电负性与无机材料体积模量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料是在一定条件下原子的自组装形成的,因此材料的性质是由原子之间的相互作用决定的。电负性是描述原子性质的一个重要参数,它表示“分子中的原子将电子吸引向自身的能力”。材料、物理、化学学科的融合,使得电负性能够成为建立材料微观结构和宏观性质之间定量关系的一种工具。超硬材料由于重要的工业用途而备受人们关注,具有较高硬度的物质一般都具有较大的体积模量,因此研究晶体的体积模量对于超硬材料的研究有着重要的意义。本论文从电负性的观点出发,研究了无机晶体材料的体积模量。
     晶体的体积模量反映了晶体对外界均一性压缩的抵抗能力,本质上由化学键对外界压缩的抵抗能力决定。基于电负性,我们确立了两个参数来描述化学键抵抗外界压缩的能力—键模量和有效离子性,建立了计算简单晶体体积模量的模型。我们发现对于阳离子具有较高价态的物质,晶体的体积模量主要由键模量决定;对于阳离子显示较低价态的物质,晶体的体积模量是由键模量和有效离子性共同决定。简单ANB8-N型晶体、氧化物和氮化物晶体的体积模量计算值和实验值吻合的很好。
     考虑到复杂晶体和合金本质上是由多种不同类型的键组成的,把计算简单晶体体积模量的模型扩展到复杂晶体和合金领域。根据复杂晶体中化学键间的键强差不同,我们提出了计算复杂晶体体积模量的方法。对于键强差较小的物质,晶体的体积模量是由化学键对外界压缩的平均抵抗能力决定的;对于键强差较大的物质,晶体的体积模量是由较弱化学键对外界压缩的抵抗能力决定的。黄铜矿晶体、含氧尖晶石和含氮尖晶石、不同晶体结构的ABO4型化合物的体积模量计算结果与实验值吻合,证实了我们计算晶体材料体积模量模型的有效性。另外,根据该模型我们还预测了一些低压缩性的晶体。
The macroscopic properties are determined by the actions between atoms because materials are formed through the self-assembly of atoms in certain conditions. Electronegativity (EN) is an important parameter to scale atomic property, which was defined as "the power of an atom in a molecule to attract electrons to itself". EN is a useful tool to establish the relations between the microscopic structure and the macroscopic properties due to the combination of the subjects of material, physics, and chemistry. On the other hand, much attention is focused on superhard materials due to their importance in industry. It is of significance to investigate the bulk modulus of crystals due to the fact that superhard materials often possess large bulk modulus. The purpose of this thesis is to investigate the bulk modulus of inorganic crystals from the viewpoint of EN.
     The bulk modulus of crystals reflects the resisting ability of crystals to uniform compression, which is essentially determined by the resisting ability of chemical bonds to compression. Two key parameters, bond modulus and effective ionicity, are used to describe the resisting ability of chemical bonds to compression on the basis of EN. Further, we proposed a model to calculate the bulk moduli of simple crystals. We found that the bulk modulus of crystals is mainly determined by bond modulus for compounds of high cationic valences while that is determined by both of bond modulus and effective ionicity for compounds of low cationic valences. The calculated bulk moduli of ANB8-N crystals, oxides and nitrides agree well with the experimental values.
     The model of calculating the bulk moduli of simple crystals is extended to estimate the bulk moduli of complex crystals and alloys, which are composed of different types of chemical bonds. We proposed the calculation procedures of the bulk moduli of complex compounds on the basis of bond strength difference between different bonds. For compounds of small bond strength difference, the bulk modulus is determined by the average resisting ability of chemical bonds to compression while for that of large bond strength difference, the bulk modulus is determined by the resisting ability of weaker bonds to compression. The consistency between the calculated bulk moduli and the experimental data of chalcopyrites, spinels, and ABO4 compounds confirms this model. Based on this model, we also predicted some low compressibility crystals.
引文
[1]Pauling L. The nature of the chemical bond [M].3rd ed. New York:Cornell university press,1960.
    [2]Mulliken R S. A new electroaffinity scale:together with data on valence states and on valence ionization potentials and electron affinities [J]. The Journal of Chemical Physics,1934,2(11):782-793.
    [3]Allen L C. Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms [J]. Journal of the American Chemical Society, 1989,111(25):9003-9014.
    [4]Mann J B, Meek T L, Allen L C. Configuration energies of the main group elements [J]. Journal of the American Chemical Society,2000,122(12):2780-2783.
    [5]Mann J B, Meek T L, Knight E T, et al. Configuration energies of the d-Block elements [J]. Journal of the American Chemical Society,2000,122(21):5132-5137.
    [6]Politzer P, Shields Z P, Bulat F A, et al. Average local ionization energies as a route to intrinsic atomic electronegativities [J]. Journal of Chemical Theory and Computation, 2011,7(2):377-384.
    [7]Noorizadeh S, Shakerzadeh E. A new scale of electronegativity based on electrophilicity index [J]. The Journal of Physical Chemistry A,2008,112(15):3486-3491.
    [8]Allred A L, Rochow E G. A scale of electronegativity based on electrostatic force [J]. Journal of Inorganic and Nuclear Chemistry,1958,5(4):264-268.
    [9]Gordy W. A new method of determining electronegativity from other atomic properties [J]. Physical Review B,1946,69(11):604-607.
    [10]Suresh C H, Koga N. A molecular electrostatic potential bond critical point model for atomic and group electronegativities [J]. Journal of the American Chemical Society, 2002,124(8):1790-1797.
    [11]Sanderson R T. Electronegativities in inorganic chemistry [J]. Journal of Chemistry Education,1954,31(1):2-7.
    [12]Nagle J K. Atomic polarizability and electronegativity [J]. Journal of the American Chemical Society,1990,112(12):4741-4747.
    [13]Jorgensen C K. Oxidation numbers and oxidation states [M]. Berlin:Springer-Verlag, 1969.
    [14]Duffy J A. Ultraviolet transparency of glass:a chemical approach in terms of band theory, polarisability and electronegativity [J]. Physics and Chemistry of Glasses, 2001,42(3):151-157.
    [15]Zhang Y H. Electronegativities of elements in valence states and their applications. 1. Electronegativities of elements in valence states [J]. Inorgnic Chemstry,1982, 21(11):3886-3889.
    [16]Zhang Y H. Electronegativities of elements in valence states and their applications.2. A scale for strengths of Lewis acids[J]. Inorgnic Chemstry,1982,21 (11):3889-3893.
    [17]Iczkowski R P, Margrave J L. Electronegativity [J]. Journal of the American Chemical Society,1961,83(17):3547-3551.
    [18]Luo Y R, Pacey P D. Theoretical support for a new electronegativity scale [J]. Journal of the American Chemistry Society,1991,113(4):1465-1466.
    [19]Xue D, Zuo S, Rttajczak H. Electronegativity and structural characteristics of lanthanides [J]. Physica B,2004,352(1-4):99-104.
    [20]Li K Y, Xue D F. Estimation of electronegativity values of elements in different valence states [J]. The Journal of Physical Chemistry A,2006,110(39):11332-11337
    [21]Li K Y, Xue D F. A new set of electronegativity scale for trivalent lanthanides [J]. Physica status Solidi (b),2007,244(6):1982-1987.
    [22]李克艳,薛冬峰.电负性概念的新拓展[J].科学通报,2008,53(20):2442-2448.
    [23]Li K Y, Xue D F. New development of the concept of electronegativity [J]. Chinese Science Bulletin,2009,54(2):328-334.
    [24]李克艳.晶体中的电负性标度及其应用[D].大连:大连理工大学,2008.
    [25]Li K Y, Wang X T, Xue D F. Electronegativities of elements in the covalent crystals [J]. The Journal of Physical Chemistry A,2008,112(34):7894-7897.
    [26]Sanderson R T. An interpretation of bond lengths and a classification of bonds [J]. Science,1951,114(2973):670-672.
    [27]Sanderson R T. Electronegativities in inorganic chemistry [J]. Journal of Chemistry education,1954,31(1):2-7.
    [28]Hinze J, Whitehead M A, Jaffe H H. Electronegativity. Ⅱ. Bond and orbital electronegativities [J]. Journal of the American Chemical Society,1963,85(2): 148-154.
    [29]Li K Y, Wang X T, Zhang F F, et al. Electronegativity identification of novel superhard materials [J]. Physical Review Letters,2008,100(23):235504.
    [30]王兴涛.电负性与超硬材料设计[D].大连:大连理工大学,2009.
    [31]Datta, D S, Singh, N. Evaluation of group electronegativity by Pauling's thermochemical method[J]. The Journal of Physical Chemistry,1990,94(5):2187-2190.
    [32]Huheey C H. The electronegativity of multiply bonded groups [J]. The Journal of Physical Chemistry,1966,70(7):2086-2092.
    [33]潘金生,仝键民,田民波.材料科学基础[M].北京:清华大学出版社,2007.
    [34]熊家炯.材料设计[M].天津:天津大学出版社,2000.
    [35]薛冬峰.晶体的化学键和非线性光学效应[D].长春:中国科学院长春应用化学研究所,1998.
    [36]许东利,薛冬峰.结晶生长的化学键合理论[J].人工晶体学报,2006,35(3):598-603.
    [37]刘美男.影响铌酸锂结晶行为的化学反应研究[D].大连:大连理工大学,2009.
    [38]Xue D, He X. Dopant occupancy and structural stability of doped lithium niobate crystals [J]. Physical Review B,2006,73(6):064113.
    [39]Zhang X, Xue D. Bond energy prediction of curie temperature of lithium niobate crystals [J]. The Journal of Physical Chemistry B,2007,111(10):2587-2590.
    [40]He Y, Xue D. Bond-energy study of photorefractive properties of doped lithium niobate crystals [J]. The Journal of Physical Chemistry C,2007,111(35):13238-13243.
    [41]Zhang H, Li N, Li K, et al. Structural stability and form ability of AB03-type perovskite compounds [J]. Acta Crystallographica Section B,2007,63(6):812-818.
    [42]Yu D, Xue D. Bond analyses of borates from the Inorganic Crystal Structure Database [J]. Acta Crystallographica Section B,2006,62(5):702-709.
    [43]Inoue A, Zhang T, Masurnoto T. Glass-forming ability of alloys [J]. Journal of Non-Crystalline Solids,1993,156-158(2):473-480.
    [44]Louzguine D V, Inoue A, Botta W J. Reduced electronegativity difference as a factor leading to the formation of Al-based glassy alloys with a large supercooled liquid region of 50 K [J]. Applied Physics Letters,2006,88(1):011911.
    [45]Fang S S, Xiao X S, Xia L, et al. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses [J]. Journal of Non-Crystalline Solids,2003,321(1-2):120-125.
    [46]Oliveira M F, Pereira F S, Bolfarini C, et al. Topological instability, average electronegativity difference and glass forming ability of amorphous alloys [J]. Intermetallics,2009,17(4):183-185.
    [47]Manca P. A relationship between the binding energy and the band gap energy in semiconductors of diamond and zincblende structure [J]. Journal of Physics and chemistry of Solids,1961,20(3-4):268-273.
    [48]Makino Y. Application of band parameters to materials design [J]. ISIJ International, 1998,38(9):925-934.
    [49]Di Quarto F, Sunseri C, Piazza S, et al. Semiempirical correlation between optical band gap values of oxides and the difference of electronegativity of the elements. Its importance for a quantitative use of photocurrent spectroscopy in corrosion studies [J]. The Journal of Physical Chemistry B,1997,101(14):2519-2525.
    [50]Hur S G, Kim T W, Hwang S J, et al. Synthesis of new visible light active photocatalysts of Ba(In1/3Pb1/3M1/3)03 (M=Nb, Ta):A band gap engineering strategy based on electronegativity of a metal component [J]. The Journal of Physical Chemistry B,2005, 109(31):15001-15007.
    [51]Reddy R R, Rama Gopal K, Narasimhulu, et al. Correlation between optical electronegativity and refractive index of ternary chalcopyrites, semiconductors, insulators, oxides and alkali halides [J]. Optical Materials,2008,31(2):209-212.
    [52]Reddy R R, Nazeer Ahammed Y, Gopal K R, et al. On the equivalence between Clasusius-Mossotti and optical electronegativity relations [J]. Optical Materials, 2003,22(1):7-11.
    [53]Li K Y, Xue D F. Electronegativity estimation of electronic polarizabilities of semiconductors [J]. Materials Research Bulletin,2010,45(3):288-290.
    [54]Luo R G, Wang R Y. Electronegativity and superconductivity [J]. Journal of Physics and Chemistry of Solids,1987,48(5):425-430.
    [55]Asokamani R, Manjula R. Correlation between electronegativity and superconductivity [J]. Physical Review B,1989,39(7):4217-4221.
    [56]Buzea C, Yamashita T. Correlation between electronegativity and superconductivity [J]. Physica B,2000,281(1):951-952.
    [57]Haines J, Leger J M, Bocquillon G. Synthesis and design of superhard materials [J]. Annual Revies of Materials Research,2001,31(1):1-23.
    [58]Gao F M. Theoretical model of intrinsic hardness [J]. Physical Review B,2006,73(13): 132104.
    [59]Chen S Y, Gong X J. Superhard pseudocubic BC2N superlattices [J]. Physical Review Letters,2007,98(1):015502.
    [60]Solozhenko V L, Kurakevych O O, Andrault D, et al. Ultimate metastable solubility of boron in diamond:synthesis of superhard diamondlike BC5 [J]. Physical Review Letters, 2009,102(1):015506.
    [61]Li Q, Ma Y M, Oganov A R, et al. Superhard monoclinic polymorphy of carbon [J]. Physical Review Letters,2009,102(17):175506.
    [62]He D W, Zhao Y S, Daemen L, et al. Boron suboxide:as hard as cubic boron nitride [J]. Applied Physics Letters,2002,81(4):643-645.
    [63]Ahrens T J, Mineral Physics and Crystallography:A Handbook of Physical Constants, Washington, DC:American Geophysical Union,1995.
    [64]Cohen M L. Calculation of bulk moduli of diamond and zincblende solids [J]. Physical Review B,1985,32(12):7988-7991.
    [65]Kamran S, Chen K Y, Chen L. Semiempirical formulae for elastic moduli and brittleness of diamondlike and zincblende covalent crystals [J]. Physical Review B,2008,77(9): 094109.
    [66]Zhang S Y, Li H L, Li H Y, et al. Calculation of the bulk modulus of simple and complex crystals with the chemical bond method [J]. Journal of Physics and Chemistry B,2007, 111(6):1304-1309.
    [67]Glasser L, Volume-based thermoelasticity:compressibility of inorganic solids [J]. Inorganic Chemistry,2010,49(7):3424-3427.
    [68]Glasser L, Volume-based thermoelasticity:compressibility of mineral-structured materials [J]. The Journal of Physical Chemistry C,2010,114(25):11248-11251.
    [69]Inorganic Crystal Structure Database (Fachinformationszentrum Karlsruhe. German release.2005).
    [70]Li K, Xue, D. Empirical calculation of elastic moduli of crystal materials [J]. Physica Script T,2010,39:014072.
    [71]Causa M, Dovesi R, Roetti C, et al. Pseudopotential Hartree-Fock study of seventeen III-V and II-VI semiconductors [J]. Physical Review B,1991,43(14):11937-11943.
    [72]Grimsditch M, Zouboulls E S, Polian A. Elastic constants of boron nitride [J]. Journal of Applied Physics,1994,76(2):832-834.
    [73]Khenata R, Bouhemadou A, Hichour M, et al. Elastic and optical properties of BeS, BeSe and BeTe under pressure [J]. Sol id-State Electronic,2006,50(7-8):1382-1388.
    [74]Mao H K, Bell P M. Equations of state of MgO and ε Fe under static pressure conditions [J]. Journal of Geophysical Research,1979,84(B9):4533-4536.
    [75]Peiris S M, Campbell A J, Heinz D L. Compression of MgS to 54 GPa [J]. Journal of Physics and Chemistry of Solids,1994,55(5):413-419.
    [76]Anderson D L, Anderson 0 L. The bulk modulus-volume relationship for oxides [J]. Journal of Geophysical Research,1970,75(17):3494-3500.
    [77]Yusa H, Tsuchiya T, Sata N, et al. Rh2O3(II)-type structures in Ga2O3 and In203 under high pressure:experiment and theory [J]. Physical Review B,2008,77(6):064107.
    [78]Liu D, Lei W, Li Y W, et al. High-pressure structural transitions of Sc2O3 by X-ray diffraction, Raman Spectra, and ab initio calculations [J]. Inorganic Chemistry,2009, 48(17):8251-8256.
    [79]Yeheskel 0, Tevet 0. Elastic moduli of transparent yttria [J]. Journal of the American Ceramic Society,1999,82(1):136-144.
    [80]Jiang F M, Gwanmesia G D, Dyuzheva T I, et al. Elasticity of stishovite and acoustic mode softening under high pressure by Brillouin scattering [J]. Physics of the Earth and Planetary Interiors,2009,172(3-4):235-240.
    [81]Hazen R M, Finger L W. Bulk moduli and high-pressure crystal structures of rutile-type compounds [J]. Journal of Physics and Chemistry of Solids,1981,42(3):143-151.
    [82]Shieh S R, Kubo A, Duffy T S, et al. High-pressure phases in SnO2 to 117 GPa [J]. Physical Review B,2006,73(1):014105.
    [83]Zerr A, Kempf M, Schwarz M, et al. Elastic moduli and hardness of cubic silicon nitride [J]. Journal of the American Ceramic Society,2002,85(1):86-90.
    [84]Soignard E, McMillan P F, Hejny C, et al. Pressure-induced transformations in a-and β-Ge3N4:in situ studies by synchrotron X-ray diffraction [J]. Journal of Solid State Chemistry,2004,177(1):299-311.
    [85]Chung H Y, Weinberger M B, Levine J B, et al. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure [J]. Science,2007,316(5823):436-439.
    [86]Cumberland R W, Weinberger M B, Gilman J J, et al. Osminum diborate, an unltra-incompressible, hard materials [J]. Journal of the American Chemistry Society, 2005,127(20):7264-7265.
    [87]Du X L, Mei Z X, Liu Z L, et al. Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors [J]. Advanced Materials,2008,21(45):4625-4630.
    [88]Zerr A, Miehe G, Serghiou G, et al. Synthesis of cubic silicon nitride [J]. Nature, 1999,400:340-342.
    [89]Finger L W, Hazen R M, Hofmeister A. High-pressure crystal chemistry of spinel (MgAl2O4) and magnetite (Fe3O4):comparisons with silicate spinels [J]. Physics and Chemistry of Minerals,1986,13(4):215-220.
    [90]Mori-Sanchez P, Marques M, Beltran A, et al. Origin of the low compressibility in hard nitride spinels [J]. Physical Review B,2003,68(6):064115.
    [91]Zerr A, Dzivenko D A, Guignot N. High-pressure and high-temperature investigation of nitrides of the IVA and IVB group elements [R]. Grenoble:ESRF,2007.
    [92]Errandonea D, Kumar R S, Manjon F J, et al. Post-spinel transformations and equation of state in ZnGa2O4:Determination at high pressure by in situ x-ray diffraction [J]. Physical Review B,2009,79(2):024103.
    [93]Asbrink S, Waskowska A, Gerward L, et al. High-pressure phase transition and properties of spinel ZnMn2O4 [J]. Physical Review B,1999,60(18):12651-12656.
    [94]Zeng Y Z, Chua S J, Wu P, On the prediction of ternary semiconductor properties by artificial intelligence methods [J]. Chemistry of Materials,2002,14(7):2989-2998.
    [95]Xue D, Betzler K, Hesse H. Dielectric properties of Ⅰ-Ⅲ-Ⅵ2-type chalcopyrite semiconductors [J]. Physical Review B,2000,62(20):13546-13551.
    [96]Meng Q B, Xiao C Y, Wu Z J, et al. Bulk modulus of ternary chalcopyrite AⅠBⅢC2Ⅵ and AⅡBⅣC2Ⅴ semiconductors [J]. Solid State Communications,1998,107(7):369-371.
    [97]Verma A S, Bhardwaj S R. Correlation between ionic charge and the mechanical properties of complex structured solids [J]. Journal of Physics:Condensed Matter,2007,19(2): 06213.
    [98]Errandonea D, Manjon F J. Pressure effects on the structural and electronic properties of ABX4 scintillating crystals [J]. Progress in Materials Science,2008,53(4): 711-773.
    [99]Haze R M, Finger L W, Mariathasan J E. High-pressure crystal chemistry of scheelite-type tungstates and molybdates [J]. Journal of Physics and Chemistry of Solids,1985,46(2): 253-263.
    [100]Leivine B F. Bond susceptibilities and ionicities in complex crystal structures [J]. The Journal of Chemistry Physics,1973,59(3):1463.
    [101]Errandonea D, Lacomba-perales R, Ruiz-Fuertes J, et al. High-pressure structural investigation of several ziron-tpye orthovanadates [J]. Physical Review B,2009, 79(18):84104.
    [102]Lacomba-Perales R, Errandonea D, Meng Y, et al. High-pressure stability and compressibility of APO4 (A= La, Nd, Eu, Gd, Er, and Y) orthophosphates:an x-ray diffraction study using synchrotron radiation [J]. Physical Review B,2010,81(6): 064113.
    [103]Chen X H, Kang J Y. The structural properties of wurtzite and rocksalt MgxZn1-xO [J]. Semiconductor Science and Technology,2008,23(2):025008.
    [104]Shannon R D, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A,1976, 32(5):751-767.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700