E-cadherin与卵巢癌转移的相关性及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢癌是女性生殖系统最常见的恶性肿瘤之一,且发病率在世界范围内呈上升趋势。对于卵巢癌患者,肿瘤发生了转移是致死的主要原因。肿瘤转移是一个多步骤的发展过程,肿瘤细胞从原发肿瘤上分离并且侵入到周边组织是肿瘤转移的第一步,也是最关键的一步。在正常组织中,细胞彼此间紧密连接在一起而不能自由移动;但肿瘤细胞彼此间连接松散,可以自由地与原发灶分离并迁移出去。
     目前研究已经明确上皮性钙黏蛋白(E-cadherin)调控此过程,该蛋白编码基因位于染色体16q22.1,蛋白分子量120kD,是一种钙依赖性跨膜糖蛋白,主要介导同质同嗜性黏附,即具有相同钙黏蛋白的细胞之间的黏附作用。在乳腺癌、食管癌、胃癌、口腔癌、肝细胞癌、甲状腺癌、膀胱癌和肺癌等肿瘤的研究中发现,E-cadherin表达降低与肿瘤的发生、分化、侵袭、转移和预后密切相关。E-cadherin的低表达使肿瘤细胞间黏附力降低,肿瘤细胞易从局部脱落,进而发生转移,故认为E-cadherin是肿瘤转移抑制因子。
     E-cadherin介导的细胞间黏附需要其细胞内成分与胞浆内的连环蛋白(catenin)相互作用,形成E-cadherin/ catenins复合体,并与细胞骨架相连。连环蛋白包括α-catenin (102 kD),β-catenin (92 kD)和γ-catenin (80 kD)。其中β-catenin可连接E-cadherin与α-catenin,进而与细胞骨架的肌动蛋白丝网结合。与α-catenin相比,β-catenin与E-cadherin的胞质内结构域有更直接的相互作用。有研究发现,在表达正常E-cadherin的肿瘤细胞中,β-catenin突变或缺失可致细胞解聚;转染β-catenin cDNA又可使其恢复聚集和黏附。说明β-catenin是肿瘤转移抑制基因,在细胞黏附中可独立发挥作用。β-catenin除了参与细胞间黏附外,还调控多条信号传导通路,作为Wnt信号传导通路中的关键分子而日益受到关注。当Wnt信号通路被激活,β-catenin基因突变,或大肠腺瘤样息肉复合体(APC)突变,细胞质中游离的β-catenin水平会升高并进入核内,与Tcf/Lef-1形成复合体,启动靶基因C-myc,cyclin D1,CD44,MMP-7等的复制与转录,最终导致细胞的恶性转化。
     细胞间的黏附除了E-cadherins/catenins复合体机制外,胞膜窖(caveolae)及窖蛋白-1(caveolin-1)也起重要作用。胞膜窖是50–100 nm的胞膜内陷,在细胞内吞和信号传导中发挥重要作用。胞膜窖的主要成分――窖蛋白-1是一22 kD的膜内在蛋白,对胞膜窖内陷形成和功能起重要作用。Caveolin-1对多种信号分子起调控作用,并与APC-β-catenin-Tcf/Lef通路之间存在交叉,与肿瘤的关系十分密切。研究表明,在受Ha-Ras,v-Abl, Myc,Neu等癌基因转化的细胞中,caveolin-1 mRNA和蛋白表达水平均下调。在乳腺癌、肺癌、结肠癌和卵巢癌等肿瘤中也观察到caveolin-1蛋白水平表达下降,细胞增殖率增加,肿瘤转移增强,提示caveolin-1在肿瘤进展中具有负调控作用。但在某些癌,如前列腺癌中,caveolin-1却呈表达增强状态,且有促进癌细胞的增殖及淋巴结转移的作用。这提示caveolin-1在肿瘤中的生物学作用具有双向性,其调节机制需进一步研究探讨。
     近年来,随着对肿瘤转移机制的深入研究,发现一些细胞因子参与了肿瘤细胞的转移,这些细胞因子通过与受体结合并经信号传导而引发了肿瘤细胞的运动。表皮生长因子(EGF)及其受体(EGFR)、肝细胞生长因子(HGF)及其受体(c-Met)即属于此类。EGF是首先被发现的一种多效生长因子,有刺激上皮细胞迁移、DNA合成等生物学效应,对肿瘤细胞的异常增殖也有一定作用。EGF只有与其受体EGFR结合才能发挥作用。EGFR位于胞膜窖内,大多数上皮细胞表达EGFR,其介导的信号传导诱导了内在的酪氨酸激酶活化和细胞信号,导致细胞生长和增殖。EGFR的表达增强与许多人类肿瘤的预后不良和侵袭性进展相关,但其下游靶点还不很清楚。有研究发现EGF的刺激可导致E-cadherin介导的细胞间黏附的降解,诱导肿瘤细胞的增殖和转移。
     肝细胞生长因子(HGF)或称分散因子(SF)是由间质细胞产生的多功能肽信号,对上皮细胞有强大的促有丝分裂、形态发生、细胞运动及血管生成等作用。其生物活性由单一受体c-Met蛋白所介导,c-Met具有酪氨酸激酶活性,主要存在于上皮细胞的细胞膜。HGF/c-Met通路促进肿瘤细胞的生存和生长,并且在血管发生和转移中起重要作用。但HGF-c-Met信号通路的作用靶分子及其与增殖、侵袭、转移联系的分子机制尚不清楚。有研究发现HGF能引起E-cadherin入胞,伴随着细胞间黏附的降解和细胞分散。
     综上所述,E-cadherin是重要的肿瘤转移抑制因子,而卵巢癌的早期转移是重要的死亡原因。目前,国内外对卵巢癌转移机制,特别是E-cadherin表达异常在卵巢癌发病和转移中的意义研究报道很少。本研究以人卵巢浆液性囊腺癌高、低转移细胞系HO-8910Pm和HO-8910细胞(由浙江肿瘤研究所建系,但其分子机制不明)为模型,以裸鼠为实验动物,从研究E-cadherin与卵巢癌转移的相关性入手,联系与黏附相关的信号传导分子,探讨可能的机制,以期为抗卵巢癌转移的药物设计提供新靶点。
     本文的主要工作如下:
     1.E-cadherin,β-catenin和caveolin-1基因在人卵巢浆液性囊腺癌高、低转移细胞系中的差异表达
     本研究首先探究了人卵巢浆液性囊腺癌高、低转移细胞系中E-cadherin,β-catenin和caveolin-1基因表达的差异,初步探讨卵巢癌转移的可能机制。应用MTT法检测细胞的增殖能力;黏附实验检测细胞与细胞外基质的黏附能力;Transwell小室法检测细胞的侵袭、迁移能力;通过免疫荧光实验、蛋白印迹实验、逆转录聚合酶链反应分别分析细胞中E-cadherin、β-catenin和caveolin-1基因在蛋白水平的表达差异、亚细胞定位及mRNA水平的表达差异。结果显示,高转移细胞系HO-8910Pm细胞的增殖能力,与细胞外基质的黏附能力,细胞的侵袭能力、迁移能力都明显高于低转移细胞系HO-8910细胞。免疫荧光实验、蛋白印迹实验表明HO-8910细胞中,E-cadherin,β-catenin和caveolin-1基因在蛋白水平的表达均较多,主要分布在细胞-细胞连接处的细胞膜上,胞质内也有少量分布;而HO-8910Pm细胞中3种基因表达都极少。逆转录聚合酶链反应证实上述表达差异是mRNA水平上的(p<0.05)。结果提示E-cadherin,β-catenin和caveolin-1基因的低表达可能与人卵巢癌侵袭和转移能力增强相关。
     2.RNAi技术抑制E-cadherin基因表达对HO-8910细胞生物学行为的影响
     为进一步确定E-cadherin的表达缺失与卵巢癌细胞的侵袭、迁移能力增强直接相关,应用RNA干扰(RNAi)技术抑制HO-8910细胞中E-cadherin表达,通过体内、外实验研究细胞增殖、侵袭、转移能力的改变。将E-cadherin siRNA转染入HO-8910细胞,特异性沉默了靶基因E-cadherin的表达。免疫荧光和蛋白印迹分析显示HO-8910/RNAi细胞中E-cadherin的蛋白水平表达与未给予RNAi处理的对照组相比明显下降;转染非特异性的control siRNA无干扰效果。说明特异性的RNAi有效。体外实验显示HO-8910/RNAi细胞的增殖、侵袭、迁移能力明显高于对照组细胞。裸鼠体内实验证明实验组肿瘤生长速度远远大于对照组,说明E-cadherin表达下调后,在体内也能促进肿瘤细胞的增殖(p<0.05)。结果提示,E-cadherin基因的部分缺失可以促进卵巢癌细胞增殖和转移。
     3.表皮生长因子、肝细胞生长因子对E-cadherin介导的黏附功能的调节
     为探讨E-cadherin的可能调节机制,研究了表皮生长因子(EGF)和肝细胞生长因子(HGF)对E-cadherin介导的黏附功能的影响。用20ng/ml EGF和10ng/ml HGF分别处理HO-8910细胞72h,HO-8910细胞的生物学行为改变经形态学方法,细胞增殖实验,体外细胞侵袭、迁移实验和划痕实验进行检测。EGF或HGF处理后的细胞E-cadherin、β-catenin和caveolin-1基因表达的改变及亚细胞定位经蛋白印记、免疫荧光实验和逆转录聚合酶链反应进行检测。结果显示,EGF和HGF分别诱导了细胞由上皮样向成纤维细胞形态转化,显著促进了细胞增殖、侵袭、迁移。EGF和HGF还明显降低了E-cadherin和β-catenin的表达,同时伴随着caveolin-1的表达降低(p<0.05)。结果提示,经由EGF/EGFR和HGF/c-Met的信号很可能是E-cadherin介导的黏附功能的重要调节者。Caveolin-1可能通过调节E-cadherin/β-catenin信号通路而抑制肿瘤转移。
     综上所述,我们的研究表明,E-cadherin表达降低与肿瘤侵袭、转移能力增强密切相关,是卵巢癌转移抑制因子。其黏附功能的正常发挥可能经由EGF/EGFR和HGF/c-Met两个信号传导通路负调控及caveolin-1正调控。上述信号传导分子可能成为临床抑制卵巢癌转移新的靶点,为设计预防肿瘤转移新药提供了新思路。
Ovary carcinoma is one of the most frequent malignant tumors of female reproductive system, and its incidence in the world has recently been increasing. For patient with ovary carcinoma, distant metastases are the major cause of mortality. Metastasis is a multistep process. The initial and the most critical steps of metastasis include detachment of malignant cells from the primary tumor and invasion into surrounding tissue. In normal tissues, cells are tightly adhered with each other, so that they are generally not allowed to migrate freely. However, the malignant cells are more loosely associated, and can freely detach from primary tumor and migrate out.
     In recent years, many research work have showed that the epithelial cadherin (E-cadherin) is a very important regulator of the tumor cell adhesion. E-cadherin is a 120kD transmembrane glycoprotein coded by the E-cadherin gene located in chromosome 16q22.1. It connects epithelial cells via homotypic calcium-dependent interactions. The reduced expression of E-cadherin has been implicated in several features of tumor pathology: tumor development, cell differentiation, invasion, metastasis, and prognosis in various human cancers, such as breast, esophageal, gastric, oral, hepatocellular, thyroid, bladder, and lung cancer. Low expression of E-cadherin has been regarded as one of the main molecular events involved in dysfunction of the cell-cell adhesion system, triggering cancer invasion and metastasis. therefore, E-cadherin is regarded as the tumor metastasis suppressor.
     E-cadherin-mediated cell adhesion requires intracellular attachment of this glycoprotein to the actin cytoskeleton via members of the cateninfamily includingα-catenin (102 kD),β-catenin (92 kD), andγ-catenin (80 kD). It is indicated thatβ-catenin links E-cadherin toα-catenin and, consequently to the actin microfilament network of the cytoskeleton. As compared withα-catenin,β-catenin interacts with E-cadherin more directly. Many research results has suggested thatβ-catenin acts as tumor suppressor involved in cell-cell adhesion. The mutation or loss ofβ-catenin gene induced cell disaggregation independently. After being transfected withβ-catenin cDNA, tumor cells recovered aggregation and adhension. In addition to its role on cell-cell adherens junctions,β-catenin is also a transducer/transcriptional factor in signal transduction pathways. Specially,β-catenin is a critical component of the Wnt signaling system.β-catenin is to the nuclear and combines with Tcf/Lef when the cytoplasrnic level ofβ-catenin is elevated due to the activation of Wnt signaling or the mutation of APC gene,β-catenin gene etc. Then theβ-catenin-Tcf/Lef complex act as a transcription molecule which resulting in the trascription of genes such as c-myc, cyclin D1,MMP-7, CD44 etc and finally leading to the malignant transform of the cells.
     In addition to E-cadherin and catenins as the importment adheres mechanism, caveolae and caveolin-1 are also critical for the cell-cell adhesion. Caveolae, 50–100 nm protein-coated invaginations of the plasma membrane, play an important role in endocytosis and signal transduction. Caveolin-1, a 22 kD integral membrane protein, is a major component of caveolae and is important for the form and function of caveolae. The caveolin-1 may functionally regulate the activation of caveolae-associated signaling molecules, and have close relationship with APC-β-catenin-Tcf/Lef signals. caveolin-1 expression in mRNA and protein levels are both downregulated during cell transformation by oncogene Ha-Ras, v-Abl, Myc, Neu. Moreover, low caveolin-1 protein expression is also observed in a number of human cancers, including human breast, lung, colon, and ovarian carcinomas, suggesting a negatively regulatory role for caveolin-1 in tumor development. Consistent with these observations, the proliferation rate and tumor metastasis ability of caveolin-1-deficient cells are significantly increased. But this view has been controversial because caveolin-1 over-expression is seen in a few number of cancer such as prostate cancer that can promotetumor cells proliferation and metastasis. It has shown that caveolin-1 has bidirection characteristics in tumor biology.
     Recent years, along with the further research of the tumor metastasis mechanism, some cytokines have been discovered to induce the tumor cell metastasis. The cytokines is combined with its receptor to cause the tumor cell migration by signal transduction system. Cell motility is an important factor for the process of invasion and metastasis of tumors and is affected by extracellular signals such as growth factors. Epidermal growth factor (EGF) is the first discovered multieffect growth factor which can stimulate epithelial cell migration and DNA synthesis. EGF also plays an important role in over proliferation of tumor cells. EGF produces a marked effect only when combining with its receptor. The EGF receptor (EGFR) is known to localize in caveolae and are down regulated through their interaction with the caveolin-1 scaffolding domain. The EGFR is expressed in most mesenchymal and epithelial cells, and its signal transduction induces intrinsic tyrosine kinase activity finally affects cell growth and proliferation. Enhanced expression of the EGFR was related to poor prognosis and aggressive progress in many human tumors. It has been reported that EGF promotes tumor cell motility and migration. However, its downstream target related to cell motility is still unclear. Growth factors have been discovered to induce the disassembly of E-cadherin-mediated cell–cell adhesion, promote proliferation and motility of cancer cells.
     Hepatocyte growth factor (HGF) or scatter factor(SF)is a multifunctional peptide secreted by interstitial cell. HGF acts as a mitogen, morphogen and motogen for epithelial cells. It signals via c-Met, a tyrosine kinase receptor, which undergoes tyrosine phosphorylation and activation. HGF/c-Met pathway also contributes to survival, angiogenesis, metastasis and growth of tumor. However, it is still unclear that the downstream target of HGF/c-Met signal transduction related to cell proliferation, invasion and migration. Kamei et al reported that E-cadherin internalization in response to HGF was accompanied by the disruption of cell-cell adhesion and scattering of cells.
     In conclusion, E-cadherin is the important tumor metastasis suppressor. Distant metastases of ovary carcinoma are the major cause of mortality.However, there are few reports describing the molecular mechanism of ovary carcinoma metastasis, especially the interrelationship between E-cadherin and ovary carcinoma metastasis. In this study, we used human ovary serous cystadenocarcinoma cell lines, HO-8910Pm and HO-8910 with high and low metastatic potential respectively (established by Zhejiang Cancer Institute, Hangzhou, China) and nude mice as experimental models to confirm the roles of expression level of E-cadherin on metastasis of ovary carcinoma and signal transduction molecules regulating cell adhesion. This experiment will supply a new target of drug design for anti-metastasis of ovary carcinoma.
     The main reseach work is followings:
     1. Experimental study on the different expression of E-cadherin,β-catenin and caveolin-1 between both high metastasatic HO-8910Pm cell line and low metastatic HO-8910 cell line.
     First, this study explored the role of expression of E-cadherin,β-catenin and caveolin-1 in both high and low metastatic HO-8910Pm and HO-8910 cells on metastasis of tumor cells. MTT assay and adhesion assay were used to detect the cancer cells proliferation ability and adhesion ability to ECM Gel. The cell invasion and migration abilities were assessed by using Transwell chambers. The expression of E-cadherin,β-actin and caveolin-1 in the protein and mRNA level was detected by immunofluorescence staining analyses, Western blotting analyses and RT-PCR. The results showed that the abilities of cells proliferation, adhesion, invasion and migration in HO-8910Pm cells were significantly higher than that of HO-8910 cells. The expressions of E-cadherin,β-catenin and caveolin-1 were seen mainly in HO-8910 cells but were difficult to detect on HO-8910Pm cells either at protein level or at mRNA level (p<0.05). These data indicated that the low expression of E-cadherin,β-actin and caveolin-1 may be correlated with the increased invasion and metastasis abilities of human ovary carcinoma.
     2. Effects of RNAi-mediated gene silencing of E-cadherin expression on thebiologic behaviors of HO-8910 cells
     To establish whether the loss of E-cadherin was responsible for increased invasive and migratory capabilities of ovary carcinoma cells, HO-8910 cells were transfected with E-cadherin siRNA to silence theexpression of the target gene. Immunofluorescence staining and Western blotting analyses showed that the expression level of E-cadherin was significantly reduced in experimental cells, comparing with control cells. And the cells transfected with control siRNA can not silence the expression of target gene. The above results suggested that the RNAi was effective. The further experiment in vitro showed that the proliferatiive,invasive and migratory capability of HO-8910/RNAi cells were all higher than that of the controls. Furthermore, the effect of E-cadherin down-regulation of HO-8910 cells on metastasis was examined in nude mice. A significant increase was seen in mean tumor volume after E-cadherin silencing (p<0.05). These results suggested that the partial loss of E-cadherin was sufficient to promote the proliferation and metastasis of ovary carcinoma.
     3. Effects of EGF or HGF on E-cadherin-mediated cell-cell adhesion in HO8910 cells.
     To determine whether EGF or HGF affects the E-cadherin-mediated cell-cell adhesion, HO-8910 cells were treated with 20ng/ml EGF or 10ng/ml HGF for 72 h. The changes of HO8910 cells biological behaviour after treatment were estimated by morphological assay, cell proliferation assay, in vitro cell invasion assay, migration assay, and scratch wound migration assay. The expression changes of E-cadherin,β-catenin and caveolin-1 with EGF or HGF treatment were investigated by Western blotting, immunofluorescence staining, and RT-PCR analysis. The results indicated that EGF or HGF induced the epithelial-like to fibroblastoid conversion of HO8910 cell line, increased the cell proliferation, and stimulated cell invasion and migration, respectively. The low membrane expression of E-cadherin andβ-catenin was accompanied by a down-regulation of caveolin-1 expression after treatment with EGF or HGF. In addition, these ligands resulted in a lower membrane associated signal of E-cadherin,β-catenin and caveolin-1 in these cancer cells (p<0.05). These results suggest that signalling via EGF/EGFR and HGF/c-Met are likely the most important mediators of E-cadherin-mediated cell-cell adhesion in human ovary carcinoma cells. Caveolin-1 may inhibit tumor metastasis through mediating E-cadherin/β–catenin signal passageway.
     In conclusion, the above research work shows that E-cadherin ismetastasis suppressor of HO-8910 cells. The reduced expression of E-cadherin is closely related with tumor invasion and metastasis. E-cadherin-mediated cell-cell adhesion may be negatively regulated via EGF/EGFR and HGF/c-Met signal passageways and positively regulated by caveolin-1. These results suggest that above signal transduction molecules may become new effective targets to inhibit tumor metastasis. This will supply a new idea for designing drugs inhibiting tumor metastasis.
引文
1. Wijnhoven BP, Dinjens WN, Pignatelli M. E-cadherin-catenin cell-cell complex and human cancer[J]. Br J Surg, 2000; 87(8): 992~1005
    2. Kowalczyk AP, Reynolds AB. Protecting your tail: regulation of cadherin degradation by p120- catenin[J]. Curr Opin Cell Biol, 2004, 16(5): 522~527
    3. Reynolds AB, Carnahan RH. Regulation of cadherin stability and turn over by p120ctn: implications in disease and cancer[J]. Semin Cell Dev Biol, 2004, 15(6): 657~663
    4. Kudo Y, Kitajima S, Ogawa I, et al. Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous beta-catenin[J]. Clin Cancer Res, 2004, 10(16): 5455~5463
    5. Piedia J,Martinez D,Castano J,et a1.Regulation of beta-catenin structure and activity by tyrosine phosphorylation[J]. J Biol Chem, 2001, 276(23): 20436~20443
    6. Lu Z, Hunter T. Wnt-independent beta-catenin transactivation in tumor development [J]. Cell Cycle. 2004, 3(5): 571~573
    7. Marx J. caveolae: a once-elusive structure gets some respect[J]. Science, 2001, 294 (5548): 1862~1865
    8. Fujimoto T, Kogo H, Nomura R, Une T. Isoforms of caveolin-1 and caveolar structure[J]. J Cell Sci, 2000, 113(19): 3509~3517
    9. Fong A, Garcia E, Gwynn L, et a1. Expression of caveolin-1 and caveolin-2 in urothelial carcinoma of the urinary bladder correlates with tumor grade and squamous differentialion[J]. Am J Clin Pathol, 2003, 120(1): 93~100
    10. Galbiati F, Volonte D, Brown AM, et al. caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains[J]. J Biol Chem. 2000, 275(30): 23368~23377
    11. 瀚舟,许沈华,张奕荫等 . 人卵巢癌细胞系 HO-8910的建立及其生物学特性 [J]. 中华妇产科杂志,1994,3(29):162~164
    12. 沈华,钱丽娟,牟瀚舟等 . 高转移人卵巢癌细胞系 HO-8910PM的建立及其生物学特[J]. 中华病理学杂志,1998,6(27):451~452
    13. Kawada K, Yonei T, Ueoka H, et al. Comparison of chemosensitivity tests: clonogenic assay versus MTT assay[J]. Acta Med Okayama, 2002, 56 (3): 129~134
    14. Anitha K, Panicker, Mona Buhusi, et al. Endocytosis of β1 integrins is an early event in migration promoted by the cell adhesion molecule L1. Maness Experimental Cell Research [J]. 2006, 312(3): 299~307
    15. Chunyan Sun, Yu Hu, Xinyue Liu, et al. Resveratrol downregulates the constitutional activation of nuclear factor-κB in multiple myeloma cells, leading to suppression of proliferation and invasion, arrest of cell cycle, and induction of apoptosis[J]. Cancer Genetics and Cytogenetics, 2006, 165(1): 9~19
    16. Makiko Moriyama-Kitaa, Yoshio Endob, Yutaka Yonemurac, et al. S100A4 regulates E-cadherin expression in oral squamous cell carcinoma [J]. Cancer Letters, 2005, 230(2): 211~218
    17. M.P. Ebert, G. Fei, S. Kahmann, et al. Increased beta-catenin mRNA levels and mutational alterations of the APC and beta-catenin gene are present in intestinal-type gastric cancer[J]. Carcinogenesis, 2002, 23 (3): 87~91
    18. Hyun-Ah Kim, Kwang-Ho Kim and Ryung-Ah Lee. Expression of caveolin-1 is correlated with Akt-1 in colorectal cancer tissues[J]. Experimental and Molecular Pathology, 2006, 80(2): 165~170
    19. Araki Y, Okamura S andHussain SP et al. Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways[J]. Cancer Res, 2003, 63 (2): 728~734
    20. Veatch AL, Carson LF, Ramakrishnan S. Differential expression of the cell-cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells[J] . Int J Cancer, 1994, 58(3): 393~399
    21. Inoue M, Ogawa H, Miyata M, et al. Expression of E-cadherin in normal, Benign, and malignant tissues of female genital organs[J]. Anat Pathol, 1992, 98(1): 76~82
    22. Davidson B, Gotlieb WH, Ben-Baruch G, et al. E-cadherin complex protein expression and survival in ovarian carcinoma[J]. Gynecol Oncol, 2000; 79(3): 362~371
    23. Sundefeldt K, Piontkewifz Y, Ivarsson K, et al. E-cadherin expression in human epithelial ovarian cancer and normal ovary[J]. Int J Cancer, 1997, 74(3): 275~280
    24. Maines-Bandiera S, Auersperg N. Increased E-cadherin expression in ovarian surface epithelium: an early step in metaplasia and dysplasia?[J]. Int J Gynecol Pathol, 1997, 16(3): 250~255
    25. Brabletz T, Jung A, Reu S, et a1. Variable β-catenin expression in colorectalcancers indicates tumor progression driven by the tumor environment[J]. Proc Natl Acad Sci USA, 2001, 98(18): 10356~10361
    26. Herrera CA, Xu L, Bucana CD, et al. Expression of metastasis-related genes in human epithelial ovarian tumors[J]. Int J Oncol, 2002, 20(1): 5~13
    27. Lim SC. Lee MS.Significance of E-cadherin/beta-catenin complex and cyclinDl in breast cancer[J]. Oncol Rep, 2002, 9(5): 915~928
    28. Tanaka N, Odajima T, Ogi K, et al. Expresion of cadherins and catenins in oral epithelial dysplasia and squarnous cell carcinoma[J]. Brit J Cancer, 2003, 89: 557~563
    29. Bankfalvi A, Krassort M, Buchwalow IB, et a1. Gains and losses of adhesion molecules (CD44, E-cadherin, and beta-catenin) during oral carcinogenesis and tumor progression[J]. J Pathol, 2002, 198(3): 343~351
    30. Takayama T, Shiozaki H, Shibamoto S, et al. Beta-catenin expression in human cancers. Am J Pathol. 1996, 148(1): 39~46.
    31. Davies BR, Wotsley SD, Ponder BA, et al. Expression of E-cadherin, alpha-catenin and beta-catenin in normal ovarian surface epithelium and epithelial ovarian cancers[J]. Histopathology, 1998, 32: 69~80
    32. Kawanishi J, Kato J, Sasaki K, et al. Loss of E-cadherin-dependent cell-cell adhesion due to mutation of the beta-catenin gene in a human cancer cell line, HSC-39[J]. Mol Cell Biol. 1995, 15(3):1175~1181
    33. Murata M, Iwao K, Mivoshi Y, et al.[J] Molecular and biological analysis of carcinoma of the small intestine: beta-catenin gene mutation by interstitial deletion involving exon 3 and replication error phenotype. Am J Gastroenterol, 2000, 95(6): 1576~1580
    34. Fujioka T, Takebayashi Y, Kihana T, et a1. Expression of E-cadherin and beta-catenin in primary and peritoneal metastatic ovarian carcinoma[J]. Oncol Rep, 2001, 8(2): 249~255
    35. Wu R, Zhai Y, Fearon ER, et a1. Diverse mechanisms of beta-catenin deregulation in ovarian endometrioid adenocarcinomas[J]. Cancer Res, 200l, 6l(22): 8247~8255
    36. Moreno-Bueno G, Gamallo C, Perez-Gallego L,et a1. beta-catenin expression pttern, beta-catenin gene mutations, and microsatellite instability in endometrioid ovarian carcinomas and synchronous endometrial carcinomas[J]. Diagn Mol Pathol, 2001, 10(2): ll6~l22
    37. Gamallo C, Palacios J, Moreno G, et a1. beta-catenin expression pattern in stage I and II ovarian carcinomas: relationship with beta-catenin gene mutations, clinicopathological features, and clinical outcome[J]. Am J Pathol, 1999, 155(2): 527-536
    38. Palacios J, Ganlal1o C. Mutations in the beta-catenin gene (CTNNBI) in endometrioid ovarian carcinomas[J]. Cancer Res, l998, 58(7): l344~1347
    39. Herzig M, Savarese F, Novatchkova M, et al. Tumor progression induced by the loss of E-cadherin independent of beta-catenin/Tcf-mediated Wnt signaling[J]. Oncogene, 2007, 26(16): 2290-2298
    40. Lu Z, Hunter T. Wnt-independent beta-catenin transactivation in tumor development[J]. Cell Cycle, 2004, 3(5): 571~3
    41. Sparks AB, Morin PJ, Vogelstein B, et al. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer[J]. Cancer Res, 1998, 58(6): 1130~1134
    42. Maier TJ, Janssen A, Schmidt R, rt al. Targeting the beta-catenin/APC pathway: a novel mechanism to explain the cyclooxygenase-2-independent anticarcinoge- nic effects of celecoxib in human colon carcinoma cells[J]. FASEB J, 2005, 19(10): 1353~1355
    43. Campbell L, Gumbleton M, Ritchie K. caveolae and the caveolins in human disease[J]. Adv Drug Deliv Rev, 2001, 49(3): 325~335
    44. Li S, Couet J, Lisanti MP. Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. caveolin binding negatively regulates the auto-activation of Src tyrosine kinases[J]. J Biol Chem, 1996, 271(46): 29182~29190
    45. Song KS, Li Shengwen, Okamoto T, et al. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains[J]. J Biol Chem, 1996, 271 (16): 9690~9697
    46. Okamoto T, Schlegel A, Scherer PE, et al. caveolins, a family of scaffolding protein for organizing "preassembled signaling complexes" at the plasma membrane[J]. J Biol Chem, 1998, 273(10): 5419~5422
    47. Miotti S, Tomassetti A, Facetti I, et al. Simultaneous expression of caveolin-1 and E-cadherin in ovarian carcinoma cells stabilizes adherens junctions through inhibition of src-related kinases[J]. Am J Pathol, 2005, 167(5):1411~1427
    48. Le Lan C, Neumann JM, Jamin N. Role of the membrane interface on the conformation of the caveolin scaffolding domain: a CD and NMR study[J]. FEBS Lett, 2006, 580(22): 5301~5305
    49. Yang G, Truong LD, Timme TL, et al. Elevated expression of caveolin is associated with prostate and breast cancer[J]. Clin Cancer Res, 1998, 4(8): 1873~1880
    50. Li L, Yang G, Ebara S, et a1. caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells[J]. Cancer Res, 2001, 61(11): 4386~4392
    1. Skubitz AP. Adhesion molecules[J]. Cancer Treat Res, 2002, 107(1): 305~329
    2. cavallaro U, Christofori G. Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough[J]. Biochim Biophys Acta, 2001, 1552(1): 39~45
    3. Jin H, Varner J. Integrins: roles in cancer development and as treatment targets[J]. Br J Cancer, 2004, 90(3): 561~568
    4. Wijnhoven BP, Dinjens WN, Pignatelli M. E-cadherin-catenin cell-cell complex and human cancer[J]. Br J Surg, 2000, 87(8): 992~1005
    5. Agami R. RNAi and related mechanisms and their potential use for therapy[J]. Curr Opin Chem Bio, 2002, 6(6): 829~834
    6. Buckingham SD, Esmaeili B, Wood M, et al. RNA interference: from model organisms towards therapy for neural and neuromuscular disorders[J]. Hum Mol Genet, 2004, 13(2): 275~288
    7. Dalmay T, Hamilton A, Rudd S, et al. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus[J]. Cell, 2000, 101 (5): 543~553
    8. Harper SQ, Davidson BL. Plasmid-based RNA interference: construction of small-hairpin RNA expression vectors[J]. Methods Mol Biol, 2005, 309: 219~235
    9. Genc S, Koroglu TF, Genc K, et al. RNA interference in neuroscience[J]. Brain Res Mol Brain Res, 2004, 132 (2): 260~270
    10. Knudsen H, Nielsen PE. Antisense properties of duplex-and triplex-forming PNAs[J]. Nucleic Acids Res, 1996, 24 (3): 495~500
    11. Thompson JD. Applications of antisense and siRNAs during preclinical drug development[J]. Drug Discovery Today, 2002, 7 (17): 912~917
    12. Yague E, Higgins CF, Raguz S. Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1[J]. Gene Ther, 2004, 11 (14): 1170~1174
    13. Veenendaal LM, Jin H, Ran S, et al. In vitro and in vivo studies of a VEGF121/rGelonin chimeric fusion toxin targeting the neovasculatureof solid tumors[J]. Proc Natl Acad Sci USA. 2002, 99(12): 7866~7871
    14. Boado RJ. RNA interference and nonviral targeted gene therapy of experimental brain cancer[J]. NeuroRx, 2005, 2 (1): 139~150
    15. Wannenes F, Ciafre SA, Niola F, et al. Vector-based RNA interference against vascular endothelial growth factor-A significantly limits vascularization and growth of prostate cancer in vivo[J]. Cancer Gene Ther, 2005, 12 (12): 926~934
    16. Sumimoto H, Yamagata S, Shimizu A, et al. Gene therapy for human small-cell lung carcinoma by inactivation of Skp-2 with virally mediated RNA interference[J]. Gene Ther, 2005, 12 (1): 95~100
    17. Kudo Y, Kitajima S, Ogawa I, et al. Small interfering RNA targeting of S phase kinase-interacting protein 2 inhibits cell growth of oral cancer cells by inhibiting p27 degradation[J]. Mol Cancer Ther, 2005, 4 (3): 471~476
    18. Buckingham, Steven D, Esmaeili, et al. RNA interference: from model organisms towards therapy for neural and neuromuscular disorders, Human Molecular Genetics[J]. 2004, 13(2): 275~288
    19. Veatch AL, Carsn LF, Ramakrishnan S. Differential expression of the cell-cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells[J]. Int J Cancer, 1994, 58(3): 393~399
    20. Sundefeldt K, Piontkewifz Y, Ivarsson K, et al. E-cadherin expression in human epithelial ovarian cancer and normal ovary[J]. Int J Cancer, 1997, 74(3): 275~280
    21. Davidson B, Gotlieb WH, Ben-Baruch G, et al. E-cadherin complex protein expression and survival in ovarian carcinoma[J]. Gynecol Oncol, 2000, 79(3): 362~371
    22. Joo YE, Rew JS, Kim HS, et al. Changes in the E-cadherin-catenin complex expression in early and advanced gastric cancers[J]. Digestion, 2001, 64(2): 111~119
    23. St Croix B, Sheehan C, Rark JW, et al. E-cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27 (KIP) [J]. J Cell Biol, 1998, 142(2): 557~571
    1. Wijnhoven BP, Dinjens WN, and Pignatelli M. E-cadherin-catenin cell-cell complex and human cancer[J]. Br J Surg, 2000, 87(8): 992~1005
    2. Krishnadath KK, Tilanus HW, van Blankenstein M, et al. Reduced expression of the cadherin-catenin complex in oesophageal adenocarcinoma correlates with poor prognosis [J] .J Pathol, 1997, 182(3): 331~338
    3. Piedia J, Martinez D, Castano J, et a1. Regulation of beta-catenin structure and activity by tyrosine phosphorylation[J]. J Biol Chem, 2001, 276(23): 20436~20443
    4. Wong AS,and Gumbiner BM. Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin[J]. J Cell Biol. 2003, 161(6):1191~1203
    5. Pecina-Slaus N. Tumor suppressor gene E-cadherin and its role in normal and malignant cells[J]. Cancer Cell Int, 2003, 3(1): 17
    6. Jeremy R, Greenberg VE, Herman JG, et al. Distinct-patterns of E-cadherin CPG island methylation in papillary follicul arhurthle’s cell and poorly differentiated human thyroid carcinoma[J]. Cancer Res, 1998, 58: 2063~2066
    7. Ya s m e e n A , B i s m a r TA , a n d A l M o u s t a f a A E . E r b B r e c e p t o r s a n d e p i t h e l i a l - c a d h e r i n - c a t e n i n complex in human carcinomas[J]. Future Oncol, 2006, 2(6): 765~781
    8. Harm PM, and Huang SM. Modulation of molecular targets to enhance radiation[J]. Clin Cancer Res. 2000, 6(2): 323~329
    9. Lobo MV, Alonso FJ, Redondo C, et al. Cellular characterization of epidermal growth factor-expanded free-floating neurospheres[J]. J Histochem Cytochem, 2003, 51(1): 89~103
    10. Alper O, De Santis ML, Stromberg K, et al. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells[J]. Int J Cancer, 2000, 88(4): 566~574
    11. Hiscox S, and Jiang WG. Association of the HGF/SF receptor, c-met, with the cell-surface adhesion molecule, E-cadherin, and catenins in human tumor cells[J]. Biochem Biophys Res Commun, 1999, 261(2): 406~411
    12. Maulik G, Shrikhande A, Kijima T, et al. Role of the hepatocyte growth factor receptor, c-met, in oncogenesis and potential for therapeutic inhibition[J]. Cytokine Growth Factor Rev, 2002, 13(1): 41~59
    13. Wong AS, Leung PC, Auersperg N. Hepatocyte growth factor promotes in vitroscattering and morphogenesis of human cervical carcinoma cells[J]. Gynecol Oncol, 2000, 78(2): 158~165
    14. Wang X, Defrances MC, Dai Y, et al. A mechanism of cell survival: sequestration of Fas by the HGF receptor Met[J]. Mol Cell, 2002, 9(2): 411~421
    15. Merkulova-Rainon T, England P, Ding S, et al. The N-terminal domain of hepatocyte growth factor inhibits the angiogenic behavior of endothelial cells independently from binding to the c-met receptor[J]. J Biol Chem, 2003, 278(39): 37400~37408
    16. Hamasuna R, Kataoka H, Moriyama T, et al. Regulation of matrix metallo-proteinase-2 (MMP-2) by hepatocyte growth factor/scatter factor (HGF/SF) in human glioma cells: HGF/SF enhances MMP-2 expression and activation accompanying up-regulation of membrane type-1 MMP[J]. Int J Cancer, 1999, 82(2): 274~281
    17. Kokenyesi R, Murray KP, Benshushan A, et al. Invasion of interstitial matrix by a novel cell line from primary peritoneal carcinosarcoma, and by established ovarian carcinoma cell lines: role of cell-matrix adhesion molecules, proteinases, and E-cadherin expression[J]. Gynecol Oncol. 2003, 89(1): 60~72
    18. Moon HS, Choi EA, Park HY, et al. Expression and tyrosine phosphorylation of E-cadherin, beta- and gamma-catenin, and epidermal growth factor receptor in cervical cancer cells[J]. Gynecol Oncol, 2001, 81(3): 355~359
    19. Ackland ML, Newgreen DF, Fridman M, et al. Epidermal growth factor-induced epithelio-mesenchymal transition in human breast carcinoma cells[J]. Lab Invest, 2003 , 83(3): 435~448
    20. Satoh J, Kuroda Y. Beta-catenin expression in human neural cell lines following exposure to cytokines and growth factors[J]. Neuropathology, 2000, 20(2): 113~123
    21. Takahashi K, Suzuki K and Tsukatani Y. Induction of tyrosine phosphorylation and association of beta-catenin with EGF receptor upon tryptic digestion of quiescent cells at confluence[J]. Oncogene, 1997, 15(1): 71~78
    22. Al Moustafa AE, Yen L, Benlimame N, et al. Regulation of E-cadherin/catenin complex patterns by epidermal growth factor receptor modulation in human lung cancer cells[J]. Lung Cancer, 2002, 37(1): 49~56
    23. Hazan RB, Norton L. The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton[J]. J Biol Chem, 1998,273(15): 9078~9084
    24. Novak A, Hsu SC, Leung HC, et a1. Cell adhesion and the integrin-linked kinase regulate the LEF-1 and beta-catenin signaling pathways[J]. Proc Natl Acad Sci USA, 1998, 95(8): 4374~4379
    25. Hofler H, Becker KF. Molecular mechanisms of carcinogenesis in gastric cancer[J]. Recent Results Cancer Res, 2003, 162: 65~72
    26. Baykal C, Demirtas E, Al A, et al. Comparison of hepatocyte growth factor levels of epithelial ovarian cancer cyst fluids with benign ovarian cysts[J]. Int J Gynecol Cancer, 2004, 14(1): 152~156
    27. Lee KH, Choi EY, Hyun MS, et al. Association of extracellular cleavage of E-cadherin mediated by MMP-7 with HGF-induced in vitro invasion in human stomach cancer cells[J]. Eur Surg Res, 2007, 39(4): 208~215
    28. Murai M, Shen X, Huang L, et al. Overexpression of c-met in oral SCC promotes hepatocyte growth factor-induced disruption of cadherin junctions and invasion[J]. Int J Oncol, 2004, 25(4): 831~840
    29. Kamei T, Matozaki T, Sakisaka T, et al. Coendocytosis of cadherin and c-Met coupled to disruption of cell-cell adhesion in MDCK cells-regulation by Rho, Rac and Rab small G proteins[J]. Oncogene, 1999, 18(48): 6776~6784
    30. Palacios F, Schweitzer JK, Boshans RL, et al. ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat Cell Biol, 2002, 4(12): 929~936
    31. Qian CN, Guo X, Cao B, et al. Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma[J]. Cancer Res., 2002, 62(2): 589~596
    32. Miurn H, Nishlmura K, Tsujlmura A, et al. Effects of hepatocyte growth factor on E-cadherin mediated cell-cell adhesion in DU145 prostate cancer cells[J]. Urology, 2001, 58(6): 1064~1069
    33. Fiucci G, Ravid D, Reich R, et al. caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells[J]. Oncogene, 2002, 21(15): 365~2375
    34. Mineo C, Gill GN, Anderson RG. Regulated migration of epidermal growth factor receptor from caveolae[J]. J Biol Chem, 1999, 274(43): 30636~30643
    35. Razani B, and Lisanti MP. Two distinct caveolin-1 domains mediate the functional interaction of caveolin-1 with protein kinase A[J]. Am J Physiol CellPhysiol, 2001, 281(4): C1241~250
    36. Galbiati F, Volonte D, Liu J, et al. caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21 (WAF1/Cip1)-dependent mechanism[J]. Mol Biol Cell, 2001, 12(8): 2229~2244
    37. Bender FC, Reymond MA, Bron C, et a1. caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity[J]. Cancer Res, 2000, 60(20): 5870~5878
    38. Lu Z, Ghosh S, Wang Z, et al. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion[J]. Cancer Cell, 2003, 4(6): 499~515
    39. Galbiati F, Volonte D, Brown AM, et al caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains[J]. J Biol Chem, 2000, 275(30): 23368~23377
    40. Song L, Ge S, Pachter JS. caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells[J]. Blood, 2007, 109(4): 1515~1523
    41. Williams TM, Medina F, Badano I, et al. caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion[J]. J Biol Chem, 2004, 279(49): 51630~51646
    42. Couet J, Sargiacomo M, Lisanti MP. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. caveolin binding negatively regulates tyrosine and serine/threonine kinase activities[J]. J Biol Chem, 1997, 272(48): 30429~30438
    1. Cavallaro U and Christofori G. Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough [J]. Biochim Biophys Acta, 2001, 1552 (1): 39~47
    2. Perez-Moreno M, Jamora C, and Fuchs E. Sticky business: orchestrating cellular signals at adherens junctions[J] . Cell, 2003, 112 (4): 535~548
    3. Frixen UH, Behrens J, Sachs M, et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cell[J]. J Cell Biol, 1991, 113(1): 173~185
    4. De Leeuw WJ, Berx G, Vos CB, et al. Simultaneous loss of E-cadherin and catenins on invasive lobular breast cancer and lobular carcinoma in situ[J]. J Pathol, 1997, 183(4): 404~411
    5. Beavon IRG. The E-cadherin-catenin complex in tumor metastasis: structure, function and regulation[J]. European Journal of Cancer, 2000, 36: 1607~1620
    6. Wijnhoven BP, Dinjens WN, and Pignatelli M. E-cadherin-catenin cell-cell complex and human cancer[J]. Br J Surg, 2000; 87(8): 992~1005
    7. Wong AS and Gumbiner BM. Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin[J]. J Cell Biol, 2003, 161(6):1191~1203
    8. Kowalczyk AP and Reynolds AB. Protecting your tail: regulation of cadherin degradation by p120-catenin[J]. Curr Opin Cell Biol, 2004, 16(5): 522~527
    9. Reynolds AB and Carnahan RH. Regulation of cadherin stability and turnover by p120ctn: implications in disease and cancer[J]. Semin Cell Dev Biol, 2004, 15(6): 657~663
    10. Reynolds AB. p120-catenin: Past and present[J]. Biochim Biophys Acta, 2007, 1773(1) :2~7
    11. Lu Z and Hunter T. Wnt-independent beta-catenin transactivation in tumor development [J]. Cell Cycle, 2004, 3(5): 571~573
    12. Kimelman D and Xu W. beta-catenin destruction complex: insights and questions from a structural perspective[J]. Oncogene, 2006, 25(57): 7482~7491
    13. Barker N and Clevers H. Catenins, Wnt signaling and cancer[J]. Bioessays, 2000, 22(11): 961~965
    14. van Hengel J and van Roy F. Diverse functions of p120ctn in tumors[J]. Biochim Biophys Acta, 2007, 1773(1): 78~88
    15. Rask K, Nilsson A, Brannstrom M, et al. Wnt-signalling pathway in ovarianepithelial tumours: increased expression of beta-catenin and GSK3beta[J]. Br J Cancer, 2003, 89(7):1298~304
    16. Chan AO. E-cadherin in gastric cancer[J].World J Gastroenterol, 2006, 12(2): 199~203
    17. Kremer M, Quintanilla Martinez L, Fuchs M, et al. Influence of tumor-associated E-cadherin mutations on tumorigenicity and metastasis[J]. Carcinogenesis, 2003, 24(12): 1879~1886
    18. Kimelman D and Xu W. beta-catenin destruction complex: insights and questions from a structural perspective[J]. Oncogene, 2006, 25(57): 7482~7491
    19. Cowin P, Rowlands TM and Hatsell SJ. Cadherins and catenins in breast cancer[J]. Curr Opin Cell Biol, 2005, 17(5): 499~508
    20. Park WS, Cho YG, Park JY, et al. A single nucleotide polymorphism in the E-cadherin gene promoter-160 is not associated with risk of Korean gastric cancer [J]. J Korean Med Sci, 2003, 18 (4): 501~509
    21. Leung WK, Yu J, Ng EK, et al. Concurrent hypermethylation multiple tumor- related genes in gastric carcinoma and adjacent normal tissues[J]. Cancer, 2001, 91(12): 2294~2301
    22. Seidl S ,Ackermann J ,Kaufmann H, et al. DNA-methylation analysis identifies the E-cadherin gene as a potential marker of disease progression in patients with monoclonal gammopat hies[J]. Cancer, 2004, 100 (12): 2598~2606
    23. Ombaerts M, Middeldorp JW, van der Weide E. et al. Infiltrating leukocytes confound the detection of E-cadherin promoter methylation in tumors[J]. Biochem Biophys Res Commun, 2004, 319 (2): 697~704
    24. Yasmeen A, Bismar TA and Al Moustafa AE. ErbB receptors and epithelial-cadherin-catenin complex in human carcinomas[J]. Future Oncol, 2006, 2(6): 765~781
    25. Lobo MV, Alonso FJ, Redondo C, et al. Cellular characterization of epidermal growth factor-expanded free-floating neurospheres[J]. J Histochem Cytochem, 2003, 51(1): 89~103
    26. Li G, Schaider H, Satyamoorthy K, et al . Downregulation of E-cadherin and Desmoglein1 by autocrine hepatocyte growth factorduring melanoma development [J]. Oncogene, 2001, 20 (56): 8125~8135
    27. Muller T, Choidas A, Reichmann E, et al. Phosphorylation and free pool of beta-catenin are regulated by tyrosine phosphatases during epithelial cellmigration[J]. J Biol Chem, 1999, 274: 10173~10183
    28. Aberle H, Schwartz H and Kemler R. Cadherin-catenin complex: protein interactions and their implications for cadherin function[J]. J Cell Biochem. 1996, 61(4): 514~523
    29. Royal I, Lamarche Vane N, Lamorte L, et al. Activation of Cdc42, Rac, PAK, and Rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation[J]. Mol Biol Cell, 2000, 11 (5): 1709~1725
    30. Evers EE, Zondag GC, MalliriA, et al. Rho family proteins in cell adhesion and cellmigration[J]. Eur J Cancer, 2000, 36 (10): 1269 ~1274
    31. Akiyama T and Kawasaki Y. Wnt signalling and the actin cytoskeleton[J]. Oncogene, 2006, 25(57): 7538~7544
    32. Luu HH, Zhang R, Haydon RC, et al. Wnt/beta-catenin signaling pathway as a novel cancer drug target.Curr Cancer Drug Targets[J]. 2004, ,4(8): 653~671
    33. Kolligs FT, Bommer G, and Goke B. Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis[J]. Digestion, 2002, 66(3): 131~144
    34. Miller JR and Moon RT. Analysis of the signaling activities of localization mutants of beta-catenin during axis specification in Xenopus[J]. J Cell Biol, 1997, 139(1): 229~243
    35. Shiina H, IgawaM, Shigeno K, et al. Beta-catenin mutations correlate with overexpression of C-myc and cyclin D1 Genes in bladder cancer[J]. J Urol, 2002, 168 (5): 2220~ 2226
    36. Davidson B, Gotlieb WH, Ben-Baruch G, et al. E-cadherin complex protein expression and survival in ovarian carcinoma[J]. Gynecol Oncol, 2000, 79(3): 362~371
    1. Agami R. RNAi and related mechanisms and their potential use for therapy [J]. Curr Opin Chem Bio, 2002, 6 (6): 829~834
    2. Napoli C, Lemieux C and R. Jorgensen, Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans[J]. Plant Cell, 1990, 2 (2 ): 279~289
    3. van der Krol AR, Mur AL, Beld M, et al. Stuitje, Flavanoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression[J]. Plant Cell, 1990, 2 (1): 291~299
    4. Cogoni JT, Irelan T, Schumacher M, et al. Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation[J]. EMBO J, 1996, 15 (3): 3153~3163
    5. Romano N and Macino G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous equences[J]. Mol. Microbiol, 1992, 6 (2):3343~3353
    6. Guo S and Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/thr kinase that is asymmetrically distributed[J]. Cell, 1995, 81 (5): 611~620
    7. Buckingham SD, Esmaeili B, Wood M, et al. RNA interference: from model organisms towards therapy for neural and neuromuscular disorders [J]. Hum Mol Genet, 2004, 13(2): 275~288
    8. Dalmay T, Hamilton A, Rudd S, et al. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus [J]. Cell, 2000, 101 (5): 543~553
    9. Harper SQ and Davidson BL. Plasmid-based RNA interference: construction of small-hairpin RNA expression vectors [J]. Methods Mol Biol, 2005, 309(4): 219~235
    10. Genc S, Koroglu TF, Genc K, et al. RNA interference in neuroscience [J]. Brain Res Mol Brain Res, 2004, 132 (2): 260~270
    11. Brummelkamp TR, Bernards R, and Agami RA. System for stable xpression of short interfering RNAs in mammalian cells[J]. Science,2002, 296 (5567): 550~561
    12. Paul CP , Good PD ,Winer I ,et al . Effective expression of smallinterfering RNA in human cells[J]. Nature Biotechnology, 2002, 20(5): 505~512
    13. Miyagishi M and Taira K. Development and application of siRNA expression vector[J] . Nucleic Acids Res Suppl, 2002,11 (2): 113~114
    14. Gou D, Jin N, and Liu L. Gene silencing in mammalian cells by PCR-based short hairpin RNA[J]. FEBS Lett, 2003, 548 (123): 113~118
    15. Knudsen H, Nielsen PE. Antisense properties of duplex-and triplex-forming PNAs[J]. Nucleic Acids Res, 1996, 24(3): 495~500
    16. Thompson JD. Applications of antisense and siRNAs during preclinical drug development [J]. Drug Discovery Today, 2002, 7(17): 912~917
    17. Fleming JB, Shen GL, Holloway SE, et al. Molecular consequences of silencing mutant K-ras in pancreatic cancer cells: justification for K-ras-directed therapy[J]. Mol Cancer Res, 2005, 3 (7): 413~423
    18. Boado RJ. RNA interference and nonviral targeted gene therapy of experimental brain cancer [J]. NeuroRx, 2005, 2 (1): 13~150
    19. Wannenes F, Ciafre SA, Niola F, et al. Vector-based RNA interference against vascular endothelial growth factor-A significantly limits vascularization and growth of prostate cancer in vivo [J]. Cancer Gene Ther, 2005, 12 (12): 926~934
    20. Sumimoto H, Yamagata S, Shimizu A, et al. Gene therapy for human small-cell lung carcinoma by inactivation of Skp-2 with virally mediated RNA interference [J]. Gene Ther, 2005, 12 (1): 95~100
    21. Kudo Y, Kitajima S, Ogawa I, et al. Small interfering RNA targeting of S phase kinase-interacting protein 2 inhibits cell growth of oral cancer cells by inhibiting p27 degradation [J]. Mol Cancer Ther, 2005, 4 (3): 471~476
    22. Yague E, Higgins CF, Raguz S. Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1 [J]. Gene Ther, 2004, 11 (14): 1170~1174
    23. Yin ZH, Ren CP, Li F, et al. Suppression of bcl-2 gene by RNA interference increases chemosensitivity to cisplatin in nasopharyngeal carcinoma cell line CNE1 [J]. Acta Biochim Biophys Sin, 2004, 36 (11):749~753
    24. Yanamoto S, Iwamoto T, Kawasaki G, et al. Silencing of the p53R2 gene by RNA interference inhibits growth and enhances 5-fluorouracil sensitivity of oral cancer cells [J]. Cancer Lett, 2005, 223 (1): 67~76
    25. Nieth C, Priebsch A, Stege A, et al. Modulation of the classical multidrug resistance phenotype by RNA interference (RNAi) [J]. FEBS Lett, 2003, 545 (2-3): 144~150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700