Australia: Insights from quantitative basin modeling[J]. Marine and Petroleum Geology, 2006, 23: 503-526.
    [39] 徐政语,姚根顺,林舸,等.江汉叠合盆地及邻区中生代以来盆山耦合数值模拟研究[J].大地构造与成矿学,2006,30(3):305-311.
    [40] 赵宗举,朱琰,杨树峰,等.残留盆地油气系统研究方法——以中国南方中、古生界海相地层为例[J].地质学报,2002,76(1):124-137.
    [41] 金之钧,王清晨.中国典型叠合盆地与油气成藏研究新进展——以塔里木盆地为例[J].中国科学(D辑),2004,34(增刊1):1-12.
    [42] 刘树根,罗志立,赵锡奎,等.中国西部盆山耦合关系及其动力学模式——以龙门山造山带—川西前陆盆地系统为例.地质学报,2003,77(2):177-185.
    [43] 吴根耀,马力.“盆”“山”耦合和脱耦:含油气盆地研究新思路[A].中国石油学会石油地质专业委员会编.油气盆地研究新进展第一辑[C].北京,石油工业出版社,2000:20-36.
    [44] N. Carrera, J.A. Munoz, F. Sabat, et ai. The role of inversion tectonics in the structure of the Cordillera Oriental (NW Argentinean Andes)[J]. Journal of Structural Geology, 2006, 28: 1-12.
    [45] 刘天绩,徐风银,陈世悦,等.柴达木盆地东部“走廊域”中新生代构造特征及构造演化[J].西安科技大学学报,2005,25(3):311-316.
    [46] Andres Maldonado, Luis Somoz, Lorenzo Pallares. The Betic orogen and the Iberian-African boundary in the GulfofCadiz: geological evolution (central North Atlantic)[J]. Marine Geology, 1999, 155: 9-43.
    [47] RolfMeissner, Hans Thybo, Tanni Abramovitz, et al.Interwedging and inversion structures around the trans-European suture zone in the Baltic Sea, a manifestation of compressive tectonic phases[J]. Tectonophysics, 2002, 360:265-280.
    [48] 张一伟.波动地质学在黄骅坳陷演化分析中的应用:再论地壳波状运动[J].石油学报,1996,15(增刊):19-26.
    [49] Beydoun Z R, Hughes M W, Stoneley R. Petroleum in the Zagros Basin: a late Tertiary foreland basin overprinted onto the outer edge of the vast hydrocarbon-rich Paleozoic-Mesozoic passive margin shelf[A]. In: Macqueen R W, Lecike D A, ed. Foreland Basin and Fold Belts[C], AAPG Memoir 55. Tulsa: American Association of Petroleum Geologists. 1992: 309-399.
    [50] Summa L L, Goodman E D, Richardson M, et al. Hydrocarbon systems of Northeastern Venezuela: platethrough molecular scale-analysis of the genesis and evolution of the Eastern Venezuela Basin[J]. Marine and Petroleum Geology, 2003, 20: 323—349.
    [51] 符晓.川西三套成藏系统及勘探研究[J].西南石油学院学报,2004,26(6):13-16.
    [52] 何治亮,毛洪斌,周晓芬,等.塔里木多旋回盆地与复式油气系统[J].石油与天然气地质.2000,21(3):207-213.
    [53] 袁彩萍,徐思煌,梅廉夫,等.中国南方海相地层油气成藏要素的层次性分析[J].石油天然气学报,2005,27(2):137-141.
    [54] 赵文智,王兆云,何海清,等.中国海相碳酸盐岩烃源岩成气机理[J].中国科学(D辑),2005.35(7):638-648.
    [55] H. J. SCHENK, R. DI PRIMIO, B. HORSFIELD. The conversion ofoil into gas in petroleum reservoirs. Part 1: Comparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis[J].Org. Geochem, 1997, 26 (7): 467-481.
    [56] 赵文智,王兆云,张水昌,等.有机质“接力成气”模式的提出及其在勘探中的意义[J].石油勘探与开发,2005,32(2):1-7.
    [57] 赵文智,王兆云,张水昌,等.油裂解生气是海相气源灶高效成气的重要途径[J].科学通报,2006, 51(5):589-595.
    [58] 马永生,郭旭升,郭彤楼,等.四川盆地普光大型气田的发现与勘探启示[J].地质论评,2005,51(4):477-480.
    [59] 邱蕴玉,徐濂,黄华梁.威远气田成藏模式初探[J].天然气工业,1994,14(1):9~13.
    [60] 陈增智,郝石生.再埋藏过程中二次生烃作用数值模拟[J].石油勘探与开发,1998,25(3):86-90.
    [61] 陈安定,王文军,岳克功,等.盐城朱家墩气田气源及发现意义[J].石油勘探与开发,2001,28(6):45-51.
    [62] 解启来,周中毅,施继锡,等.塔里木盆地塔中地区下古生界二次生烃的类型及其特征[J].地质论评,2004,50(4):377-383.
    [63] 郭旭升,梅廉夫,汤济广,等.扬子地块中—新生代构造演化对海相油气成藏的制约[J].石油与天然气地质,2006,27(3):137-141.
    [64] 吕修祥,张一伟,金之钧.塔里木盆地成藏旋回初论[J].科学通报,1996,41(22):2064-2066.
    [65] 何登发,赵文智,雷振宇,登.中国叠合型盆地复合含油气系统的基本特征[J].地学前缘,2000,7(3):23-37.
    [66] Zoback M. D, Stephenson R.A, Cloetingh S, et al. Stresses in the lithosphere and sedimentary basin formation. Tectonophysics, 1993, 226:1-13.
    [67] Vilotte J.P., Melosh J, Sassi W, et al. Lithosphe rerheology and sedimentary basins. Tectonophysics, 1993, 226: 89-95.
    [68] Cloetingh S, Fernandez M, Munoz J A, et al. Structural control on sedimentary basin evolution: introduction. Tectonophysics, 1997, 282:10-18.
    [69] Jianxun Zhou, Fengyin Xu, Tiecheng Wang, et al. Cenozoic deformation history of the Qaidam Basin, NW China: Results from cross-section restoration and implications for Qinghai-Tibet Plateau tectonics[J]. Earth and Planetary Science Letters, 2006, 243:195-210.
    [70] M. Jiang, A. Galve, A. Him, et al. Crustal thickening and variations in architecture from the Qaidam basin to the Qang Tang (North-Central Tibetan Plateau) from wide-angle reflection seismology[J]. Tectonophysics, 2006, 412: 121-140.
    [71] Zhiming Sun, Zhenyu Yang, Junling Pei, et al. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: Implications for tectonic uplift and block rotation in northern Tibetan plateau[J]. Earth and Planetary Science Letters, 2005, 237: 635-646.
    [72] Wangping Chen, Chuyung Chen, John L. Nabelek. Present-day deformation of the Qaidam basin with implications for intra-continental tectonics[J]. Tectonophysics, 1999, 305: 165-181.
    [73] Lidong Zhu, Chengshan Wang, Hongbo Zheng, et al. Tectonic and sedimentary evolution of basins in the northeast of Qinghai-Tibet Plateau and their implication for the northward growth of the Plateau[J]. Palaeogeography, Palaeoclirnatology, Palaeoeeology, 2006, 241: 49-60.
    [74] F. Metivier, Y. Gaudemer, P. Tapponnier, et al. Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas: the Qaidam and Hexi Corridor basins, China[J]. Tectonics, 1998, 17: 823-842.
    [75] 姜枚,许志琴,钱荣毅,等.从德令哈地震分析青藏高原北缘东段的深部构造活动[J].中国地质,2006,33(2):268-274.
    [76] 朱筱敏,康安,韩德馨,等.柴达木盆地第四纪环境演变、构造变形与青藏高原隆升的关系[J].地 质科学,2003,38(3):367-376.
    [77] 汤良杰,金之钧,戴俊生,等.柴达木盆地及相邻造山带区域断裂系统[J].地球科学——中国地质大学学报,2002,27(6):676-682.
    [78] 刘和甫,李晓清,刘立群。等.走滑构造体系盆山耦合与区带分析[J].现代地质,2004,18(2):139-150.
    [79] 许志琴,曾令森,杨经绥,等.走滑断裂、“挤压性盆-山构造”与油气资源关系的探讨[J].地球科学——中国地质大学学报,2004,29(6):631-643.
    [80] 张敏,尹成明,陈琰.柴达木盆地北缘含油气系统与油气勘探方向[J].沉积学报,2005,23(1):143-149.
    [81] 王玉华,候启军,孙德君,等.柴达木盆地北缘地区中新生代地层油气生成与资源评价[M].北京:科学出版社,2004:1-433.
    [82] 胡勇,刘平,曹海防.柴北缘侏罗系烃源岩地球化学特征及其综合评价[J].大地构造与成矿学,2004,28(4):464-469.
    [83] 谢庆宾,管守锐.柴达木盆地北缘侏罗系沉积相类型及储集层评价[J].石油勘探与开发,2000,27(2):40-46.
    [84] 高云峰,彭苏萍,何宏,等.柴达木盆地北缘第三系碎屑岩储集层特征及评价[J].石油勘探与开发,2003,30(4):40-42.
    [85] 姜正龙,孙德君,秦建中,等.柴达木盆地北缘下侏罗统含油气系统研究[J].石油勘探与开发,2001,28(6):9-13.
    [86] 王永卓,孙德君,徐景祯.柴达木盆地北缘地区含油气系统划分与成藏历史分析[J].石油学报,2003,24(5):21-25.
    [87] 胡受权,郭文平,曹运江,等.柴达木盆地北缘构造格局及在中、新生代的演化[J].新疆石油地质,2001,22(1):13-18.
    [88] 刘志宏,杨建国,万传彪,等.柴达木盆地北缘地区中生代盆地性质探讨[J].石油与天然气地质,2004,25(6):620-624.
    [89] 刘志宏,万传彪,杨建国,等.柴达木盆地北缘地区新生代构造特征及变形规律[J].地质科学,2005,40(3):404-414.
    [90] 李明杰,郑孟林,曹春潮,等.柴达木古近纪—新近纪盆地的形成演化[J].西北大学学报(自然科学版),2005,35(1):87-90.
    [91] 郑孟林,李明杰.曹春潮,等.柴达木北缘西段侏罗纪盆地构造特征及其演化[J].石油实验地质,2004,26(4):315-319.
    [92] 汤良杰,金之钧,张明利,等.柴达木盆地北缘构造演化与油气成藏阶段[J].石油勘探与开发,2000,27(2):36-42.
    [93] Wenchen Xia, Ning Zhang, Xiaoping Yuan, et al. Cenozoic Qaidam basin, China: A stronger tectonic inversed, extensional rifled basin[J]. AAPG Bulletin, 2001, 85 (4): 715-736.
    [94] 夏文臣,张宁,袁晓萍,等.柴达木侏罗系的构造层序及前陆盆地演化[J].石油与天然气地质,1998,19(3):173-181.
    [95] 曹国强,陈世悦,徐凤银,等.柴达木盆地西部中—新生代沉积构造演化[J].中国地质,2005,32(1):33-40.
    [96] 周建勋,徐风银,胡勇.柴达木盆地北缘中—新生代构造变形及其对油气成藏的控制[J].石油学报, 2003,24(1):19-24.
    [97] 党玉琪,胡勇,余辉龙,等.柴达木盆地北缘石油地质[M].北京:地质出版社,2003,1-22.
    [98] 魏国齐,李本亮,肖安成,等.柴达木盆地北缘走滑-冲断构造特征及其油气勘探思路[J].地学前缘,2005,12(4):397-402.
    [99] 王步清,肖安成,程晓敢,等.柴达木盆地北缘新生代右行走滑冲断构造带的几何学和运动学[J].浙江大学学报(理学版),2005,32(2):225-230.
    [100] 姜振学,庞雄奇,罗群,等.柴北缘西部油气成藏的主控因素[J].石油与天然气地质,2004,25(6):692-695.
    [101] 雷茂盛.柴达木盆地北缘地区油气运聚特征[J].大庆石油地质与开发,2004,23(1):4-7.
    [102] 高先志,陈发景.柴达木盆地北缘西段油气成藏机理研究[J].地球科学——中国地质大学学报,2002,27(6):757-762.
    [103] Li Fengjun, Luo Qun, Chen Shulan, et al. Discussion of the Mode and Mechanism of Oil and Gas Accumulation in the Nanbaxian Pool in the North of the Qaidam Basin[J]. Petroleum Science, 2005,
    [104] 高先志,马达德,刘震,等.柴达木盆地北缘油气成藏特点[J].石油与天然气地质,2004,25(6):707-712.
    [105] 陈蟒蛟,白淑艳.柴达木盆地北缘油气藏类型、特征及其控制因素探讨[J].江汉石油学院学报,2002,24(2):8-12.
    [106] 马金龙,李凤君,陈淑兰.柴达木盆地北缘地区油气聚集规律[J].大庆石油学院学报,2004,28(4):3-6.
    [107] 薛光华,杨永泰.柴达木盆地北缘油气分布规律研究[J].石油实验地质,2002,24(2):141-146.
    [108] 李春昱,王荃,刘雪亚,等.亚洲大地构造图说明书[M].北京:地图出版社,1982.
    [109] 黄汲清,任纪舜,姜春发,等.中国大地构造及其演化[M].北京:科学出版社,1980.
    [110] 张文佑.中国及邻区海陆大地构造[M1.北京:科学出版社,1986.
    [111] 王云山,陈基娘.青海省及毗邻地区变质地带与变质作用[M].北京:地质出版社,1987.
    [112] 王泽利.柴达木盆地及其邻区大地构造格局与演化[D].博士论文,吉林大学,2000:31-36.
    [113] 赵文智,靳久强,薛良清,等.中国西北地区侏罗纪原型盆地形成与演化[M].北京:地质出版社,2000.
    [114] 崔军文,唐哲民,邓晋福,等.阿尔金断裂系[M].北京:地质出版社,1999.
    [115] 王小凤,陈宣华,陈正乐,等.阿尔金地区成矿地质条件与远景预测[M].北京:地质出版社.2004.
    [116] 葛肖虹,张梅生,刘永江,等.阿尔金断裂研究的科学问题与研究思路[J].现代地质,1998,12(3):295-301.
    [117] 杨藩,叶素娟,曹春潮,等.新生代阿尔金断层中、东段右行走滑特征[J].地质科学,1994,29(4):346-353.
    [118] 柳祖汉,吴根耀,杨孟达,等.柴达木盆地西部新生代沉积特征及其对阿尔金断裂走滑活动的响应[J].地质科学,2006,41(2):344-354.
    [119] 张岳桥,陈正乐,杨农.阿尔金断裂晚新生代左旋走滑位错的地质新证据[J].现代地质,2001,15(1):8-12.
    [120] 熊熊,王继业,滕吉文.阿尔金断裂不同时间尺度下的滑移速率及构造意义[J].地质科技情报,2006,25(3):21-28.
    [121] 刘永江,葛肖虹,叶慧文,等.晚中生代以来阿尔金断裂的走滑模式[J].地球学报,2001,22(1):23-28.
    [122] 周勇,潘裕生.茫崖—肃北段阿尔金断裂右旋走滑运动的确定[J].地质科学,1998,33(1):9-15.
    [123] 车自成,刘良,刘洪福.等.阿尔金断裂系的组成及相关中新生代含油气盆地的成因特征[J].中国区域地质,1998,17(4):377-384.
    [124] 周勇,潘裕生.阿尔金断裂早期走滑运动方向及其活动时间探讨[J].地质论评,1999,45(1):1-9.
    [125] Sobel E R, Arnaud N. A possible middle Paleozoic suture in the Altyn Tagh, NW China[J]. Tectonics, 1999, 18(1): 64-74.
    [126] 刘永江,葛肖虹,叶慧文,等.阿尔金断裂变形岩激光微区~(40)Ar/~(39)Ar年龄及其构造意义[J].科学通报,2000.45(19):2101-2104.
    [127] 李海兵,杨经绥,吴才来,等.阿尔金断裂剪切过程中定向生长锆石的发现及其意义[J].地质通报,2002,21(6):298-303.
    [128] 郭召杰,张志诚,王建君.索尔库里盆地的形成、演化及其与阿尔金断裂的关系研究[J].高校地质学报,1998,4(1):59-63.
    [129] Meng Q R, Hu J M, Yang F Z. Timing and magnitude of displacement on the Altyn Tagh fault: constraints from stratigraphic correlation of adjoining Tarim and Qaidam basins, NW China[J]. Terra Nova, 2001, 13: 86-91.
    [130] Wang X M, Wang B Y, Qiu ZX, et al. Danghe area (western Gansu, China) biostratigraphy and implications for depositional history and tectonics of northern Tibetan Plateau[J]. Earth and Planetary Science Letters, 2003, 208 (3-4): 253-269.
    [131] 赖绍聪,邓晋福,杨建军,等.柴达木北缘大型韧性剪切带构造特征[J].河北地质学院学报,1993,16 (6):578-586.
    [132] 周炎如,李相博,袁剑英.祁连-柴达木构造域盆地-造山带耦合构造体系[J].新疆石油地质,2000,21(5):387-390.
    [133] 王燮培,费琪,张家骅.石油勘探构造分析[M].武汉:中国地质大学出版社,1992.
    [134] 何登发,赵文智.中国西北地区沉积盆地动力学演化与含油气系统旋回[M].北京:石油工业出版社,1999,140-152.
    [135] 杨坤光,梁兴中,谢建磊,等.ESR定年:一种确定脆性断层活动年龄的方法原理与应用[J].地球科学进展,2006,21(4):430-435。
    [136] 张敏,蔡春芳,张俊.油气藏中沥青垫的研究进展[J].地质科技情报,1997,16(1):81-84.
    [137] 刘洛夫,赵建章,张水昌,等.塔里木盆地志留系沥青砂岩的成因类型及特征[J].石油学报,2000,21(6):12-17.
    [138] 范铭涛,杨智明,田宝忠,等.青西油田稠油及沥青成因探讨[J].石油勘探与开发,2004,31(1):40-41.
    [139] 王建宝,肖贤明,郭汝泰.四川盆地早古生代地层中沥青的成因及其生气潜力研究[J].天然气工业,2003,23(5):127-129.
    [140] 丰国秀,陈盛吉.岩石中沥青反射率与镜质体反射率之间的关系[J].天然气工业,1988,8(3):20-25.
    [141] 郑伯让,金淑燕.构造岩组学[M].武汉:中国地质大学出版社,1989.
    [142] 杨坤光,姚淑梅,马昌前.大别地区花岗岩体石英c轴组构分析及其意义[J].地质科技情报,1999,18(1):29-31.
    [143] 许志琴,杨经绥,吴才来,等.柴达木北缘超高压变质带形成与折返的时限及机制[J].地质学报,2003,77(2):163-176.
    [144] Kohn B. P, Green P. F. Low temperature thermo-chronology: from tectonics to landscape evolution[J]. Tectonophysics, 2002, 349 (1-4): 1-4.
    [145] Fieiseher P. L, Price P. B. Techniques for geological dating of minerals by chemical etching of fission fragment tracks[J]. Geochimica et Cosmochimica Acta, 1964, 28(4): 1705-1714.
    [146] Fleischer P. L, Price P. B and Walker, R. M. Nuclear tracks in solid[M]. U. S, Berkeley, University of California Press. 1975: 133.
    [147] 沈传波,梅廉夫,凡元芳,等.磷灰石裂变径迹热年代学研究的进展与展望[J].地质科技情报,2005,24(2):57-63.
    [148] Carlson W D. Mechanisms and kinetics of apatite fission-track annealing [J]. American Mineralogist, 1990, 75(8): 1120-1139.
    [149] Gleadow A. J. W, Duddy I. R. Green, P. F. Confined track lengths in apatite -A diagnostic tool for thermal history analysis [J]. Contributions to Mineralogy and Petrology, 1986 94(1): 405-415.
    [150] 周祖翼,廖宗廷,杨凤丽,等.裂变径迹分析及其在沉积盆地研究中的应用[J].石油实验地质,2001,23(3):332-337.
    [151] 周祖翼,毛凤鸣,廖宗廷,等.裂变径迹年龄多成分分离技术及其在沉积盆地物源分析中的应用[J].沉积学报,2001,19(3):455-458.
    [152] 吴堑虹.裂变径迹法在大地构造学中的一些应用[J].地质地球化学,2001,29(1):83-89.
    [153] Grist A M, Zentilli M. Post-Paleocene cooling in the southern Canadian Atlantic region: Evidence from apatite fission track models [J]. Canadian Journal of Earth Sciences, 2003, 40(9): 1279-1297.
    [154] Fugenschuh B, Schmid S.M, Late stages of deformation and exhumation of an orogen constrained by fission-track data: A case study in the Western Alps [J]. Bulletin of the Geological Society of America, 2003, 115(11): 1425-1440.
    [155] Foeken J. P. T, Duna, T. J, Benotti G etal. Late Miocene to present exhumation in the Ligurian Alpwith evidence for accelerated denudation during the Messinian salinity crisis [J]. Geology, 2003, 31 (9): 797-800
    [156] Bruijne C. H, Andriessen P. A. M. Far field effects of Alpine plate tectonism in the Iberian microplate recorded by fault-related denudation in the Spanish Central System[J]. Tectonophysics, 2002, 349(1-4): 161-184.
    [157] Blythe A. E., Burgmann R. No frictional heat along the San Gabriel fault, California: Evidence from fission-track thermochronology [J]. Geology, 2003, 31 (6): 541-544.
    [158] Gleadow A J, Kohn B P, Brown R W et al. Contrasting regional denudation patterns in southeastern Australia from apatite fission track imaging [J]. Geochimica et Cosmochimica Acta, 2002, 66(1):278-278.
    [159] Gleadow A J W, Kohn B P, Brown R W et al. Fission track thermotectonic imaging of the Australian continent [J]. Tectonophysics, 2002, 349(1-4): 5-21.
    [160] RaveRhurst C E, Reynolds P H. Formation of Carboniferous Pb-Zn and Brite mineralization from Bsin-drived fluids NovaScotia, Canada [J]. Economic Geology, 1989, 84(6): 1471-1488.
    [161] Chakurian A.M, Arehart G. B. Donelick R. A. et al. Timing constraints of gold mineralization along the Carlin trend utilizing apatite fission-track, ~(40)Ar/~(39)Ar and apatite (U-Th)/He methods [J]. Economic Geology, 2003, 98(6): 1159-1171.
    [162] 郑德文,张培震,万景林.碎屑颗粒热年代学——一种揭示盆山耦合过程的年代学方法[J].地震地质,2000,22(增刊):25-36.
    [163] Sobel E. R., Domitru T. A. Thrusting and exhumation around the margins of western Tarim basin during the India-Asia collision [J]. Geophysics Res. 1997, 102(B3): 5043-5063.
    [164] Naeser C. W. Fission track dating and geological annealing of fission tracks[A], in Lectures in Isotope Geology [C], edited by Jager E and Hanziker J C, Spring-Verlag, New York, 1979, 154-169.
    [165] Gleadow A. J. W, Duddy I. R. Green, P. F. Confined track lengths in apatite -A diagnostic tool for thermal history analysis [J]. Contributions to Mineralogy and Petrology, 1986 94(1): 405-415.
    [166] 陈安定,万景林,郭彤楼.裂变径迹研究构造抬升应用实例[J].石油学报,2004,25(4):29-32.
    [167] Dodson, M. H. Closure temperature in cooling geochronological and petrological system [J]. Contributions to Mineralogy and Petrology, 1973, 40: 259-279.
    [168] 王非,罗清华,李齐,等.柴达木盆地北缘30Ma左右的去顶剥蚀作用[J].矿物岩石地球化学通报,2001,20(4):228-230.
    [169] 陈正乐,王小凤,冯夏红,等.青藏高原北缘山脉隆升时限的同位素证据[J].吉林大学学报(地球科学版),2003,33(3):270-275.
    [170] 宋春晖,方小敏,李吉均,等.青藏高原北缘酒西盆地13Ma以来沉积演化与构造隆升[J].中国科学(D),2001,31(增刊):155-162.
    [171] 李勇,王成善,曾允孚.造山作用与沉积响应[J].矿物岩石,2000,20(2):49-56.
    [172] Rumelhart P E, Yin A, Cowgill E, et al. Cenozoic vertical-axis rotation of the Altyn Tagh fault system[J]. Geology, 1999, 27(9): 819-822.
    [173] Sobel E R, Arnaud N, Jolivet M, et al. Jurassic to Cenozoic exhumation history of the Altyn Tagh range, NW China constrained by ~(40)Ar/~(39)Ar and apatite fission track thermochronology[A]. In: Hendrix M S and Davis G A editors, Paleozoic and Mesozoic tectonic evolution of central Asia: from continental assembly to intracontinental deformation [C], Geology Society American Memoir, 2001, 194: 247-267.
    [174] 刘和甫,李晓清,刘立群,等.盆山耦合与前陆盆地成藏区带分析[J].现代地质,2004,18(4):389-403.
    [175] 青藏油气区石油地质志编写组.中国石油地质志(十四卷):青藏油气区[M].北京:石油工业出版社,1990.
    [176] 张志诚,郭召杰,韩作振.敦煌盆地中侏罗世火山岩的地球化学特征及其地质意义[J].北京大学学报(自然科学版),1998,34(1):72-78.
    [177] 张培震,郑德文,尹功明,等.有关青藏高原东北缘晚新生代扩展与隆升的讨论[J].第四纪研究,2006,26(1):5-13.
    [178] 葛肖虹,任收麦,马立祥,等.青藏高原多期次隆升的环境效应[J].地学前缘,2006,13(6):118-130.
    [179] Xiong-Qi Pang, Yu-Xi Li, Zhen-Xue Jiang. Key geological controls on migration and accumulation for hydrocarbons derived from mature source rocks in Qaidam Basin[J]. Journal of Petroleum Science and Engineering, 2004, 41: 79-95.
    [180] 高长海,查明,吴孔友.柴达木盆地北缘冷湖—南八仙构造带异常高压特征[J].新疆石油地质,2005,26(4):367-369.
    [181] 张文淮,陈紫英.流体包裹体地质学[M].武汉:中国地质大学出版社,1993.
    [182] 张金亮.利用流体包裹体研究油藏注入史[J].西安石油学院学报,1998,13(4):1-4.
    [183] Goldstein R H, Reynolds T J. Systematics of fluid inclusions in diagenetic minerals[A]. SEPM Short Course 31. Tulsa: SEPM[C], 1994.
    [184] 张有瑜,罗修泉.油气储层自生伊利石K-Ar同位素年代学研究现状与展望[J].石油天然气地质, 2004,25(Z):231-236.
    [185] 白国平.伊利石K-Ar测年在确定油气成藏期中的应用[J].石油大学学报,2000,24(4):100-104.
    [186] 苏爱国,朱扬明,梁狄刚,等.青海柴达木盆地南八仙油气田油源与成藏机理[J].地球化学,2003,32(4):393-399.
    [187] 赵林,洪峰,戴金星,等.柴达木盆地南八仙气田气源及其勘探意义[J].石油勘探与开发,2000,27(3):25-30.
    [188] Prinzhofer A A,Huc A Y.Genetic and post-genetic molecular and isotopic fractionations in natural gases[J].Chemical Geology, 1995,126,281-290.
    [189] 赵孟军,曾凡刚,秦胜飞,等.塔里木发现和证实两种裂解气[J].天然气工业,2001,21(1):35-39.
    [190] 金之钧,张一伟,王捷,等.油气成藏机理与油气分布[M].北京,石油工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700