基于色谱质谱联用技术的出生缺陷代谢组学和金属组学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
出生缺陷是一种在婴儿出生以前在母体子宫内便发生的身体结构上的发育异常。它包括由于胚胎发育紊乱引起的形态、结构、功能、代谢、精神行为等方面的异常情况。随着人口增长和疾病模式的转变,出生缺陷现象日益突出,已成为世界上婴儿死亡、儿童和成人致残的主要原因之一。我国现有的5100多万残疾人和2200多万的各种遗传病患者中,大部分致残原因为出生缺陷,这给国家和社会带来了极大的经济负担。导致出生缺陷的原因非常复杂,许多常见的出生缺陷是多因素疾病,既包括染色体和基因异常等遗传性缺陷,又包括环境因素(营养,药物,环境污染)导致造成的缺陷。寻找和出生缺陷相关的特异性生物标记物成为目前该疾病诊断和治疗研究的热点与难点。人们除了对在孕妇产前补充叶酸这一预防出生缺陷的手段外,还难以找到其它预防和治疗出生缺陷的有效手段。目前出生缺陷产前诊断的方法主要包括影像学(超声、CT)及临床生化检测,影像学检测只能发现胎儿出现出生缺陷以后的影像结果,难以实现早期诊断的目的;而各种针对出生缺陷的生化检测还没有寻找到一种针对某种产前出生缺陷特异性的生物标志物或代谢物谱群,这给出生缺陷临床的诊断的进步带来了困难。
     代谢组学是继基因组学、转录组学、蛋白质组学后出现的以定量描述生物体内代谢物多参数变化为目标的新兴“组学”,是系统生物学的重要组成部分。代谢组学是关于生物体系(从细胞到整体生物)受刺激或扰动前后(如将某个特定的基因变异或环境变化后)其代谢产物种类、数量及其变化规律的科学。它研究的是生物整体、系统、器官、细胞的代谢物的代谢途径及其所受内在或外在因素的影响。代谢组学主要利用高通量化学分析和多维统计分析为基础的模式识别方法对生物体的扰动进行研究,从代谢产物角度去有针对性地研究疾病的发生、发展及其引发的疾病病理过程的代谢产物并从中寻找共性代谢物以及区别特异性指标(生物标志物),对于疾病及其引发的疾病的病因研究、预防、早期诊断和药物干预评价将可能产生重大影响。金属组学(Metallomics)是继基因组学、转录组学、蛋白质组学和代谢物组学之后提出的一种新的组学。它不仅研究生物体的金属与蛋白结合的化学组成问题,而且为研究金属蛋白和金属酶等生命物质担负生命活动的机理开辟新的途径。目前不能从分子水平上完全了解依赖于金属的生物化学过程,细胞金属成为辅助因子的机理也尚不清楚,人们急需了解金属或类金属在生物体内存在的全部形态信息。弄清金属及其化合物在正常生命过程、重大疾病的发生、诊断和治疗中的作用机理是目前金属组研究的重点和难点。
     本文建立了基于色谱质谱联用技术的出生缺陷相关疾病的尿液、血清及羊水的代谢组学和金属组学研究方法,考察了妊娠时营养不良的孕鼠和正常孕鼠羊水中代谢物谱和金属微量元素谱的差异;分析了临床诊断孕育神经管缺陷和胚胎停育胎儿孕妇以及正常孕妇尿液和血清代谢物谱和金属微量元素的差异。主要内容如下:
     1.以不良饮食食谱建立了出生前营养不良的孕鼠模型,利用三甲基硅烷(TMS)衍生,气相色谱质谱联用(GC/MS)以及电感耦合等离子体质谱(ICP/MS)分析研究方法,考察了出生前不良营养条件对孕鼠羊水中小分子代谢物和微量元素的影响,同时结合模式识别及单维统计方法研究了妊娠时营养不良的孕鼠和正常孕鼠羊水中代谢物谱和微量元素谱的差异。主成分分析(PCA)能将正常孕鼠、低蛋白饮食孕鼠和饥荒孕鼠的代谢物谱和微量元素谱区分开来。实验发现出生前不良饮食会使孕鼠羊水中指征蛋氨酸代谢、多巴胺、谷氨酰胺等神经递质代谢通路的生化物质、锌、硒、钴、铷等微量元素发生改变。本研究显示小分子代谢物和微量元素参与了胎鼠的神经发育过程,这些物质在母体中异常可能直接影响胎鼠神经系统的正常发育过程。
     2.利用氯甲酸乙酯(ECF)和三甲基硅烷(TMS)衍生,气相色谱质谱联用(GC/MS)和气相色谱飞行时间质谱联用(GC/TOFMS)分析方法对正常孕妇、孕育神经管缺陷(NTDs)胎儿孕妇及胚胎停育孕妇的尿液和血清的代谢组进行了研究。结果表明采用正交偏最小二乘法判别分析(OPLS-DA)可以将正常孕妇和胚胎停育孕妇的尿样、正常孕妇、孕育NTDs胎儿孕妇及胚胎停育孕妇血清样本进行较好区分。用单维检验与多维结果进行交互验证,鉴定出多个尿样和血清差异代谢物。这些差异代谢物参与到蛋氨酸循环、同型半胱氨酸代谢、叶酸循环、甲基丙二酸代谢、一碳基团及必需氨基酸代谢这些与NTDs及胚胎停育密切相关的代谢通路。实验结果表明基于气相色谱质谱联用技术的代谢组学技术可以帮助我们区分胎儿出生缺陷孕妇与正常孕妇的代谢物谱,并在小分子代谢物层次帮助上我们认识NTDs和胚胎停育等出生缺陷的生化机制。
     3.采用超高效液相四级杆串联飞行时间质谱联用仪(UPLC/QTOFMS)技术的代谢组学方法分析了正常孕妇、孕育NTDs胎儿孕妇及胚胎停育孕妇的尿液和血清的代谢组学差异。OPLS-DA模型可以较好的将正常孕妇和NTDs孕妇,正常孕妇和胚胎停育孕妇尿样进行区分。本实验通过液质联用的分析代谢视窗来发现了一些与出生缺陷相关的弱极性和大分子代谢物如叶酸、VitB6和VitB12等,它们在NTDs孕妇血中明显低于正常孕妇,这在气质联用分析的差异代谢物基础之上,为出生缺陷的发病机制的认识提供了更为全面的科学依据。
     4.本实验以孕育有NTDs胎儿和停育胎儿的孕母及正常孕母的血清为研究样本,采用硝酸湿法消解的ICP/MS分析方法,得到出生缺陷和正常孕母血清中金属(微量)元素的信息,OPLS-DA模型可以将正常孕母和NTDs孕母的血清金属组进行区分。结合对孕母孕周的分析以及已有文献报道,发现NTDs胎儿孕母与正常孕母血清中金属(微量)元素组的差异,这些差异与铅(Pb)、汞(Hg)、铬(Cr)等有毒重金属及微量元素钴(Co)在NTDs胎儿孕母体内的代谢异常密切相关。
Birth defects (BDs) are the developmental anomaly statuses before the fetus was born, which including morphological, structural, functional, metabolic and psychoneurotic abnormalities of fetus during the fetal development process. BDs are becoming one of inducements that lead to the death of fetus and disability of child and adults along with the rapid population growth and transformation of disease. In China, there are 51 millions of disabled person and 22 millions of inborn error of metabolism patients and BDs are the main causes of these disabilities, which imposed great financial burden upon our country and society. As multi-factorial and polygenic diseases, BDs have extreme complex etiologies which included not only hereditary defects such as chromosomal and gene abnormality, but also environmental factor based malformation such as poor nutrition, drugs and environmental pollution, and therefore, to find out the BDs related specific biomarkers is the highlight of the diagnosis and therapy of these formidable diseases. To date, it is hard to find out effective prevention and therapy of NTDs except of folic acid supplement during the before and after first trimester of pregnancy. The current prenatal diagnosis methods included imageological results such as transonogram and computed tomography, which are not suitable for most BDs due to these imagings are often late deformity results. There are no specific biomarkers or metabolic profiles in the current clinical biochemistry detection which also limited its usage in BDs diagnosis.
     Metabonomics or metabolomics is the developing“omics”which quantitative measurement of metabolites, as an integral part of the systems biology encompassing other omics sciences such as genomics, transcriptomics and proteomics. Metabonomics is the quantitative and qualitative measurement of the multiparametric time-related metabolic responses of a complex system to a pathophysiological intervention or genetic modification. The main purpose of metabonomics is to elucidate endogenous metabolic pathway on different biological levels such as system, organ, tissue or cell level. The main characteristics of metabonomics are the high-throughput chemical analysis and multivariate data analysis. Metabonomics based technologies can find out the specific biomarkers or metabolic profiling of complex diseases at nosogenesis, development and prognosis. Metabonomics has become an important highlight for the research of etiology, early diagnosis and drug intervention.
     Metallomics is another newly developed“omics”science emerging from genomics, transcriptomics, proteomics and metabonomics. The main scopes of metallomics are not only to depict chemical composition of metal and functional protein combination, but also to elucidate the function of metalloprotein and metal enzyme in biosystems. Nowadays, metal based biochemical reaction can not be fully understood on molecular level and the mechanism of metal coenzyme is also a secret. The emphasis and nodus of metallomics is to elucidate the function of metal and its related compound in normal vital movement, etiology and development of complex diseases.
     In the current dissertation, we tried to establish chromatography in hyphenation with mass spectrometry based metabonomic and metallomic technology to investigate metabolic and trace elemental variation in prenatal malnutrition pregnant rats and pregnant women who were pregnant with BDs fetus and to investigate the applicability of such metabonomics and metallomics method in BDs diagnosis and mechanism research.
     We used trimethyl silane derivatization, gas chromatography-mass spectrometry (GC/MS) and inductively coupled plasma mass spectrometry (ICP/MS) based metabonomic and metallomic analysis of amniotic fluid (AF) from prenatal malnutrition pregnant rats. PCA scores plot of both GC/MS and ICP/MS data showed similar and unique metabolic signatures of AF in response to the different diets. Rats in the famine group released decreased amounts of methionine, dopa, glutamine, zinc, cobalt, and selenium in the AF. These discriminable variations in the AF may indicate the abnormality of a number of metabolic pathways in fetal rats including the folate cycle and methionine pathway, the monoamine pathway and necessary trace elements metabolism. This study demonstrates the potential of combining profiling of small-molecule metabolites and trace elements to broaden the understanding of biological variations associated with fetal neurodevelopment induced by environmental perturbation.
     GC/MS and GC/TOFMS based metabonomic approach was used to investigate the BDs related metabolites profiling variation of the urinary and serum samples from pregnant women who were pregnant with neural tube defects (NTDs) and embryo stasimorphy fetus. OPLS-DA model of both GC/MS and GC/TOFMS data showed significant separation tendency between urinary and serum samples on case and control groups. Urine sample from embryo stasimorphy group released increased amounts of methylmalonic acid and decreased amounts of necessary amino acid (MMA), serum sample from NTDs group released decreased amounts of methionine. The urinary and serum metabolites variations in BDs pregnant women may indicate the abnormality of a number of metabolic pathways including methionine cycle, folic acid cycle, homocysteine metabolism, MMA metabolism and TCA. This study demonstrates the potential of metabolic profiling of small-molecule metabolites as a early diagnosis tool to distinguish BDs from healthy control and broaden the understanding of the etiology and mechanism of BDs.
     UPLC/QTOFMS metabonomic approach was used to investigate the BDs related high molecular weight metabolites variation of the urinary and serum samples from pregnant women who were pregnant with neural tube defects (NTDs) and embryo stasimorphy fetus. OPLS-DA model of UPLC/QTOFMS data showed separation tendency between urinary samples on case and control groups. Serum sample from NTDs group released decreased level of folic acid, vitaminB6 and vitaminB12 as compared with healthy pregnant women.This study broaden the metabolic profiling analytical window in the BDs related diseases.
     The nitric acid digestion ICP/MS method based metallomics strategy was used to analysis serum trace elements profiling of healthy and BDs pregnant women. OPLS-DA model of ICP/MS data showed separation tendency between NTDs and healthy pregnant women. Serum sample from NTDs group released decreased level of cobalt and increased level of heavy metal such as lead, mercury and chromium as compared with healthy pregnant women. This study demonstrates the potential of trace elements profiling to broaden the understanding of the mechanism of neural tube defects
引文
1. Gustavson, K. H., Prevalence and aetiology of congenital birth defects, infant mortality and mental retardation in Lahore, Pakistan: a prospective cohort study. Acta Paediatr,2005, 94 (6): 769-774.
    2. Spranger, J.; Benirschke, K.; Hall, J. G., et al., Errors of morphogenesis: concepts and terms. Recommendations of an international working group. J Pediatr,1982, 100 (1): 160-165.
    3. Kirby, R. S.; Feldkamp, M., Population perspective on birth defects: from surveillance to epidemiology to public health. Birth Defects Res A Clin Mol Teratol,2006, 76 (11): 745-746.
    4.修晓燕.,出生缺陷的研究进展.中国妇幼健康研究,2007, 18 (5): 400-402.
    5.熊惠玲.,出生缺陷的病因学研究进展.新疆医科大学学报2006, 29 (8): 765.
    6.中华人民共和国国务院《国家中长期科学和技术发展规划纲要(2006-2020年)》. http://www.gov.cn/jrzg/2006-02/09/content_183787.htm
    7. Leppig, K. A.; Werler, M. M.; Cann, C. I., et al., Predictive value of minor anomalies. I. Association with major malformations. J Pediatr,1987, 110 (4): 531-537.
    8. Song X M, Z. X. Y., Zhu W L , et al., Relationship between polymorphism of cystanthionine beta synthase gene and congenital heart diseases in Chinese nuclear families. Biomedical and Environmental Sciences,2006, 19 (6): 452-456.
    9. Finckenstein, F. G.; Davicioni, E.; Osborn, K. G., et al., Transgenic mice expressing PAX3-FKHR have multiple defects in muscle development, including ectopic skeletal myogenesis in the developing neural tube. Transgenic Res,2006, 15 (5): 595-614.
    10.吴龙.,宁夏0- 14岁回族儿童出生缺陷的调查.宁夏医学杂志,1999, 21 (1): 51-52.
    11. Shoji, S.; Watanabe, H.; Katoh, O., et al., Developmental malformations and intrauterine deaths in gamma-ray-irradiated scid mouse embryos. Int J Radiat Biol,1998, 73 (6): 705-709.
    12. Ong, C. N.; Thein, M. M.; Berquist, U., A review of adverse effects on reproduction amongst female computer terminal workers. Ann Acad Med Singapore,1990, 19 (5): 649-655.
    13. Christensen, K., Vitamins, fever and birth defects- consistent interaction or persistent bias? Epidemiology,2002, 13 (6): 620-621.
    14. Brender, J. D.; Zhan, F. B.; Langlois, P. H., et al., Residential proximity to waste sites and industrial facilities and chromosomal anomalies in offspring. Int J Hyg Environ Health,2008, 211 (1-2): 50-58.
    15.孙晓英.,有机磷农药混剂对大鼠的胚胎毒性和致畸性研究.西安交通大学学报(医学版),2005, 26 (6): 562-564.
    16. Carmichael, S. L.; Shaw, G. M.; Laurent, C., et al., Maternal progestin intake and risk of hypospadias. Arch Pediatr Adolesc Med,2005, 159 (10): 957-962.
    17. Tamer, S. K.; Misra, S.; Jaiswal, S., The offspring of epileptic mother. Indian J Pediatr,1996, 63 (4): 523-531.
    18. Tocco, D. R.; Renskers, K.; Zimmerman, E. F., Diazepam-induced cleft palate in the mouse and lack of correlation with the H-2 locus. Teratology,1987, 35 (3): 439-445.
    19. Watts, D. H.; Li, D.; Handelsman, E., et al., Assessment of birth defects according to maternal therapy among infants in the Women and Infants Transmission Study. J Acquir Immune Defic Syndr,2007, 44 (3): 299-305.
    20. Berard, A.; Ramos, E.; Rey, E., et al., First trimester exposure to paroxetine and risk of cardiac malformations in infants: the importance of dosage. Birth Defects Res B Dev ReprodToxicol,2007, 80 (1): 18-27.
    21. Mills, J. L.; Simpson, J. L.; Cunningham, G. C., et al., Vitamin A and birth defects. Am J Obstet Gynecol,1997, 177 (1): 31-36.
    22. Zhu, W. L.; Dao, J. J.; Cheng, J., et al., [Relations between serum homocysteine and folic acid levels with congenital heart disease]. Wei Sheng Yan Jiu,2005, 34 (6): 740-743.
    23. Vinceti, M.; Rovesti, S.; Bergomi, M., et al., Risk of birth defects in a population exposed to environmental lead pollution. Sci Total Environ,2001, 278 (1-3): 23-30.
    24. Smith, A. M., Mercury poisoning and birth defects in Japan. Women Health,1978, 3 (2): 9-12.
    25. Gaido, K. W.; Hensley, J. B.; Liu, D., et al., Fetal mouse phthalate exposure shows that Gonocyte multinucleation is not associated with decreased testicular testosterone. Toxicol Sci,2007, 97 (2): 491-503.
    26. Honein, M. A.; Rasmussen, S. A.; Reefhuis, J., et al., Maternal smoking and environmental tobacco smoke exposure and the risk of orofacial clefts. Epidemiology,2007, 18 (2): 226-233.
    27. Jensen, M. S.; Toft, G.; Thulstrup, A. M., et al., Cryptorchidism according to maternal gestational smoking. Epidemiology,2007, 18 (2): 220-225.
    28. Padmanabhan, R.; Pallot, D. J., Aspirin-alcohol interaction in the production of cleft palate and limb malformations in the TO mouse. Teratology,1995, 51 (6): 404-417.
    29. Soderberg-Naucler, C., Human cytomegalovirus persists in its host and attacks and avoids elimination by the immune system. Crit Rev Immunol,2006, 26 (3): 231-264.
    30. Foulon, W.; Naessens, A.; Ho-Yen, D., Prevention of congenital toxoplasmosis. J Perinat Med,2000, 28 (5): 337-345.
    31. Chernausek, S. D., Mendelian genetic causes of the short child born small for gestational age. J Endocrinol Invest,2006, 29 (1 Suppl): 16-20.
    32. Weinstock, M., Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog Neurobiol,2001, 65 (5): 427-451.
    33. Banhidy, F.; Acs, N.; Horvath-Puho, E., et al., Maternal severe migraine and risk of congenital limb deficiencies. Birth Defects Res A Clin Mol Teratol,2006, 76 (8): 592-601.
    34. Costa CM, D. S., Leal MC et al., Congenital malformations in Rio de Janeiro, Brazil: Prevalence and associated factors. Cadernos Desaude Publica,2006, 22 (11): 2423-2431.
    35. Loffredo, L. C.; Souza, J. M.; Freitas, J. A., et al., Oral clefts and vitamin supplementation. Cleft Palate Craniofac J,2001, 38 (1): 76-83.
    36. Czeizel, A. E., Primary prevention of neural-tube defects and some other major congenital abnormalities: recommendations for the appropriate use of folic acid during pregnancy. Paediatr Drugs,2000, 2 (6): 437-449.
    37. Gareskog, M.; Eriksson, U. J.; Wentzel, P., Combined supplementation of folic acid and vitamin E diminishes diabetes-induced embryotoxicity in rats. Birth Defects Res A Clin Mol Teratol,2006, 76 (6): 483-490.
    38. Katis, V. L.; Galova, M.; Rabitsch, K. P., et al., Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr Biol,2004, 14 (7): 560-572.
    39. Griffith-Jones, M. D.; Miller, D.; Lilford, R. J., et al., Detection of fetal DNA in trans-cervical swabs from first trimester pregnancies by gene amplification: a new route to prenatal diagnosis? Br J Obstet Gynaecol,1992, 99 (6): 508-511.
    40. Rivera, I. R.; da Silva, M. A.; Moises, V. A., et al., Echocardiograph pulmonary venous flow patterns in congenital heart defects with increased pulmonary flow. Arq Bras Cardiol,2007, 88 (4): 396-401.
    41. Kooper, A. J.; de Bruijn, D.; van Ravenwaaij-Arts, C. M., et al., Fetal anomaly scan potentially will replace routine AFAFP assays for the detection of neural tube defects. Prenat Diagn,2007, 27 (1): 29-33.
    42. Christiansen, M.; Sorensen, T. L.; Norgaard-Pedersen, B., Human placental lactogen is a first-trimester maternal serum marker of Down syndrome. Prenat Diagn,2007, 27 (1): 1-5.
    43. Farmer, D. L., Fetal surgery: a brief review. Pediatr Radiol,1998, 28 (6): 409-413
    47. Backman, B.; Grever-Sjolander, A. C.; Bengtsson, K., et al., Children with Down syndrome: oral development and morphology after use of palatal plates between 6 and 48 months of age. Int J Paediatr Dent,2007, 17 (1): 19-28.
    48. Kell, D. B., Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol,2004, 7 (3): 296-307.
    49. German, J. B.; Bauman, D. E.; Burrin, D. G., et al., Metabolomics in the opening decade of the 21st century: building the roads to individualized health. J Nutr,2004, 134 (10): 2729-2732.
    50. Nicholson, J. K.; Connelly, J.; Lindon, J. C., et al., Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov,2002, 1 (2): 153-161.
    51. Fiehn, O., Metabolomics--the link between genotypes and phenotypes. Plant Mol Biol,2002, 48 (1-2): 155-171.
    52. Fiehn, O.; Kopka, J.; Dormann, P., et al., Metabolite profiling for plant functional genomics. Nat Biotechnol,2000, 18 (11): 1157-1161.
    53. Nicholson, J. K.; Timbrell, J. A.; Sadler, P. J., Proton NMR spectra of urine as indicators of renal damage. Mercury-induced nephrotoxicity in rats. Mol Pharmacol,1985, 27 (6): 644-651.
    54. Nicholson, J. K.; Lindon, J. C.; Holmes, E., 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica,1999, 29 (11): 1181-1189.
    55. Lindon, J. C.; Holmes, E.; Nicholson, J. K., Metabonomics: systems biology in pharmaceutical research and development. Curr Opin Mol Ther,2004, 6 (3): 265-272.
    56. Hall, R.; Beale, M.; Fiehn, O., et al., Plant metabolomics: the missing link in functional genomics strategies. Plant Cell,2002, 14 (7): 1437-1440.
    57. Fiehn, O.; Kopka, J.; Trethewey, R. N., et al., Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem,2000, 72 (15): 3573-3580.
    58. Taylor, J.; King, R. D.; Altmann, T., et al., Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics,2002, 18 Suppl 2: S241-248.
    59. Gates, S. C.; Sweeley, C. C., Quantitative metabolic profiling based on gas chromatography. Clin Chem,1978, 24 (10): 1663-1673.
    60. Trethewey, R. N.; Krotzky, A. J.; Willmitzer, L., Metabolic profiling: a Rosetta Stone for genomics? Curr Opin Plant Biol,1999, 2 (2): 83-85.
    61. van der Greef, J.; Leegwater, D. C., Urine profile analysis by field desorption mass spectrometry, a technique for detecting metabolites of xenobiotics. Application to
    3,5-dinitro-2-hydroxytoluene. Biomed Mass Spectrom,1983, 10 (1): 1-4.
    62. Brindle, J. T.; Antti, H.; Holmes, E., et al., Rapid and noninvasive diagnosis of the presenceand severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med,2002, 8 (12): 1439-1444.
    63. Oliver, S. G., Yeast as a navigational aid in genome analysis. 1996 Kathleen Barton-Wright Memorial Lecture. Microbiology,1997, 143 ( Pt 5): 1483-1487.
    64. Sumner, L. W.; Mendes, P.; Dixon, R. A., Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry,2003, 62 (6): 817-836.
    65. Brooksbank, C.; Quackenbush, J., Data standards: a call to action. Omics,2006, 10 (2): 94-99.
    66. Fiehn, O.; Kristal, B.; van Ommen, B., et al., Establishing reporting standards for metabolomic and metabonomic studies: a call for participation. Omics,2006, 10 (2): 158-163.
    67. Lindon, J. C.; Nicholson, J. K.; Holmes, E., et al., Summary recommendations for standardization and reporting of metabolic analyses. Nat Biotechnol,2005, 23 (7): 833-838.
    68. Dunn, W. B.; Bailey, N. J.; Johnson, H. E., Measuring the metabolome: current analytical technologies. Analyst,2005, 130 (5): 606-625.
    69. Hollywood, K.; Brison, D. R.; Goodacre, R., Metabolomics: current technologies and future trends. Proteomics,2006, 6 (17): 4716-4723.
    70. Reo, N. V., NMR-based metabolomics. Drug Chem Toxicol,2002, 25 (4): 375-382.
    71. Holmes, E.; Tsang, T. M.; Tabrizi, S. J., The application of NMR-based metabonomics in neurological disorders. NeuroRx,2006, 3 (3): 358-372.
    72. Daykin, C. A.; Corcoran, O.; Hansen, S. H., et al., Application of directly coupled HPLC NMR to separation and characterization of lipoproteins from human serum. Anal Chem,2001, 73 (6): 1084-1090.
    73. Styczynski, M. P.; Moxley, J. F.; Tong, L. V., et al., Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Anal Chem,2007, 79 (3): 966-973.
    74. Wilson, I. D.; Plumb, R.; Granger, J., et al., HPLC-MS-based methods for the study of metabonomics. J Chromatogr B Analyt Technol Biomed Life Sci,2005, 817 (1): 67-76.
    75. Wagner, S.; Scholz, K.; Sieber, M., et al., Tools in metabonomics: an integrated validation approach for LC-MS metabolic profiling of mercapturic acids in human urine. Anal Chem,2007, 79 (7): 2918-2926.
    76. Williams, R. E.; Major, H.; Lock, E. A., et al., D-Serine-induced nephrotoxicity: a HPLC-TOF/MS-based metabonomics approach. Toxicology,2005, 207 (2): 179-190.
    77. Plumb, R. S.; Stumpf, C. L.; Gorenstein, M. V., et al., Metabonomics: the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Commun Mass Spectrom,2002, 16 (20): 1991-1996.
    78. Harada, K.; Fukusaki, E.; Kobayashi, A., Pressure-assisted capillary electrophoresis mass spectrometry using combination of polarity reversion and electroosmotic flow for metabolomics anion analysis. J Biosci Bioeng,2006, 101 (5): 403-409.
    79. Harrigan, G. G.; LaPlante, R. H.; Cosma, G. N., et al., Application of high-throughput Fourier-transform infrared spectroscopy in toxicology studies: contribution to a study on the development of an animal model for idiosyncratic toxicity. Toxicol Lett,2004, 146 (3): 197-205.
    80. Smith, C. A.; Want, E. J.; O'Maille, G., et al., XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. AnalChem,2006, 78 (3): 779-787.
    81. Jonsson, P.; Johansson, E. S.; Wuolikainen, A., et al., Predictive metabolite profiling applying hierarchical multivariate curve resolution to GC-MS data--a potential tool for multi-parametric diagnosis. J Proteome Res,2006, 5 (6): 1407-1414.
    82. Oresic, M.; Vidal-Puig, A.; Hanninen, V., Metabolomic approaches to phenotype characterization and applications to complex diseases. Expert Rev Mol Diagn,2006, 6 (4): 575-585.
    83. Lutz, U.; Lutz, R. W.; Lutz, W. K., Metabolic profiling of glucuronides in human urine by LC-MS/MS and partial least-squares discriminant analysis for classification and prediction of gender. Anal Chem,2006, 78 (13): 4564-4571.
    84. Holmes, E.; Nicholls, A. W.; Lindon, J. C., et al., Chemometric models for toxicity classification based on NMR spectra of biofluids. Chem Res Toxicol,2000, 13 (6): 471-478.
    85. Keun, H. C.; Ebbels, T. M.; Bollard, M. E., et al., Geometric trajectory analysis of metabolic responses to toxicity can define treatment specific profiles. Chem Res Toxicol,2004, 17 (5): 579-587.
    86. Craig, A.; Sidaway, J.; Holmes, E., et al., Systems toxicology: integrated genomic, proteomic and metabonomic analysis of methapyrilene induced hepatotoxicity in the rat. J Proteome Res,2006, 5 (7): 1586-1601.
    87. Lindon, J. C.; Keun, H. C.; Ebbels, T. M., et al., The Consortium for Metabonomic Toxicology (COMET): aims, activities and achievements. Pharmacogenomics,2005, 6 (7): 691-699.
    88. Lindon, J. C.; Nicholson, J. K.; Holmes, E., et al., Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicol Appl Pharmacol,2003, 187 (3): 137-146.
    89. Yao, J. K.; Reddy, R. D., Metabolic investigation in psychiatric disorders. Mol Neurobiol,2005, 31 (1-3): 193-203.
    90. Denkert, C.; Budczies, J.; Kind, T., et al., Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res,2006, 66 (22): 10795-10804.
    91. Pan, Z.; Gu, H.; Talaty, N., et al., Principal component analysis of urine metabolites detected by NMR and DESI-MS in patients with inborn errors of metabolism. Anal Bioanal Chem,2007, 387 (2): 539-549.
    92. Kuhara, T., Gas chromatographic-mass spectrometric urinary metabolome analysis to study mutations of inborn errors of metabolism. Mass Spectrom Rev,2005, 24 (6): 814-827.
    93. Wang, C.; Kong, H.; Guan, Y., et al., Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal Chem,2005, 77 (13): 4108-4116.
    94. Kenny LC, D. W., Ellis DI, et al., Novel biomarkers for preeclampsia detected using metabolomics and machine learning Metabolomics,2005, 1 (3): 227-234.
    95. Haraguchi, H. M., H., Proceeding of International Symposium on BioTrace Elements 2OO2 (BITRE 2O02),eds.Enomoto S,Seko Y.The Institute of Physical and Chemical Research (RiKEN),Wako,.2003: 3-8.
    96. Haraguchi, H., Metallomics as integrated biometal science . J Anal At Spectrom,2004, 19 (3):5-14.
    97. Szpunar, J., Bio-inorganic speciation analysis by hyphenated techniques. Analyst,2000, 125 (5): 963-988.
    98. Norbert J, R., L, Luc M, Metallobiomolecules: The basis of life, the challenge of atomic Spectroscopy. J Anal At Spectrom,2004, 19 (3): 1- 4.
    1. Guerrini, I.; Thomson, A. D.; Gurling, H. D., The importance of alcohol misuse, malnutrition and genetic susceptibility on brain growth and plasticity. Neurosci Biobehav Rev,2007, 31 (2): 212-220.
    2. Morgane, P. J.; Austin-LaFrance, R.; Bronzino, J., et al., Prenatal malnutrition and development of the brain. Neurosci Biobehav Rev,1993, 17 (1): 91-128.
    3. Liu, W.; Breen, G.; Zhang, J., et al., Association of APOE gene with schizophrenia in Chinese: a possible risk factor in times of malnutrition. Schizophr Res,2003, 62 (3): 225-230.
    4. Knudsen, T. B.; Green, M. L., Response characteristics of the mitochondrial DNA genome in developmental health and disease. Birth Defects Res C Embryo Today,2004, 72 (4): 313-329.
    5. Nicholson, J. K.; Lindon, J. C.; Holmes, E., 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica,1999, 29 (11): 1181-1189.
    6. Chen, M.; Su, M.; Zhao, L., et al., Metabonomic study of aristolochic acid-induced nephrotoxicity in rats. J Proteome Res,2006, 5 (4): 995-1002.
    7. Wang, X.; Su, M.; Qiu, Y., et al., Metabolic regulatory network alterations in response to acute cold stress and ginsenoside intervention. J Proteome Res,2007, 6 (9): 3449-3455.
    8. Young, V. R., Trace element biology: the knowledge base and its application for the nutrition of individuals and populations. J Nutr,2003, 133 (5 Suppl 1): 1581S-1587S.
    9. Szpunar, J.; Lobinski, R.; Prange, A., Hyphenated techniques for elemental speciation in biological systems. Appl Spectrosc,2003, 57 (3): 102A-112A.
    10. Pere, M. C., Materno-foetal exchanges and utilisation of nutrients by the foetus: comparison between species. Reprod Nutr Dev,2003, 43 (1): 1-15.
    11. Liang, H.; Xiong, W.; Zhang, Z., Effect of maternal food restriction during gestation on early development of F1 and F2 offspring in the rat-like hamster (Cricetulus triton). Zoology (Jena),2007, 110 (2): 118-126.
    12. A, J.; Trygg, J.; Gullberg, J., et al., Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem,2005, 77 (24): 8086-8094.
    13. Qiu, Y.; Su, M.; Liu, Y., et al., Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling. Anal Chim Acta,2007, 583 (2): 277-283.
    14. Morita, H.; Kita, T.; Umeno, M., et al., Analysis of serum elements and the contaminations from devices used for serum preparation by inductively coupled plasma mass spectrometry. Sci Total Environ,1994, 151 (1): 9-17.
    15. Li, H.; Ni, Y.; Su, M., et al., Pharmacometabonomic phenotyping reveals different responses to xenobiotic intervention in rats. J Proteome Res,2007, 6 (4): 1364-1370.
    16. Ni, Y.; Su, M.; Qiu, Y., et al., Metabolic profiling using combined GC-MS and LC-MS provides a systems understanding of aristolochic acid-induced nephrotoxicity in rat. FEBS Lett,2007, 581 (4): 707-711.
    17. Steegers-Theunissen, R. P.; Wathen, N. C.; Eskes, T. K., et al., Maternal and fetal levels of methionine and homocysteine in early human pregnancy. Br J Obstet Gynaecol,1997, 104 (1):
    20-24.
    18. Almqvist, P. M.; Akesson, E.; Wahlberg, L. U., et al., First trimester development of the human nigrostriatal dopamine system. Exp Neurol,1996, 139 (2): 227-237.
    19. Verney, C.; Milosevic, A.; Alvarez, C., et al., Immunocytochemical evidence of well-developed dopaminergic and noradrenergic innervations in the frontal cerebral cortex of human fetuses at midgestation. J Comp Neurol,1993, 336 (3): 331-344.
    20. Wiggins, R. C.; Fuller, G.; Enna, S. J., Undernutrition and the development of brain neurotransmitter systems. Life Sci,1984, 35 (21): 2085-2094.
    21. Sokoloff, P.; Guillin, O.; Diaz, J., et al., Brain-derived neurotrophic factor controls dopamine D3 receptor expression: implications for neurodevelopmental psychiatric disorders. Neurotox Res,2002, 4 (7-8): 671-678.
    22. Gambarana, C.; Ghiglieri, O.; Masi, F., et al., The effects of long-term administration of rubidium or lithium on reactivity to stress and on dopamine output in the nucleus accumbens in rats. Brain Res,1999, 826 (2): 200-209.
    23. Lujan, R.; Shigemoto, R.; Lopez-Bendito, G., Glutamate and GABA receptor signalling in thedeveloping brain. Neuroscience,2005, 130 (3): 567-580.
    24. Coyle, J. T., The GABA-glutamate connection in schizophrenia: which is the proximate cause? Biochem Pharmacol,2004, 68 (8): 1507-1514.
    25. Choi, D. W., Glutamate neurotoxicity and diseases of the nervous system. Neuron,1988, 1 (8): 623-634.
    26. Waziri, R.; Baruah, S., A hyperglycinergic rat model for the pathogenesis of schizophrenia: preliminary findings. Schizophr Res,1999, 37 (3): 205-215.
    27. Cadet, J. L., Free radical mechanisms in the central nervous system: an overview. Int J Neurosci,1988, 40 (1-2): 13-18.
    28. Wang, F. D.; Zhao, F. J.; Jing, N. H., [Effect of dietary zinc on microtubule-associated protein 2 expression in the brain of mice]. Sheng Li Xue Bao,1999, 51 (5): 495-500.
    29. Ngo, D. B.; Dikassa, L.; Okitolonda, W., et al., Selenium status in pregnant women of a rural population (Zaire) in relationship to iodine deficiency. Trop Med Int Health,1997, 2 (6): 572-581.
    30. Morreale de Escobar, G.; Obregon, M. J.; Escobar del Rey, F., Role of thyroid hormone during early brain development. Eur J Endocrinol,2004, 151 Suppl 3: U25-37.
    31. Burek, M. J.; Oppenheim, R. W., Programmed cell death in the developing nervous system. Brain Pathol,1996, 6 (4): 427-446.
    32. Soares, J. C.; Mallinger, A. G., Abnormal phosphatidylinositol (PI)-signalling in bipolar disorder. Biol Psychiatry,1996, 39 (6): 461-464.
    33. Yan, W.; Wilson, C. C.; Haring, J. H., Effects of neonatal serotonin depletion on the development of rat dentate granule cells. Brain Res Dev Brain Res,1997, 98 (2): 177-184.
    1. Peters, P. W., Risk estimation and primary prevention of birth defects. Arch Toxicol Suppl,1994, 16: 138-147.
    2.李蔓,出生缺陷危险因素及诊断研究进展.中国妇幼健康研究,2007, 18 (4): 307-310.
    3.张玲,人口出生缺陷的研究进展.医学与社会,2006, 19 (3): 6-8.
    4. Brent, R. L., Addressing environmentally caused human birth defects. Pediatr Rev,2001, 22 (5): 153-165.
    5. Hamlat, A.; Adn, M.; Pasqualini, E., et al., Pathophysiology of capillary haemangioma growth after birth. Med Hypotheses,2005, 64 (6): 1093-1096.
    6. Kenny LC, D. W., Ellis DI, et al., Novel biomarkers for preeclampsia detected using metabolomics and machine learning Metabolomics,2005, 1 (3): 227-234.
    7. Pan, Z.; Gu, H.; Talaty, N., et al., Principal component analysis of urine metabolites detected by NMR and DESI-MS in patients with inborn errors of metabolism. Anal Bioanal Chem,2007, 387 (2): 539-549.
    8. Song, Y. Z.; Li, B. X.; Hao, H., et al., Selective screening for inborn errors of metabolism and secondary methylmalonic aciduria in pregnancy at high risk district of neural tube defects: a human metabolome study by GC-MS in China. Clin Biochem,2008, 41 (7-8): 616-620.
    9. Qiu, Y.; Su, M.; Liu, Y., et al., Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling. Anal Chim Acta,2007, 583 (2): 277-283.
    10. A, J.; Trygg, J.; Gullberg, J., et al., Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem,2005, 77 (24): 8086-8094.
    11. Jonsson, P.; Gullberg, J.; Nordstrom, A., et al., A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal Chem,2004, 76 (6): 1738-1745.
    12. Kolker, S.; Schwab, M.; Horster, F., et al., Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain. J Biol Chem,2003, 278 (48): 47388-47393.
    13. Dutra, J. C.; Dutra-Filho, C. S.; Cardozo, S. E., et al., Inhibition of succinate dehydrogenase and beta-hydroxybutyrate dehydrogenase activities by methylmalonate in brain and liver of developing rats. J Inherit Metab Dis,1993, 16 (1): 147-153.
    14. Savage, D. G.; Lindenbaum, J.; Stabler, S. P., et al., Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate deficiencies. Am J Med,1994, 96 (3): 239-246.
    15. Vanaerts, L. A.; Blom, H. J.; Deabreu, R. A., et al., Prevention of neural tube defects by and toxicity of L-homocysteine in cultured postimplantation rat embryos. Teratology,1994, 50 (5): 348-360.
    16. Cetin, I.; Corbetta, C.; Sereni, L. P., et al., Umbilical amino acid concentrations in normal and growth-retarded fetuses sampled in utero by cordocentesis. Am J Obstet Gynecol,1990, 162 (1): 253-261.
    17. Ueland, P. M.; Refsum, H.; Beresford, S. A., et al., The controversy over homocysteine and cardiovascular risk. Am J Clin Nutr,2000, 72 (2): 324-332.
    18. Hobbs, C. A.; Cleves, M. A.; Melnyk, S., et al., Congenital heart defects and abnormal maternal biomarkers of methionine and homocysteine metabolism. Am J Clin Nutr,2005, 81 (1):147-153.
    19. Daly, S. F.; Molloy, A. M.; Mills, J. L., et al., The influence of 5,10 methylenetetrahydrofolate reductase genotypes on enzyme activity in placental tissue. Br J Obstet Gynaecol,1999, 106 (11): 1214-1218.
    20. Williamson, R., Prevention of birth defects: folic acid. Biol Res Nurs,2001, 3 (1): 33-38.
    21. Zhao, W.; Mosley, B. S.; Cleves, M. A., et al., Neural tube defects and maternal biomarkers of folate, homocysteine, and glutathione metabolism. Birth Defects Res A Clin Mol Teratol,2006, 76 (4): 230-236.
    22. Williams, L. J.; Mai, C. T.; Edmonds, L. D., et al., Prevalence of spina bifida and anencephaly during the transition to mandatory folic acid fortification in the United States. Teratology,2002, 66 (1): 33-39.
    1. Plumb, R.; Castro-Perez, J.; Granger, J., et al., Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun Mass Spectrom,2004, 18 (19): 2331-2337.
    2. Plumb, R. S.; Granger, J. H.; Stumpf, C. L., et al., A rapid screening approach to metabonomics using UPLC and oa-TOF mass spectrometry: application to age, gender and diurnal variation in normal/Zucker obese rats and black, white and nude mice. Analyst,2005, 130 (6): 844-849.
    3. Plumb, R. S.; Johnson, K. A.; Rainville, P., et al., The detection of phenotypic differences in the metabolic plasma profile of three strains of Zucker rats at 20 weeks of age using ultra-performance liquid chromatography/orthogonal acceleration time-of-flight mass spectrometry. Rapid Commun Mass Spectrom,2006, 20 (19): 2800-2806.
    4. Patterson, A. D.; Li, H.; Eichler, G. S., et al., UPLC-ESI-TOFMS-based metabolomics and gene expression dynamics inspector self-organizing metabolomic maps as tools for understanding the cellular response to ionizing radiation. Anal Chem,2008, 80 (3): 665-674.
    5. Bruce, S. J.; Jonsson, P.; Antti, H., et al., Evaluation of a protocol for metabolic profiling studies on human blood plasma by combined ultra-performance liquid chromatography/mass spectrometry: From extraction to data analysis. Anal Biochem,2008, 372 (2): 237-249.
    6. Nordstrom, A.; O'Maille, G.; Qin, C., et al., Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: quantitative analysis of endogenous and exogenous metabolites in human serum. Anal Chem,2006, 78 (10): 3289-3295.
    7. Yin, P.; Zhao, X.; Li, Q., et al., Metabonomics study of intestinal fistulas based on ultraperformance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC/Q-TOF MS). J Proteome Res,2006, 5 (9): 2135-2143.
    8. van der Put, N. M.; Gabreels, F.; Stevens, E. M., et al., A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet,1998, 62 (5): 1044-1051.
    9. De Marco, P.; Calevo, M. G.; Moroni, A., et al., Study of MTHFR and MS polymorphisms as risk factors for NTD in the Italian population. J Hum Genet,2002, 47 (6): 319-324.
    10. Dalery, K.; Lussier-Cacan, S.; Selhub, J., et al., Homocysteine and coronary artery disease in French Canadian subjects: relation with vitamins B12, B6, pyridoxal phosphate, and folate. Am J Cardiol,1995, 75 (16): 1107-1111.
    1. Liebscher, K.; Smith, H., Essential and nonessential trace elements. A method of determining whether an element is essential or nonessential in human tissue. Arch Environ Health,1968, 17 (6): 881-890.
    2. Chowdhury, B. A.; Chandra, R. K., Biological and health implications of toxic heavy metal and essential trace element interactions. Prog Food Nutr Sci,1987, 11 (1): 55-113.
    3. Patel, P.; Jones, P.; Handy, R., et al., Isotopic labelling of peptides and isotope ratio analysis using LC-ICP-MS: a preliminary study. Anal Bioanal Chem,2008, 390 (1): 61-65.
    4. Haraguchi, H., Metallomics as integrated biometal science . J Anal At Spectrom,2004, 19 (3): 5-14.
    5. Czeizel, A. E., Controlled studies of multivitamin supplementation on pregnancy outcomes. Ann N Y Acad Sci,1993, 678: 266-275.
    6. Graf, W. D.; Oleinik, O. E.; Pippenger, C. E., et al., Comparison of erythrocyte antioxidant enzyme activities and embryologic level of neural tube defects. Eur J Pediatr Surg,1995, 5 Suppl 1: 8-11.
    7. Cengiz, B.; Soylemez, F.; Ozturk, E., et al., Serum zinc, selenium, copper, and lead levels in women with second-trimester induced abortion resulting from neural tube defects: a preliminary study. Biol Trace Elem Res,2004, 97 (3): 225-235.
    8. Cheng, C. C.; Lee, F. K.; Lin, H. W., et al., Diagnosis of fetal acrania during the first trimester nuchal translucency screening for Down syndrome. Int J Gynaecol Obstet,2003, 80 (2): 139-144.
    9. Storeng, R.; Jonsen, J., Effect of nickel chloride and cadmium acetate on the development of preimplantation mouse embryos in vitro. Toxicology,1980, 17 (2): 183-187.
    10. Johansson, L.; Sjoblom, P.; Wide, M., Effects of lead on the male mouse as investigated by in vitro fertilization and blastocyst culture. Environ Res,1987, 42 (1): 140-148.
    11. Irgens, A.; Kruger, K.; Skorve, A. H., et al., Reproductive outcome in offspring of parents occupationally exposed to lead in Norway. Am J Ind Med,1998, 34 (5): 431-437.
    12. Borja-Aburto, V. H.; Hertz-Picciotto, I.; Rojas Lopez, M., et al., Blood lead levels measured prospectively and risk of spontaneous abortion. Am J Epidemiol,1999, 150 (6): 590-597.
    13. Bem, E. M.; Mailer, K.; Elson, C. M., Influence of mercury (II), cadmium (II), methylmercury, and phenylmercury on the kinetic properties of rat liver glutathione peroxidase. Can J Biochem Cell Biol,1985, 63 (12): 1212-1216.
    14. Danscher, G.; Horsted-Bindslev, P.; Rungby, J., Traces of mercury in organs from primates with amalgam fillings. Exp Mol Pathol,1990, 52 (3): 291-299.
    15. Gerhard, I.; Monga, B.; Waldbrenner, A., et al., Heavy metals and fertility. J Toxicol Environ Health A,1998, 54 (8): 593-611.
    16. Petrilli, F. L.; De Flora, S., Toxicity and mutagenicity of hexavalent chromium on Salmonella typhimurium. Appl Environ Microbiol,1977, 33 (4): 805-809.
    17. Asmatullah, S. N.; Shakoori, A. R., Embryotoxic and teratogenic effects of hexavalent chromium in developing chicks of Gallus domesticus. Bull Environ Contam Toxicol,1998, 61 (3): 281-288.
    18. Junaid, M.; Murthy, R. C.; Saxena, D. K., Embryotoxicity of orally administered chromium in mice: exposure during the period of organogenesis. Toxicol Lett,1996, 84 (3): 143-148.
    19. Manning, F. C.; Blankenship, L. J.; Wise, J. P., et al., Induction of internucleosomal DNA fragmentation by carcinogenic chromate: relationship to DNA damage, genotoxicity, and inhibition of macromolecular synthesis. Environ Health Perspect,1994, 102 Suppl 3: 159-167.
    20.何崇,维生素和微量元素的科学应用. In第一版ed.;上海中医药大学出版社: 2003; p 320-323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700