农杆菌草酸脱羧酶的原核表达与分泌特性验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草酸脱羧酶(oxalate decarboxylases,OXDCs)降解草酸生成甲酸和二氧化碳。该酶属于cupin超家族bicupin亚族,在其氨基酸序列中,含有两个cupin结构域,每个cupin结构域由两个保守的基序:G(X)_5HXH(X)_(11)G和G(X)_5P(X)_4H(X)_3N(这里X指代任意氨基酸)组成。
     目前发现的草酸脱羧酶主要存在于一些腐生真菌和细菌中。一些腐生型真菌在向体外分泌草酸的同时,也能合成草酸脱羧酶分泌到胞外。这种分泌型草酸脱羧酶的存在被认为可以降低草酸对自身的毒性,保持细胞内外稳定的pH环境,保持草酸合成和降解的平衡。细菌来源的草酸脱羧酶主要存在于细胞质中,其功能可能和O.formigenes中的草酰-辅酶A一样,与细菌细胞的能量代谢相关:草酸与甲酸的反向转运造成细胞外高内低的质子浓度差,这种质子梯度又同磷酸化偶联,驱动ATP的合成。但是最近的研究发现,B.subtilis在酸诱导(外加肌醇六磷酸)条件下,草酸脱羧酶(OxdC)是其细胞壁主要成分,在细胞质中没有发现有OxdC的存在;在B.subtilis芽孢发育过程中,草酸脱羧酶(OxdD)能分泌到胞外,是芽孢外壳内层的组成成分。然而在这两个草酸脱羧酶中都没有发现分泌信号的存在,其分泌机制还不清楚。
     在全基因组测序已经完成的农杆菌C58菌株(Agrobacterium tumefaciens strain C58)的基因组中,发现存在编码产物和已知的草酸脱羧酶在氨基酸序列上表现高度同源的基因序列(定名为AtuOXDC)。我们用PCR方法从A.tumefaciens strain C58基因组中克隆到的AtuOXDC基因,全长1248bp,编码产物为415aa,理论分子量为44.7 kDa。氨基酸序列含两个cupin domain,属cupin超家族bicupin亚族蛋白。其中N-端和C-端cupin domain分别由第120~第175位、第301~第367位氨基酸残基组成,每个cupin domain中两个motif之间相隔(inter-motif region,IMR)20个aa。
     氨基酸序列分析发现,AtuOXDC N-端含有一段疏水跨膜区(第7~第29位氨基酸),推测可能是一段分泌信号,预测剪切位点在第27和第28位氨基酸残基之间。序列比对和系统树分析表明,AtuOXDC同来自Bradyrhizobium japonicum和Burkholderia的草酸脱羧酶氨基酸序列一致性较高,被聚为一类。同来自真菌的草酸脱羧酶亲缘关系也较近。
     在大肠杆菌中成功实现了AtuOXDC的过量表达,并通过亲和层析纯化了表达产物,发现AtuOXDC在体外能够降解草酸,确实具有草酸脱羧酶活性。
     通过在A.tumefaciens strain C58中分别表达全长和截去信号肽序列的AtuOXDC,证明农杆菌草酸脱羧酶N-段确实存在一段分泌信号,并将该酶定位于细胞周质中;通过定点突变试验,用-KK-取代AtuOXDC信号肽序列中Tat信号特征性基序-RR-后,免疫印迹试验表明AtuOXDC向胞外的转运通过Tat途径进行。
Oxalate decarboxylases (OXDCs) (EC4.1.1.2) are enzymes catalyzing the conversion of oxalate to formate and CO_2. These enzymes, which have been found in fungi and bacteria, belong to a functionally diverse protein superfamily known as the cupin that are characterized by their conserved motifs, most recently defined as G(X)_5HXH(X)_(11)G and G(X)_5P(X)_4H(X)_3N constituting a conserved six-strandedβ-barrel fold. Due to the presence of a duplication of this domain, OXDCs are members of the bicupin subclass and are thus thought to contain twoβ-barrels each comprising sixβ-strands.
     The best-characterized OXDCs are enzymes that have a wood-rotting fungal and bacterial origin. The fungal OXDCs are secreted enzymes, and a secretion signal has been found in the Flammulina velutipes oxalate decarboxylase that can mediate the secretion of heterologous proteins into the medium and periplasmic space in Schizosaccharomyces pombes. It is believed that oxalate synthesized by fungi contribute to lignin degradation, nutrient availability, pathogenesis, and competition. The oxalate-degrading enzymes secreted by these organisms are likely to be involved in pH regulation, and to help reduce toxicity caused by excess accumulations of oxalic acid in the microenvironment. In contrast, most bacterial OXDCs are localized in the cytosol. A decarboxylative phosphorylation mechanism has been described in the gram-negative bacterium Oxalobacter formigenes, in which the antiporting of oxalate and formate are coupled to oxalate decarboxylation by oxalyl-CoA decarboxylase, thereby generating a proton-motive gradient that drives ATP synthsis. It is possible that the bacterial Cytosolic OXDCs have a similar function in energy metabolism as oxalyl-CoA decarboxylase in O. formigenes.
     In A. tumfaciens C58 a locus for a putative oxalate decarboxylase (here denoted as AtuOXDC) is present. It contains a 1248 bp open reading frame (ORF) for a 415-amino acid polypeptide with a predicated molecular mass of 44.7 kDa. AtuOXDC has two conserved cupin domains shared by members of the cupin superfamily. The N- and C-terminus cupin domain was constituted of 120 tol75 and 301 to 367 amino acid residues respectively. The inter-motif region (IMR) was involved of 20 amino acid residues.
     Interestingly, analysis of the amino acids revealed a prominent hydrophobic segment of 23 amino acid residues, near the N-terminus of the AtuOXDC amino acid sequence, with a length characteristic of a secretion signal sequence. The most likely cleavage position is between position 27 and 28: AGA-AS. Multiple alignment and phylogeny tree indicate that AtuOXDC and putative OXDCs from Bradyrhizobium japonicum and Burkholderiashare were clustered into a subclass due to the more identity. In addition, the subclass was phylogeneticlly near with OXDCs from fungi.
     To confirm that the AtuOXDC does indeed encode an oxalate decarboxylase, the truncated AtuOXDC lacking the putative signal portion was expressed in E. coli, and its enzymatic activity was determined. Analysis of the sonicated cell extracts showed that the expression products were present either in the supernatants as soluble protein or in the pellets as inclusion bodies. Using Ni-NTA affinity chromatography, the homologous AtuOXDC was purified. The purified truncated AtuOXDC showed enzymatic activity at 6.567μmol formate/min·mg.
     A full-length version (AtuFOXDC) and a signal-peptideless version (AtuTOXDC) were cloned into the pTrc200 plasmid which can function as an expression vector in both E. coli and A. tumefaciens. The results of expression support the prediction that a secretion signal is present in the AtuOXDC protein and the protein was targeted in the periplasm of A. tumefaciens C58.
     When the -RR- motif of the AtuOXDC signal peptide was replaced with -KK- using site-directed mutagenesis, the expression of resulting mutant version (AtuMOXDC) of the full-length AtuOXDC protein in A. tumefaciens strain C58 and subsequent immune-blotting analysis showed that OXDC translocation of the mutant version was completely blocked, implying that the AtuOXDC protein is translocated by the TAT pathway.
引文
Aguilar, C., U. Urzua, C. Koenig, and R. Vicuna. 1999. Oxalate Oxidase from Ceriporiopsis subvermispora: Biochemical and cytochemical studies. Arch. Biochem. Biophys. 366: 275-282.
    Anand, R., P. C. Dorrestein, C. Kinsland, T. P. Begley, and S. E. Ealick. 2002. Structure of oxalate decarboxylase from Bacillus subtilis at 1.75 A Resolution. Biochem. 41: 7659-7669.
    Anantharam, V., M. J. Allison, and P. C. Maloney. 1989. Oxalate: formate exchange. The basis for energy coupling in Oxalobacter. J. Biol. Chem. 264: 7244-7250.
    Antelmann, H., S. Towe, D. Albrecht, and M. Hecker. 2007. The phosphorus source phytate changes the composition of the cell wall proteome in Bacillus subtilis. J. Proteome Res. 6: 897-903.
    Azam, M., M. Kesarwani, K. Natarajan, and A. Datta. 2001. A secretion signal is present in the Collybia velutipes oxalate decarboxylase gene. Biochem. Biophys. Res. Commun. 289: 807-812.
    Azam, M., M. Kesarwani, S. Chakraborty, K. Natarajan and A. Datta. 2002. Cloning and characterization of the 5'-flanking region of the oxalate decarboxylase gene from Flammulina velutipes. Biochem. J. 367:67-75.
    Baetz, A. L. and M.J. Allison. 1989. Purification and characterization of oxalyl-coenzyme A decarboxylase from Oxalobacter formigenes. J. Bacteriol. 171: 2605-2608.
    Barlow, I. M., and S. P. Harrison. 1990. Improved urinary oxalate kit. Clin. Chem. 36:1523-1525.
    Bateman, D. E, and S. V. Beer. 1965. Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology. 55: 204-211.
    Berks, B. C, F. Sargent, and T. Palmer. 2000a. The Tat protein export pathway. Mol. Microbiol. 35: 260-274.
    Berks, B. C, F. Sargent, E. De Leeuw, A. P. Hinsley,N. R. Stanley, R. L. Jack, G Buchanan, and T. Palmer. 2000b. A novel protein transport system involved in the biogenesis of bacterial electron transfer chains. Biochimica et Biophysica Acta 1459: 325-330.
    Berks, B. C, T. Palmer and F. Sargent. 2005. Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr. Opinion Microbiol. 8:174-181.
    Berks, B.C. 1996. A common export pathway for proteins binding complex redox cofactors? Mol. Microbiol. 22: 393-404.
    Berna, A., and E. Bernier. 1999. Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H_2O_2-producing enzyme. Plant Mol. Biol. 39: 539-549.
    Bernier, F., and A. Berna. 2001. Germins and germin-like proteins: plant do-all proteins. But what do they do exactly? Plant Physiol. Biochem. 39: 1-10.
    Bernstein, H. 1998. Membrane protein biogenesis: the exception explains the rules. Proc. Nat. Acad. Sci. USA 95: 14587-14589.
    Bibi, E. 1998. The role of the ribosome-translocon complex in translation and assembly of polytopic membrane proteins. Trend Biochem. Sci. 23: 51-55.
    Blaudeck, N., P. Kreutzenbeck, R. Freudl, and G A. Sprenger. 2003. Genetic analysis of pathway specificity during posttranslational protein translocation across the Escherichia coli plasma membrane. J. Bacteriol. 185:2811-2819.
    Bogsch, E., F. Sargent, N.R. Stanley, B.C. Berks, C. Robinson, and T. Palmer. 1998. An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J. Biol. Chem. 273:18003-18006.
    Boland, G. J., and R. Hall. 1994. Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 16: 93-108.
    Bollag, D. M., M. D. Rozycki, and S. J. Edelstein. 1996. Protein Methods, pp. 107-155, 195-230. 2nd Ed. Wiley-Liss, Inc., New York.
    Buchanan, G., F. Sargent, B. C. Berks, and T. Palmer. 2001. A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the rwin-arginine motif. Arch. Microbiol. 177:107-112
    Cassland, P., S. Larsson, N. O. Nilvebrant, and L. J. Josson. 2004. Heterologous expression of barley and wheat oxalate oxidase in an E. coli trxB gor double mutant. J. Biotech. 109: 53-62.
    Cessna, S. G., V. E. Sears, M. B. Dickman, and P. S. Low. 2000. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell. 12: 2191-2199.
    Chen, X. H., A. Koumoutsi, R. Scholz, A. Eisenreich, K. Schneider, I. Heinemeyer, B. Morgenstern et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol.25:1007-1014.
    Cline, K. and H. Mori. 2001. Thylakoid ApH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha-dependent transport. 7. Cell Biol. 154: 719-729.
    Cline, K., W. F. Ettinger, and S. M. Theg. 1992. Protein-specific energy requirements for protein transport across or into thylakoid membranes. Two lumenal proteins are transported in the absence of ATP. J. Biol. Chem. 267:2688-2696
    Costa, T., L. Steil, L. O. Martins, U. Volker, and A. O. Henriques. 2004. Assembly of an oxalate decarboxylase produced under s~K control into the Bacillus subtilis spore coat. J. Bacteriol. 186: 1462-1474.
    Cristobal, S., J. W. de Gier, H. Nielsen, and G von Heijne. 1999. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli.EMBO J. 18: 2982-2990.
    Dashek, W. V. and J. A. Micales. 1997. Assay and purification of enzymes-oxalate decarboxylase. In Dashek, W. V., ed. Methods in plant biochemistry and molecular biology. pp. 49-71. Boca Raton, FL:CRC Press.
    
    Datta, A., A. Mehta, and K. Natarajan. 1996. Oxalate decarboxylate. U.S. patent 5,547,870.
    DeLisa, M. P., D. Tullman, and G Georgiou. 2003. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc. Natl. Acad. Sci.USA 100: 6115-6120.
    DeLisa, M. P., P. Samuelson, T. Palmer, and G Georgiou. 2002. Genetic analysis of the twin arginine translocator secretion pathway in bacteria. 7. Biol. Chem. 277:29825-29831
    Dias, B. B. A., W. G. Cunha, L. S. Morais, G. R. Vianna, E. L. Rech, G. de Capdeville, and F. J. L. Aragao. 2006. Expression of an oxalate decarboxylase gene from Flammulina sp. in transgenic lettuce (Lactuca sativa) plants and resistance to Sclerotinia sclerotiorum. Plant Pathology. 55: 187-193.
    Dubuni, A., and F. Sargent. 2003. Assembly of Tat-depedent NiFe hydrogenase: identification of precursor-binding accessory proteins. FEBS Lett. 549: 141-146.
    Dunwell, J. M. and P. J. Gane. 1998. Microbial relatives of seed storage proteins: conservation of motifs in a functionally diverse superfamily of enzymes. J. Mol. Evol. 46:147-154.
    Dunwell, J. M., A. Purvis, and S. Khuri. 2004. Cupins: the most functionally diverse protein superfamily? Phytochem. 65: 7-17.
    Dunwell, J. M., S. Khuri, and P. J. Gane. 2000. Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol. Mol. Biol. Rev. 64:153-179.
    Dutton, M. V. and C. S. Evans. 1996. Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can. J. Microbiol. 42: 881-895.
    Dutton, M. V., M. Kathiara, I. M. Gallagher, and C. S. Evans. 1994. Purification and characterization of oxalate decarboxylase from Coriolus versicolor. FEMS Microbiol. Lett. 116:321-6.
    Economou, A. 1999. Following the leader: bacterial protein export through the Sec pathway. Trends Microbiol. 7::315-319.
    Economou, A. 2000. Bacterial protein translocase: a unique molecular machine with an army of substrate. FEBS Lett. 476: 18-21.
    Emiliani, E. and P. Bekes. 1964. Enzymatic oxalate decarboxylation in Aspergillus niger. Arch. Biochem. Biophys. 105: 488-493.
    Emiliani, E. and Riera B. 1968. Enzymatic oxalate decarboxylation in Aspergillus niger. II. Hydrogen peroxide formation and other characteristics of the oxalate decarboxylase. Biochim. Biophys. Acta. 167: 414-421.
    Escutia, M. R., L. Bowater, A. Edwards, A. R. Bottrill, M. R.urrell, R. Polanco, R. Rafael, R. Vicun, and S. Bornemannl. 2005. Cloning and sequencing of two ceriporiopsis subvermispora bicupin oxalate oxidase allelic isoforms: implications for the reaction specificity of oxalate oxidases and decarboxylases. Appl. Environ. Microbiol. 71: 3608-3616.
    Giovanelli, J. and N. F. Tobin. 1964. Enzymic decarboxylation of oxalate by extracts of plant tissue. Plant Physiol. 39:139-145.
    Goodner, B., G. Hinkle, S. Gattung, N. Miller, M. Blanchard, B. Qurollo, B. S. Goldman, Y. Cao, M. Askenazi, C.Halling, L. Mullin, K. Houmiel, J. Gordon, M. Vaudin, O. Iartchouk, A. Epp, F. Liu, C. Wollam, M. Allinger, D. Doughty, C. Scott, C. Lappas, B. Markelz, C. Flanagan, C. Crowell, J. Gurson, C. Lomo, C. Sear, G Strub, C. Cielo, and S. Slater. 2001. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294: 2323-2328.
    Goyal, L., M. Thakur, and C.S. Pundir. 1999. Purification and properties of a membrane bound oxalate oxidase from Amaranthus leaves. Plant Sci. 142: 21-28.
    Guimaraes, R. L. and H. U. Stotz. 2004. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol. 136: 3703-3711.
    Havir, E. A. and S. L. Anagnostakis. 1985. Oxaloacetate acetylhydrolase activity in virulent and hypovirulent strains of Endothia (Cryphonectria) parasitica. Physiol. Plant Pathol. 26: 1-9.
    Hiatt, W. R. and J. L. Owades. 1987. Oxalic acid removal in beer production. US, Patent 4652452.
    Hinsley, A. P., N. R. Stanley, T. Palmer, B. C. Berks. 2001. A naturally occurring bacterial Tat signal peptide lacking one of the 'invariant' arginine residues of the consensus targeting motif. FEBS Lett. 497:45-49.
    
    Hodgkinson, A. 1977. Oxalic acid in biology and medicine, pp.1-327. Academic Press, London.
    Hollowell, J.E. and B. B. Shew. 2003. Evaluating isolate aggressiveness and host resistance from peanut leaflet inoculations with Sclerotinia minor. Plant Dis. 87: 402-406.
    Hutcheon, G. W. and A. Bolhuis. 2003. The archaeal twin-arginine translocation pathway. Biochem. Soc. Trans. 31:686-689.
    Ignatova, Z., C. Hornle, A. Nurk, V. Kasche. 2002. Unusual signal peptide directs penicillin amidase from Escherichia coli to the Tat translocation machinery. Biochem. Biophys. Res. Commun. 291:146-149.
    Ikotun, T. 1984. Production of oxalic acid by Penicillium oxalicum in culture and in infected yam tissue and interaction with macerating enzyme. Mycopathologia 88: 9-14.
    Ivanova, N., A. Sorokin, I. Anderson, N. Galleron, B. Candelon, V. Kapatral, A. Bhattacharyya, G. Reznik, N. Mikhailova, A. Lapidus, L. Chu, M. Mazur, E. Goltsman, N. Larsen, M. D'Souza, T. Walunas, Y. Grechkin, G Pusch, R. Haselkorn, M. Fonstein, S.D. Ehrlich, R. Overbeek, and N.C. Kyrpides. 2003. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423: 87-91.
    Ize, B., F. Gerard, and L. F. Wu. 2002a. In vivo assessment of the Tat signal peptide specificity in Escherichia coli. Arch. Microbiol. 178:548-553.
    Ize, B., F. Gerard, M. Zhang, A. Chanal, R. Voulhoux, et al. 2002b. In vivo dissection of the Tat translocation pathway in Escherichia coli.J. Mol. Biol. 317:327-335.
    Jack, R. L., G. Buchanan, A. Dubini, K. Hatzixanthis, T. Palmer, and F. Sargent. 2004. Co-ordinating assembly and export of complex bacterial proteins. EMBO J. 23: 3962-3972.
    Jakoby, W.B. and J.V. Bhat. 1958. Microbial metabolism of oxalic acid. Bacteriol. Rev. 22: 75-80.
    Just, V. J., C. E. M. Stevenson, L. Bowater, A. Tanner, D. M. Lawson, and S. Bornemann. 2004. A closed conformation of Bacillus subtilis oxalate decarboxylase OxdC provides evidence for the true identity of the active site. J. Biol. Chem. 279: 19867-19874,
    Kathiara, M., D. A. Wood, and C. S. Evans. 2000. Detection and partial characterization of oxalate decarboxylase from Agaricus bisporus. Mycol. Res. 104: 345-350.
    Kesarwani, M., M. Azam, K. Natarajan, A. Mehta, and A. Datta. 2000. Oxalate decarboxylase from Collybia velutipes. Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato. J. Biol. Chem. 275: 7230-7238.
    Khuri, S., F. T. Bakker, and J. M. Dunwell. 2001. Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol. Biol. Evol. 18: 593-605.
    Kotsira, V. P. and Y. D. Clonis. 1997. Oxalate oxidase from barley roots: Purification to homogeneity and study of some molecular, catalytic, and binding properties. Arch. Biochem. Biophys. 340: 239-249.
    Kunst, F., N. Ogasawara, I. Moszer, A.M. Albertini, G. Alloni, V. Azevedo, M.G. Bertero, P. et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249-256.
    Kurian, P. and D.A. Stelzig. 1979. The synergistic role of oxalic acid and endopolygalacturonase in bean leaves infected by Cristulariella pyramidalis. Phytopathology 69: 1301-1304.
    Kuwana, R., Y. Kasahara, M. Fujibayashi, H. Takamatsu, N. Ogasawara, and K. Watabe. 2002. Proteomics characterization of novel spore proteins of Bacillus subtilis. Microbiology 148: 3971-3982.
    Labrou, N. E., Y. D. Clonis.1995. Biomimetic dye-ligands for oxalate-recognizing enzymes. Studies with oxalate oxidase and oxalate decarboxylase. Biotechnol. 40: 59-70. Lane, B. G 2000. Oxalate oxidases and differentiating surface structure in wheat: germins. Biochem. J. 349: 309-321.
    
    Lane, B. G. 2002. Oxalate, germins, and higher-plant pathogens. IUBMB Life 53: 67-75.
    Lane, B. G., J. M. Dunwell, J. A. Ray, M. R. Schmitt, and A. C. Cuming. 1993. Germin, a protein marker of early plant development, is an oxalate oxidase. J. Biol. Chem. 268:12239-12242.
    Lane, B.G., A. C. Cuming, J. Fregeau, N. C. Carpita, W. J. Hurkman, F. Bernier, E. Dratewka-Kos, and T. D. Kennedy. 1992. Germin isoforms are discrete temporal markers of wheat development. Pseudogermin is a uniquely thermostable water-soluble oligomeric protein in ungerminated embryos and like germin in germinated embryos, it is incorporated into cell walls. Eur. J. Biochem. 209: 961-969.
    Lee, P. A., D. Tullman-Ercek, and G. Georgiou. 2006. The bacterial twin-arginine translocation pathway. Annu. Rev. Microbiol. 60:373-395.
    Leek, A., E. B. Halliwell, and V. S. Butt. 1972. Oxidation of formate and oxalate in peroxisomal preparations from leaves of spinach beet (Beta vulgaris L.). Biochim. Biophys. Acta 286: 299-311.
    Liang, H., C. A. Maynard, R. D. Allen, and W. A. Powell. 2001. Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol. Biol. 45: 619-629.
    Lillehoj, E.B. and F. G. Smith. 1965. An oxalic acid decarboxylase of Myrothecium verrucaria.Arch. Biochem. Biophys. 109: 216-220.
    Lung, H. Y., A. L. Baetz, and A. B. Peck. 1994. Molecular cloning, DNA sequence, and gene expression of the oxalyl-coenzyme A decarboxylase gene,oxc,from the bacterium Oxalobacter formigenes.J.Bacteriol.176:2468-2472.
    Magro,P.,P.Marciano,and P.D.Lenna.1988.Enzymatic oxalate decarboxylation in isolates of Sclerotinia sclerotiorum.FEMS Microbiol.Lett.49:49-52.
    Makela,M.,S.Galkin,A.Hatakka,T.Lundell.2002.Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi.Enzyme Microb.Technol.30:542-549.
    Maloney,P.C.1994.Bacterial transporters.Curr.Opin.Cell Biol.6:571-582.
    Mehta,A.and A.Datta.1991.Oxalate decarboxylase from Collybia velutipes.Purification,characterization,and cDNA cloning.J.Biol.Chem.266:23548-23553.
    Meloni,S.,L.Rey,S.Sidler,J.Imperial,T.Ruiz-Argueso,and J.M.Palacios.2003.The twin-arginine translocation(Tat)system is essential for Rhizobium-legume symbiosis.Mol.Microbiol.48:1195-1207
    Membre,N.and F.Bernier.1998.The rice genome expresses at least six different genes for oxalate oxidase/germin-like proteins(Accession Nos.AF032971,AF032972,AF032973,AF032974,AF032975,and AF032976).Plant Physiol.116:867-869.
    Micales,J.A.1997.Localization and induction of oxalate decarboxylation in the brown-rot wood decay fungus Postia placenta.Int.Biodeterior.Biodegrad.39:125-132.
    Mori,J.and K.Cline.2002.A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylacoid ΔpH/Tat translocase.J.Cell Biol.157:205-210.
    Mould,R.M.and C.Robinson.1991.A proton gradient is required for the transport of two lumenal oxygen-evolving proteins across the thylakoid membrane.J.Biol.Chem.266:12189-12193
    Munir,E.,J.J.Yoon,T.Tokimatsu,T.Hattori,and M.Shimada.2001.A physiological role for oxalic acid biosynthesis in the wood-rotting basidiomycete Fomitopsis palustris.Proc.Natl.Acad.Sci.USA 98:11126-11130.
    Murthy,M.S.R.,H.S.Talwar,R.Nath,and S.K.Thind.1981.Oxalate decarboxylase from guinea pig liver IRCS Meal.Sci.Libr.Compend.9:683-684.
    Musser,S.M.and S.M.Theg.2000.Characterization of the early steps of OE17 precursor transport by the thylakoid ΔpH/Tat machinery.Eur.J.Biochem.267:2588-2598.
    Nierman,W.C.,A.Pain,M.J.Anderson,J.R.Wortman,H.S.Kim et al.2005.Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus.Nature 438:1151-1156.
    Nilvebrant,N.O.,A.Reimann,F.de Sousa,P.Cassland,S.Larsson,F.Hong,and L.J.Jonsson.2002.Enzymatic degradation of oxalic acid for prevention of scaling.Prog.Biotechnol.21:231-238.
    Niviere,V.,S.L.Wong,and G.Voordouw.1992.Site-directed mutagenesis of the hydrogenase signal peptide consensus box prevents export of a beta-lactamase fusion protein.J.Gen.Microbiol.138:2173-2183.
    Noyes,R.D.and J.G.Hancock.1981.Role of oxalic acid in the Sclerotinia wilt of sunflower.Physiol.Plant Pathol.18:123-132.
    Oresnik,I.J.,C.L.Ladner,and R.J.Turner.2001.Identification of a twin-arginine leader-binding protein. Mol. Microbiol. 40: 323-331.
    Palmer, T., F. Sargent, and B. C. Berks. 2005. Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol. 13:175-180.
    Pel, H. J., J. H. de Winde, D. B. Archer, P.S. Dyer, G. Hofmann et al. 2007. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 25: 221-231.
    Pundir, S. and C. S. Pundir. 1993. Purification and properties of an. oxalate oxidase from leaves of grain sorghum hybrid CSH-.5. Biochim. Biophys. Acta. 1161:1-5.
    Purdy, L. H. 1979. Sclerotinia sclerotiorum: History, diseases, and symptom pathology, host range, geographic distribution, and impact. Phytopathology 69: 875-880.
    Quayle JR. 1963b. Carbon assimilation by Pseudomonas oxalaticus (OX1). 6. Reactions ofoxalyl-coenzyme A. Biochem J. 87: 368-373.
    Quayle, J. R. 1963a. Carbon assimilation by Pseudomonas oxalaticus (Ox1). 7. Decarboxylation of oxalyl-coenzyme A to formyl-coenzyme A. Biochem J. 89: 492-503.
    Rao, D. V., and J. P. Tewari. 1987. Production of oxalic acid by Mycena citricolor, causal agent of American leaf spot of coffee. Phytopathology 77: 780-785.
    Reinhardt, L., A. D. Svedruzic, W.W. Cleland, and N.G J. Richards. 2003. J. Am. Chem. Soc. 125: 1244-1252.
    Requena, L., and S. Bornemann. 1999. Barley (Hordeum vulgare) oxalate oxidase is a manganese -containing enzyme. Biochem. J. 343:185-190.
    Ritschkoff, A. C., Ra ttoM, J. Buchert, and L. Viikari. 1995. Effect of carbon source on the production of oxalic acid and hydrogen peroxide by brown-rot fungus Poria placenta. J. Biotechnol. 40:179-186.
    Rodrigue. A., A. Chanal, K. Beck, M. Muller, and L. F. Wu. 1999. Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial Tat pathway. J. Biol. Chem. 274:13223-13228.
    Rollins, J. A. 2003. The Sclerotinia sclerotiorum Pac 1 gene is required for sclerotial development and virulence. Mol. Plant-Microbe Interact. 16: 785-795.
    Rollins, J. A. and M. B Dickman. 2001. pH Signaling in Sclerotinia sclerotiorum: Identification of a pacC/RIM1 Homolog. Appl. .Envir. Microbiol. 67: 75-81.
    Rose, R. W., T. Br u ser, J. C. Kissinger, and M. Pohlschroder. 2002. Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol. Microbiol. 45:943-50
    Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, pp.1-69, 852-861. Cold Spring Harbor Laboratory Press, NewYork.
    Sargent, F., B. C. Berks, and T. Palmer. 2002. Assembly of membrane-bound respiratory complexes by the Tat protein-export system. Arch. Microbiol. 178: 77-84.
    Sargent, F., E. G. Bogsch, N. R. Stanley, M. Wexler, C. Robinson, et al. 1998. Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J. 17:3640-3650.
    Sargent, F., N. R. Stanley, B. C. Berks, and T. Palmer. 1999. Sec-independent protein translocation in Escherichia coli: a distinct and pivotal role for the TatB protein. J. Biol. Chem. 274: 36073-36082.
    Scelonge, C. J. and D. L. Bidney. 1998. Gene encoding oxalate decarboxylase from Aspergillus phoenices. Patent Application WO 98/42827.
    Schilling, B.M., A. Henning, and U. Rau. 2000. Repression of oxalic acid biosynthesis in the unsterile scleroglucan production process with Sclerotium rolfsii ATCC 15205. Bioprocess Engineering 22: 51-55.
    Schmidt-Eisenlohr, H., N. Domke, and C. Baron. 1999. TraC of IncN plasmid pKM101 associates with membranes and extracellular high-molecularweight structures in Escherichia coli. J. Bacteriol. 181: 5563-5571.
    Settles, A. and R. Martienssen. 1998. Old and new pathways of protein export in chloroplasts and bacteria. Trends Cell Biol. 8: 494-501.
    Shimazono, H., and O. Hayaishi. 1957. Enzymatic decarboxylation of oxalic acid. J. Biol. Chem. 227: 151-159.
    Stanley, N. R., K. Findlay, B. C. Berks, and T. Palmer. 2001. Escherichia coli strains blocked in Tat-dependent protein export exhibit pleiotropic defects in the cell envelope. J. Bacteriol. 183:139-144
    Stanley, N. K., T. Palmer, and B. C. Berk. 2000. The twin-arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli.J. Biol. Chem. 275: 11591-11596.
    Stone, H.E. and V. N. Armentrout. 1985. Production of oxalic acid by Sclerotium cepivorum during infection of onion. Mycologia 11: 526-530.
    Svedru ic, D., S. Jonsson, C. G. Toyota, L. A. Reinhardt, S. Ricagno, Y. Lindqvist, and N. G J. Richards. 2005. The enzymes of oxalate metabolism: unexpected structures and mechanisms Arch. Biochem. Biophys. 433: 176-192.
    Takaki, Y., Y. Kageyama, S. Shimamura, H. Suzuki, S. Nishi, Y. Hatada, S. Kawai, S. Ito, and K. Horikoshi. 2003. The complete genome sequence of the alkaliphilic Bacillus clausii KSM-K16. Submitted to the EMBL/GenBank/DDBJ databases.
    Tanner, A. and S. Bornemann. 2000. Bacillus subtilis YvrK is an acid-induced oxalate decarboxylase. J. Bacteriol. 182: 5271-5273.
    Tanner, A., L. Bowater, S. A. Fairhurst, and S. Bornemann. 2001. Oxalate decarboxylase requires manganese and dioxygen for activity. Overexpression and characterization of Bacillus subtilis YvrK and YoaN. J. Biol. Chem. 276: 43627-43634.
    Thomas, J. D., R. A. Daniel, J. Errington, and C. Robinson. 2001. Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli. Mol. Microbiol. 39: 47-53.
    Varalakshmi, P. K., and E. Richardson. 1992. Studies on oxalate oxidase from beet stem upon immobilization on Concavalin A. Biochem. Int. 26: 153-162.
    Weiner, J.H., P.T. Bilous, G. M. Shaw, S. P. Lubitz, L. Frost, G. H.Thomas,., et al. 1998. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93: 93-101.
    Whittaker, M. M. and J. W. Whittaker. 2002. Characterization of recombinant barley oxalate oxidase expressed by Pichia pastoris.J. Biol. Inorg. Chem. 7:136-145.
    Wickner, W. and R. Schekman. 2005. Protein translocation across biological membranes.Sciertce 310:1452-1456
    Williams, H. E., and T. R. Wandzilak. 1989. Oxalate synthesis, transport and the hyperoxaluric syndromes.J. Urol. 141:742-747.
    Wipat, A., C. S. Brignell, J. B. Guy, M. Rose, P. T. Emmerson, and C. R. Harwood. 1998. The yvsA-yvqA (293 degrees - 289 degrees) region of the Bacillus subtilis chromosome containing genes involved in metal ion uptake and a putative sigma factor. Microbiology 144:1593-1600.
    Woo, E. J., J. M. Dunwell, P. W. Goodenough, A. C. Marvier, and R. W. Pickersgill. 2000. Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities. Nat. Struct. Biol. 7:1036-1040.
    Yamahara, T., T. Shiono, T. Suzuki, K. Tanaka, S. Takio, K. Sato, S. Yamazaki, and T. Satoh. 1999. Isolation of a germin-like protein with manganese superoxide dismutase activity from cells of a moss, Barbula unguiculata. J. Biol. Chem. 274: 33274-33278.
    Zaitsev, G. M., N.I. Govorukhina, O.V. Laskovneva, and Y.A.Trotsenko. 1993. Properties of the new obligately oxalotrophic Bacterium Bacillus oxalophilus. Microbiol. 62: 378-382.
    Zhou, F., Z. Zhang, P. L. Gregersen, J. D. Mikkilsen, E. de Neergaard, D. B. Collinge, and H. Thordal-christensen. 1998. Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol. 117: 33-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700