表面等离子体聚焦调制及增强太阳能电池吸收研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属表面等离子体(surface plasmon),是目前纳米光子学中最引人注目的应用研究方向;借助于金属界面,或者金属纳米结构,它可以将电磁场高度局限在纳米尺度的范围之内,使得光近场区域场强得到大幅度的提高;表面等离子体激元(SPPs)和局域表面等离子体(LSP)分别是其中的两个组成部分。理论上,利用SPPs的传播特性,可以开发出亚波长尺寸的光子器件;而利用LSP的场局限作用,可以将发散的电磁能量高度汇聚在金属纳米结构的近场区域。基于这两方面的特性,本论文分别进行了两种应用研究:
     1.为了研究远场超聚焦的可能,本论文研究了基于纳米孔结构的银薄膜等离子体透镜聚焦模型;调查了银薄膜的厚度对这种透镜聚焦效果的调制作用。利用时域有限差分法(FDTD),论文中分别计算和分析了一系列厚度的银薄膜透镜的光聚焦特性。仿真结果表明:一方面,由于SPPs的作用,该平板结构能够实现光聚焦,而且聚焦强度很高;另一方面,不同的银薄膜厚度,会得到不同的聚焦效果;增加银薄膜的厚度,会使得该透镜的焦距从近场,逐渐推移到远场;近场焦斑尺寸可以达到波长以下,而远场焦斑的大小略大于一个波长。
     2.为了提高有机物薄膜太阳能电池的光电转化效率,论文中考察了一种内嵌有金属纳米粒子的复合型有机物太阳能电池材料。借助三维的电磁波仿真软件,文中建立了金属-有机物混合薄膜结构;并且通过仿真计算,对比分析了金属粒子阵列对太阳能电池的光子吸收效率的影响。数据表明,由于LSP的共振效应,金属纳米粒子可以起到光子吸收的增强作用;在材料中,改变金属纳米粒子的位置,大小,形状,阵列周期,会得到不一样的场分布,增强光子吸收的效果也有较大的差别。最后,通过一系列的对比分析,论文总结出了金属纳米粒子阵列的最优布局,为设计混合型有机物薄膜太阳能电池提供了很好的依据。
Metal surface plasmon forms the major part of the fascinating field of nanophotonics, at metallic interfaces or in metallic nanostructures, which has the ability to confine electromagnetic fields under dimensions on the order of or smaller than the wavelength, leading to an enhanced optical near field. Surface plasmon polaritons (SPPs) and localized surface plasmon (LSP) are two dividual ingredients belong to plasmon. Theoretically, to utilize the long propagation characteristic of SPPs, it is possible to develop many sub-wavelength dimension photonic devices; and make use of the LSP to exploit metal nanostructures to block radiation for sub-wavelength area electromagnetic energy's confinement. Base on this two special properties, this thesis carry out two kind of application research:
     1. First of all, to investigate the possibility of far-field superfocusing, this thesis analyzes a plasmonic lens model, which is a metal film structure constituted with nano-pinholes; and then have make a study of the focus modulation property of this kind of plasmonic Lens. Finite-difference and time-domain (FDTD) method is used to analyze the focal properties. Numerical analysis results demonstrate that, on the one hand, this flat film structure indeed can realize enhanced focusing; on the another hand, Varying thickness of Ag film may receive different focusing effect; the lens's focus shift to the far-field from near-field slowly with a increase in Ag film thickness; the size of focus in near-field is small than one wavelength, but in the far-field is slightly larger.
     2. In order to improve the thin film photoelectric conversion efficiency of solar cells, this paper examines a metal nanoparticles embedded composite solar cell materials. With the help of three dimensional electromagnetic simulation software, the metal-organic hybrid thin films structure was established in the thesis; and then, by means of simulation, there are comparative analyses of metal particles on the solar cell efficiency of photon absorption. The calculation data show that, metal nanoparticles can play an enhanced role of photon absorption due to the LSP resonance effect; in the organic material, changing the location, size, shape, and array period, the electromagnetic field distribution will be changed, and then the enhanced photon absorption effects are different. Finally, through a series of comparative analysis, the thesis summarizes an optimal array layout of metal nanoparticles, providing a pretty good foundation for the design of hybrid organic thin-film solar cells.
引文
[1] R. W. Wood. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. London. 1902, 18: 269–275
    [2] Gustav Mie. Contributions to the optics of turbid media particularly of colloidal metal solutions. Ann. Phys., 1908, 25(3): 377–445
    [3] U. Fano. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s Waves). J. Opt. Soc. Am. 1941, 31(3): 213-222
    [4] R. H. Ritchie. Plasma losses by fast electrons in thin films. Phys. Rev. 1957, 106(5): 874–881
    [5] C. J. Powell, J. B. Swan. Origin of the characteristic electron energy losses in Aluminum. Phys. Rev. 1959, 115(4): 869–875
    [6] C. J. Powell, J. B. Swan. Origin of the characteristic electron energy losses in Magnesium. Phys. Rev. 1959, 116(1): 81–83
    [7] E. A. Stern, R. A. Ferrell. Surface plasma oscillations of a degenerate electron gas. Phys. Rev. 1960, 120(1): 30–36
    [8] A. Hessel, A. A. Oliner. A new theory of Wood’s anomalies on optical gratings. Appl. Opt. 1965, 4(10): 1275-1297
    [9] R. H. Richie, E. T. Arakawa, J. J. Cowan, R. N. Hamm. Surface plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 1968, 21(1): 1530-1532
    [10] A. Otto. Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 1968, 216(1): 398-399
    [11] E. Kretschmann, H. Reather. Radiative decay of non-radiative surface plasmon excited by light. Z. Naturf. 1968, 23A: 2135–2136
    [12] U. Kreibig, P. Zacharias. Surface plasma resonances in small spherical silver and gold particles. Z. Physik. 1970, 231(1): 128-143
    [13] S. L. Cunningham, A. A Maradudin, R. F. Wallis. Effect of a charge layer on the surface plasmon polariton dispersion curve. Phys. Rev. B 1974, 10(8): 3342-3343
    [14] S. Nie, S. R. Emory. Probing single molecules and single nanoparticles by surface enhanced Raman scattering. Science, 1997, 275(5303): 1102-1106
    [15] J. Takahara, S. Yamagishi, H. Taki, A. Marimoto, T. Kobayashi. Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett., 1997, 22(1): 475-478
    [16] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 2000, 85(18): 3966–3969
    [17] N. Fang, Z. W. Liu, Ta-Jen Yen, X. Zhang. Regenerating evanescent waves from a silver superlens. Optics Express. 2003, 11(7): 682-687
    [18] N. Fang, H. Lee, C. Sun, X. Zhang. Sub-Diffraction Limited Optical Imaging with a Silver Superlens. Science. 2005, 308(5721): 534-537
    [19] Y. Q. Fu, W. Zhou, L. E. N. Lim, C. Du, H. F. Shi, C. T. Wang. Geometrical Characterization Issues of Plasmonic Nanostructures with Depth-tuned Grooves for Beam Shaping, Optical Engineering. 2006, 45(10):108001
    [20] Y. Q. Fu, W. Zhou, L. E. N. Lim. Near-field behavior of zone-plate-like plasmonic nanostructures. JOSA. A, 2008, 25(1): 238-249
    [21] Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, X. G. Luo. Plasmonic micro zone plate: Superfocusing at visible regime. Appl. Phys. Lett. 2007, 91, 061124
    [22] Y. Q. Fu, C. L. Du, W. Zhou, L. E. N. Lim. Nanopinholes Based Optical Superlens. Res. Lett. Phys. 2008, 148505: 1-6
    [23] M. I. Stockman. Nano-focusing of Optical Energy in Tapered Plasmonic Waveguides. Phys. Rev. Lett. 2004, 93: 137404, 4 pages
    [24] E. Verhagen, L. Kuipers, and A. Polman. Enhanced Nonlinear Optical Effects with a Tapered Plasmonic Waveguide. Nano Lett. 2007, 7(2): 334-337
    [25] E. Verhagen, A. Polman, L. (Kobus) Kuipers. Nanofocusing in laterally tapered plasmonic waveguides. Opt. Exp. 2008, 16(1) 45-57
    [26] A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, B. N. Chichkov. Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles. Opt. Express. 2007, 15: 16667–16680
    [27] I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva. Surface plasmon polariton beam focusing with parabolic nanoparticle chains. Opt. Express. 2007, 15: 6576–6582
    [28] S. B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, P. Peumans. An effective light trapping configuration for thin-film solar cells. Appl. Phys. Lett. 2007, 91: 1-3
    [29] S. I. Na, S. S. Kim, S. S. Kwon, J. Jo, J. Kim, T. Lee, D. Y. Kim. Surface relief gratings on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells. Appl. Phys. Lett. 2007, 91: 1-3
    [30] D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, E. T. Samulski. Photonic crystal geometry for organic solar cells. Nano-Letters. 2009, 9: 2742-2746
    [31] J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi. Plasmonic excitation of organic double heterostructure solar cells. Appl. Phys. Lett., 2007, 90(121102): 1-3
    [32] A. J. Morfa, K. L. Rowlen, T. H. R. III, M. J. Romero, and J. v. d. Lagemaat. Plasmon enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett., 2008, 92(013504): 1-3
    [33] V. E. Fery, L. A. Sweatlock, D. Pacifici, A. Atwater. Plasmon nanostructure design for efficient light coupling into solar cells. Nano Lett. 2008, 8(12): 4391-4397
    [34] H. J. Park, D. Vak, Y. Y. Noh, B. Lim, D. Y. Kim. Surface plasmon enhanced photoluminescence of conjugated polymers. Appl. Phys. Lett. 2007, 90(161107): 1-3
    [35] A. J. Morfa, K. L. Rowlen, T. H. R. III, M. J. Romero, Jao van de Lagemaat. Plasmon enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. 2008, 92(013504): 1-3
    [36] W. S. Chen, H. T. Hsieh, Guo-Dung John Su. Enhanced optical absorption of organic materials via surface plasmon resonance in gold nanoparticles. Proc. of SPIE. 2007, 6656, 66561L
    [37] X. L. Zhou, Y. Q. Fu, S. Y. Wang, A. J. Peng, Z. H. Cai. Funnel Shaped Arrays of Metal Nano-Cylinders for Nano-Focusing. Chinese Phys. Lett. 2008, 25: 3296-3299
    [38] Y. Q. Fu, Y. Liu, X. L. Zhou. Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits. OPTICS EXPRESS. 2010, 18(4): 3438-3443
    [39] Y. Liu, Y. Q. Fu, X. L. Zhou. Influence of V-Shaped Metallic Subwavelength Slits with Variant Periods for Superfocusing. Plasmonics. 2010, 5: 79–83
    [40] Y. Q. Fu, X. L. Zhou, S. L. Zhu. Ultra-Enhanced Lasing Effect of Plasmonic Lens Structured with Elliptical Nanopinholes Distributed in Variant Periods. Plasmonics. 2010, 5: 111–116
    [41] Z. K. Shi, Y. Q. Fu, X. L. Zhou. S. L. Zhu. Polarization Effect on Superfocusing of a Plasmonic Lens Structured with Radialized and Chirped Elliptical Nanopinholes. Plasmonics. 2010, 5: 175–182
    [42] Jackson, D. John. Classical Electrodynamics. John Wiley & Sons, Inc. 3rd edition, 1999
    [43] Bethe, H. A. Theory of diffracion by small holes. Phys. Rev., 1944, 66(7–8):163–182
    [44] Bouwkamp, C. J. On Bethe’s theory of diffraction by small holes. Philips Research Reports, 1950, 5(5):321–332
    [45] H. F. Ghaemi, T. Thio, D. E. grupp, et al. Surface plasmons enhances optical transmission through subwavelength holes. Phys. Rev. B, 1998, 58(11): 6779-6782
    [46] A. Degiron, T. W. Ebbesen. The role of localized surface plasmon modes in the enhanced transmission of periodic sub wavelength apertures. J. Opt. A: Pure Appl. Opt., 2005, 7:S90–S96
    [47] de Abajo, F. J. García, J. J. Sáenz, I. Campillo, J. S. Dolado. Site and lattice resonances in metallic hole arrays. Opt. Express, 2006, 14(1):7–18
    [48] M. M. J. Treacy. Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings. Phys. Rev. B., 2002, 66: 195105
    [49] D. Sarid. Long Range Surface Plasma Waves on Very Thin Metal Films. Phys. Rev. Lett., 1982, 48: 446
    [50] L. Yin, V. K. Vlasko-Vlasov, J. Pearson. Subwavelength focusing and guiding of surface plasmons. Nano. Lett., 2005, 5(7): 1399–1402
    [51] K. L. Chopra, P. D. Paulson,V. Dutta. Thin-Film Solar Cells: An Overview. Prog. Photovolt: Res. Appl. 2004; 12:69–92
    [52] J. Y. Lee, P. Peumans. The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer. Opt. Express, 2010, 18: 10078-10087
    [53] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B ,2003, 107(3): 668–677
    [54] W. Y. Ma, H. Yang, J. P. Hilton, Q. Lin, J. Y.Liu, L. X. Huang, J. Yao. A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructures. Opt. EXPRESS, 2010, 18(2): 843-53
    [55] H. J. Park, M. G. Kang, S. H. Ahn, L. J. Guo. A Facile Route to Polymer Solar Cells with Optimum Morphology Readily Applicable to a Roll-to-Roll Process without Sacrificing High Device Performance. Adv. Mater., 2010, 22: E247–E253
    [56] M. G. Kang, T. Xu, H. J.Park, X. J. Luo, L. J. Guo. Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes. Adv. Mater., 2010, 22(39): 4378–4383

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700