具有高的亚铁氧化活性的氧化亚铁硫杆菌基因工程菌构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans简称氧化亚铁硫杆菌)是一种在微生物冶金中起着重要作用细菌,也是目前研究的最多的浸矿细菌之一。氧化亚铁硫杆菌是一株极具代表性的极端嗜酸性严格自养细菌,它能在酸性条件将Fe2+氧化为Fe3+,或者将元素硫或还原性硫化物氧化为硫酸,并依靠这些无机物的氧化过程获得能量。该菌在细菌冶金、煤的脱硫、废水处理、污泥中重金属的浸出等方面发挥着重要作用。氧化亚铁硫杆菌能够酸性条件下将Fe2+氧化为Fe3+,而Fe3+作为一种强氧化剂,可以在酸性条件下将硫化矿物其他金属化合物氧化溶解,这是生物浸矿过程中至关重要的一步反应,因此,氧化亚铁硫杆菌氧化Fe2+的能力与其浸矿能力密切相关。
     对氧化亚铁硫杆菌Fe2+氧化能力的基因工程改造应基于对其氧化Fe2+途径的研究。嗜酸氧化亚铁硫杆菌氧化Fe2+主要是通过Fe2+电子传递系统。针对Fe2+电子传递系统,曾经提出过多种模型。目前具有最多实验证据支持也是最广为接受的电子传递途径模型为Fe2+→细胞色素蛋白Cyc2--+铜蓝蛋白Rusticyanin→细胞色素Cycl→aa3细胞色素c氧化酶→02。编码此电子传递链各组分蛋白的基因位于同一个操纵子内,该操纵子被命名为rus操纵子
     我们以广宿主范围IncQ族质粒pJRD215为基础,构建了含Ptac强启动子以及电子传递体蛋白编码基因的重组质粒pTRUS、pTCYC1以及pTCYC2,并将其成功导入了氧化亚铁硫杆菌ATCC19859,从而构建了氧化亚铁硫杆菌基因工程菌A.ferrooxidans(pTRUS)、A.ferrooxidans(pTCYC1)以及A.ferrooxidans(pTCYC2)。经Western-blotting验证,重组质粒上所携带的电子传递体编码基因在氧化亚铁硫杆菌中均得到了表达。为了检验以基因工程改良的方式来提高氧化亚铁硫杆菌Fe2+氧化活性的方式是否有效,我们检测了所构建的氧化亚铁硫杆菌基因工程菌的Fe2+氧化酶活性。实验结果表明,无论是休止细胞还是细胞提取液的检测结果,氧化亚铁硫杆菌基因工程菌A.ferrooxidans(pTRUS)、A.ferrooxidans(pTCYC1)的Fe2+氧化活性均有了一定程度的提高。在休止细胞中,氧化亚铁硫杆菌基因工程菌A.ferrooxidans(pTRUS)、A.ferrooxidans(pTCYC1)以及A.ferrooxidans(pTCYC2)的亚铁氧化酶活性为原始菌株ATCC19859相比,分别提高了19.85%、13.30%和7.68%。在细胞提取液中,相对于原始菌株氧化亚铁硫杆菌ATCC19859,基因工程菌A.ferrooxidans(pTRUS)和A.ferrooxidans(pTCYC1)的亚铁氧化活性分别提高了41.41%和38.57%;而基因工程菌A.ferrooxidans(pTCYC2)细胞提取液所测得的亚铁氧化酶活性与原始菌株区别不大。
     为了进一步探究基因工程菌Fe2+氧化活性的提高的原因,我们应用荧光定量PCR技术对基因工程中rus操纵子组成基因的表达水平进行了研究。结果表明,在基因工程菌4.ferrooxidans(pTRUS)和A.ferrooxidans(pTCYC1)中,除了质粒上所携带的目的基因的表达水平有提高以外,rus操纵子上的其它基因的表达水平也有一定的提高。通过对基因工程菌中rus操纵子基因表达水平的变化,初步对氧化亚铁硫杆菌Fe2+氧化电子传递系统限速步骤进行了推测,为氧化亚铁硫杆菌进一步的基因改良提供了理论指导。
     氧化亚铁硫杆菌在亚铁培养基中的Fe2+消耗情况及细菌生长情况检测结果显示,在Fe2+培养基中,氧化亚铁硫杆菌A.ferrooxidans(pTRUS)和A.ferrooxidans(pTCYC1)消耗Fe2+的速度相对于对照菌株有了明显的提高。尽管如此,基因工程菌与对照菌的生长曲线却并没有太大差异。
Acidthiobacillus ferrooxidans, a gram-negative acidophilic chemolithoautotrophic bacterium, plays important role in bioleaching processes, is one of the thoroughly studied bacterium among the bioleaching microorganisms. It obtains energy mainly from the oxidation of ferrous iron (Fe2+) and reduced sulfur compounds. The biological oxidation of Fe2+ not simply served as an energy supply channel, the resulting product of ferric iron (Fe3+) is a powerful oxidant that can oxidize insoluble metallic sulfides to soluble form in acid media. Hence, the Fe2+ oxidizing activity of A. ferrooxidans strain will be directly related to its bioleaching activity.
     The electron chain oxidizing Fe2+ to Fe3+ in A. ferrooxidans has been studied in detail, and several models have been proposed. The currently accepted model proposed based on genetic and biochemical analyses suggests that electrons from ferrous iron oxdition first flow through the high-molecular weight c-type cytochrome Cyc2 to a periplasmic blue copper protein rusticyanin, and then electrons transport through the periplasmic dihemic c-type cytochrome Cyc1 and an aa3 type cytochrome oxidase towards O2 eventually. The proteins involved in the electron transfer chain described above are located in a single operon named rus operon.
     The wide-host-range plasmid pTRUS, pTCYC1 and pTCYC2 containing electron transfer proteins under the control of Ptac promoter was constructed and transferred into Acidithiobacillus ferrooxidans ATCC19859 using conjugation gene transfer method to generate the engineered strains of A. ferrooxidans(pTRUS), A. ferrooxidans(pTCYC1) and A. ferrooxidans(pTCYC2). Expression of the corresponding genes from plasmid pTRUS, pTCYCl and pTCYC2 in A. ferrooxidans was assessed by western blotting analysis. The results showed that the electron transfer proteins encoding genes fused with a 6×His tag gene was successfully expressed from plasmid pTRUS, pTCYCland pTCYC2 in A. ferrooxidans. Fe2+ oxidation activity of A. ferrooxidans(pTRUS), A. ferrooxidans(pTCYC1) and A. ferrooxidans(pTCYC2) was tested and compared with that of A. ferrooxidans ATCC 19859 and A. ferrooxidans (pJRD215). When tested with resting cells, the Fe2+ oxidation activities of Aferrooxidans(pTRUS), A. ferrooxidans(pTCYC1) and A. ferrooxidans(pTCYC2) increased by 19.85%、13.3% and 7.68% compared with A.ferrooxidans ATCC 19859. When tested with cell extracts, the Fe2+ oxidation activities of A. ferrooxidans(pTRUS) and A. ferrooxidans(pTCYC1) increased by 41.41% and 38.57% compared with A.ferrooxidans ATCC 19859, while the Fe2+ oxidation activity of A. ferrooxidans(pTCYC2) was similar to that of the A. ferrooxidans ATCC 19859.
     The levels of rus operon transcriptional products in A.ferrooxidans engineered strains were analyzed using real-time PCR. The results indicated that in A. ferrooxidans, the extra copies of electron transfer proteins encoding genes under the control of Ptac promoter significantly increased the mRNA levels of corresponding genes carried by introduced recombinant plasmids. In addition, the expression levels of other important genes in rus operon were also increased in A. ferrooxidans(pTRUS) and A. ferrooxidans(pTCYC1).
     In the batch cultures of A. ferrooxidans (pTRUS), A. ferrooxidans (pTCYC1) and A. ferrooxidans (pTCYC2), the decreases of Fe2+ concentrations were measured. A. ferrooxidans(pTRUS) and A. ferrooxidans(pTCYC1) oxidized Fe2+ more rapidly than the control of A. ferrooxidans ATCC 19859. In contrast, A. ferrooxidans(pTCYC2) had similar Fe2+ oxidizing curve with that of the control. The cell growths of A. ferrooxidans strains were determined and the results showed that the growth curves of the engineered strains had no remarkable difference compared with the control.
引文
Abergel C, Nitschke W, Malarte G, Bruschi M, Claverie JM, Giudici-Orticoni MT. (2003) The structure of Acidithiobacillus ferrooxidans c(4)-cytochrome:a model for complex-induced electron transfer tuning. Structure,11(5):547-55.
    Acharya C,Kar RN. (2001) Bacterial removal of sulphur from three different coals. Fuel, 80:2207-2216.
    Ahmad Z, Ghauri MA, Anwar MA, Iqbal M, Rehman M, Akhtar K, Khalida M. (2002) Transformation of plasmids of Acidithiobacillus ferrooxidans encoding ampicillin resistance to Escherichia coli strain DH 5 α for detecting copper tolerance genes on such plasmids. Resource and environmental biotechnology,3:185-191.
    Alexander B, Leach S, Ingledew WJ. (1987) The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans. J. Gen. Microbiol.,133:1171-1179.
    Alvarez S, Jerez CA. (2004) Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl Environ Microbiol., 70(9):5177-5182.
    Appia-Ayme C, Guiliani N, Ratouchniak J, Bonnefoy V. (1999) Characterization of an operon encoding two c-type cytochromes, an aa3-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Appl. Environ. Microbiol. 65:4781-4787.
    Baldi F, Olson GJ. (1987) Effects of Cinnabar on Pyrite Oxidation by Thiobacillus ferrooxidans and Cinnabar Mobilization by a Mercury-Resistant Strain. Appl Environ Microbiol.53(4):772-776.
    Barros MEC. (1985) Genetic studies on Thiobacillus ferrooxidans. Ph.D. thesis. University of Cape Town, Rondebosch, South Africa.
    Barros ME, Rawlings DE, Woods DR. (1985) Cloning and expression of the Thiobacillus ferrooxidans glutamine synthetase gene in Escherichia coli. J. Bacteriol. 164:1386-1389.
    Barros ME, Rawlings DE, Woods DR. (1986) Purification and regulation of Thiobacillus ferrooxidans glutamine synthetase cloned in Escherichia coli. J. Gen. Microbiol. 132:1989-1995.
    Bengrine A, Guiliani N, Appia-Ayme C, Jedlicki E, Holmes DS, Chippaux M, Bonnefoy V. (1998) Sequence and expression of the rusticyanin structural gene from Thiobacillus ferrooxidans ATCC33020 strain. Biochim Biophys Acta.,1443:99-112
    Berger DK, Woods DR, Rawlings DE. (1990) Complementation of Escherichia coli u54 (ntrA)-dependent formatehydrogen-lyase activity by a cloned Thiobacillusferrooxidans ntrA gene. J. Bacteriol.,172:4399-4406.
    Birkmann A, Sawers RG, Bock A. (1987) Involvement of the ntrA gene product in the anaerobic metabolism of Escherichia coli. Mol. Gen. Genet.,210:535-542.
    Brierley JA, Brierley CL. (2001) Present and future commercial applications of biohydrometallurgy, Hydrometallurgy,59:233-239.
    Blake Ⅱ RC, Shute EA. (1987) Respiratory enzymes of Thiobacillus ferrooxidans. J Biol Chem,262:14983-9.
    Blake RC Ⅱ, Shute EA. (1994) Respiratory enzymes of Thiobacillus ferrooxidans:kinetic properties of an acid-stable iron:rusticyanin oxidoreductase. Biochemistry, 33:9220-9228.
    Booth JE, Williams JW. (1984). The Isolation of a Mercuric Ion-reducing Flavoprotein from Thiobacillus ferrooxidans. Journal of General Microbiology,130:725-730
    Brasseur G, Levican G, Bonnefoy V, Holmes D, Jedlicki E, Lemesle-Meunier D. (2004) Apparent redundancy of electron transfer pathways via bcl complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans. Biochim Biophys Acta.,1656(2-3):114-126.
    Brown NL, Misra TK, Winnie JN, Schmidt A, Seiff M, Silver S. (1986) The nucleotide sequence of the mercuricresistance operons of plasmids R100 and transposon Tn501: further evidence for mer genes which enhance the activity of the mercuric ion detoxification system. Mol. Gen. Genet.,202:143-151.
    Brown NL, Lee BTO, Silver S. (1994) Bacterial transport of and resistance to copper. Metal ions in biological systems,30:405-434.
    Bruscella P, Cassagnaud L, Ratouchniak Jeanine, Brasseur G, Lojou E, Amils R, Bonnefoy V. (2005) The HiPIP from the acidophilic Acidithiobacillus ferrooxidans is correctly processed and translocated in Escherichia coli, in spite of the periplasm pH difference between these two micro-organisms. Microbiology,151:1421-1431.
    Butcher BG, Deane SM, Rawlings DE. (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol., 66(5):1826-1833.
    Butcher BG, Rawlings DE. (2002) The divergent chromosomal ars operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein. Microbiology, 148:3983-3992
    Cai J, SalmonK, Dubow MS. (1998) A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology,144:2705-2713.
    Carlin A, Shi W, Dey S, Rosen BP. (1995) The ars operon of Escherichia coli confers arsenical and antimonal resistance. J. Bacteriol.,177:981-986.
    Cervantes C, Ji G, Ramirez JL, Silver S. (1994) Resistance to arsenic compounds in microorganisms. FEMS Microbiol. Rev.,15:355-367.
    Cha JS, Cooksey DA. (1993) Copper hypersensitivity and uptake in Pseudomonas syringae containing cloned components of the copper resistance operon. Appl. Environ. Microbiol.,59:1671-1674.
    Chen S, Qiu GZ, Qin WQ, Lan ZY. (2008) Bioleaching of sphalerite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans cultured in 9K medium modified with pyrrhotite. Journal of Central South University of Technology.15(4):4503-4507.
    Chisholm IA, Leduc LG, Ferroni GD. (1998) Metal resistance and plasmid DNA in Thiobacillus ferrooxidans. Antonie Van Leeuwenhoek,73:245-254.
    Cook GM, Russel JB. (1994) Energy spilling reactions of Streptococus bovis and resistance of its membrane to proton conductance. Appl Enviorn Microbiol,60(6):1942-1948.
    Cooksey DA. (1994) Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiol Rev.,14:381-386.
    Corbet CM, Ingledew WJ. (1987) Is Fe3+/2+ cycling an intermediate in sulphur oxidation by Fe2+-grown Thiobacillusferrooxidans. FEMS Microbiol. Lett.,41:1-6.
    Couillad D. (1993) Removal of metals and fate of N and P in the bacteria leaching of aerobically digested sewage.Water Research,27(7):1227-1235.
    Danielsen E, Bauer R, Hemmingsen L, Andersen ML, Bjerrum MJ, Butz T, Troger W, Canters GW, Hoitink CW, Karlsson G. (1995) Structure of metal site in azurin, Met121 mutants of azurin, and stellacyanin investigated by 111mCD perturbed angular correlation (PAC). Journal of Biological Chemistry.270(2):573-580.
    Das A, Modak JM, Natarajan KA. (1998) Surface chemical studies of Thiobacillus ferrooxidans with reference to copper tolerance. Antonie van Leeuwenhoek 73:215-222.
    Davison J, Heusterspreute M, Chevalier N, Ha-Thi V, Brunel F (1987) Vectors with restriction site banks. V. pJRD215, a wide-host-range cosmid vector with multiple cloning sites. Gene 51:275-280.
    DiSpirito AA, Touvinen OH. (1982) Uranous ion oxidation and carbon dioxide fixation by Thiobacillus ferrooxidans. Arch. Microbiol.,133:28-32.
    Dodd FE, Hasnain SS, Hunter WN, Abraham ZH, Debenham M, Kanzler H, Eldridge M, Eady RR, Ambler RP, Smith BE. (1995) Evidence for two distinct azurins in Alcaligenes xylosoxidans (NCIMB 11015):Potential electron donors to nitrite reductase. Biochemistry,34:10180-10186.
    Dorrington RA, Rawlings DE. (1989) Identification and sequence of the basic replication region of a broad-host-range plasmid isolated from Thiobacillus ferrooxidans. J. Bacteriol,171:2735-2739.
    Drobner E, Huber H, Stetter KO. (1990) Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl. Environ. Microbiol.,56:2922-2923.
    Elbehti A, Nitschke W, Tron P, Michel C, Lemesle-Meunier D. (1999) Redox components of cytochrome bc-type enzymes in acidophilic prokaryotes.Ⅰ. Characterization of the cytochrome bcl-type complex of the acidophilic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. The Journal of Biological Chemistry, 274(24):16760-16765.
    Elbehti A., Brasseur G., Lemesle-Meunier, D. (2000) First evidence for existence of an uphill electron transfer through the bc1 and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. Journal of Bacteriology,182:3602-3606.
    Franke S, Grass G, Rensing C, Nies DH. (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J. Bacteriol., 185:3804-3812.
    Fry IV, Lazaroff N, Packer L. (1986) Sulfate-dependent iron oxidation by Thiobacillus ferrooxidans:characterization of a new EPR detectable electron transport component on the reducing side of rusticyanin. Arch. Biochem. Biophys.,246:650-654.
    Gaetke LM, Chow CK. (2003) Copper toxicity,oxidative stress, and antioxidant nutrients. Toxicology,89:147-163.
    Gaggelli E, Kozlowski H, Valensin D, Valensin G. (2006) Copper Homeostasis and Neurodegenerative Disorders (Alzheimer's, Prion, and Parkinson's Diseases and Amyotrophic Lateral Sclerosis). Chem. Rev.,106(6):1995—2044.
    Gamier J, Osguthorpe DJ, Robson B. (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol.,120:97-120.
    Giudici-Orticoni M.-T, Guerlesquin F, Bruschi M, Nitschke W. (1999) Interaction-induced redox switch in the electron transfer complex rusticyanin-cytochrome c4. J. Biol. Chem.,274:30365-30369.
    Giudici-Orticoni M.-T, Leroy G, Nitschke W, Bruschi M. (2000) Characterization of a new dihemic c4-type cytochrome isolated from Thiobacillus ferrooxidans. Biochemistry, 39:7205-7211.
    Gray HB, Malmstrom BG, Williams RJP. (2000) Copper coordination in blue proteins. Journal of Biological Inorganic Chemistry,5(5):551-559.
    Griffin H, Foster TJ, Silver S, Misra TK. (1987) Cloning and DNA sequence analysis of the mercuric and organomercurial resistance determinants of plasmid pDU1358. Proc. Natl.Acad.Sci.84:3112-3116.
    Guermeur Y, Geourjon C, Gallinari P, Deleage G. (1999) Improved performance in protein secondary structure prediction in homogeneous score combination. Bioinformatics, 15:413-421.
    Guiliani N, Bengrine A, Borne F, Chippaux M, Bonnefoy V. (1997) Alanyl-tRNA synthetase gene of the extreme acidophilic chernolithoautotrophic Thiobacillus ferrooxidans is highly homologous to alaS genes from all living kingdoms but cannot be transcribed from its promoter in Escherichia coli. Microbiology,143:2179-2187
    Harrison AP, Jr. (1984) The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annu. Rev. Microbiol.,38:265-292.
    Holmes DS, Lobos JH, Bopp LH, Welch GC. (1984) Cloning of a Thiobacillusferrooxidans plasmid in Escherichia coli. J. Bacteriol.157:324-326.
    Holmes DS, Yates JR, Schrader J. (1988) Mobile repeated DNA sequences in Thiobacillus ferrooxidans and their significance for biomining, p.153-160. In P. R. Norris and D. P. Kelly (ed.), Biohydrometallurgy. Science and Technology Letters, Kew, United Kingdom.
    Holmes DS, Haq R.1989. Adaptation of Thiobacillus ferrooxidans for industrial applications, p.115-127. In J. Salley, R. G. L. McCready, and P. L. Wichlacz (ed.), Biohydrometallurgy-1989. CANMET, Ottawa, Canada.
    Inoue C, Sugawara K, Kusano T. (1990) Thiobacillus ferrooxidans mer operon:sequence analysis of the promoter and adjacent genes. Gene.96(1):115-120.
    Inoue C, Sugawara K, Kusano T. (1991) The merR regulatory gene in Thiobacillus ferrooxidans is spaced apart from the mer structural genes. Mol Microbiol., 5(11):2707-2718.
    Inoue C, Sugawara K, Shiratori T, Kusano T, Kitagawa Y. (1989) Nucleotide sequence of the Thiobacillus ferrooxidans chromosomal gene encoding mercuric reductase. Gene, 84(1):47-54.
    Ingledew WJ, Cox JC, Halling PJ. (1977) A proposed mechanism for energy conservation during Fe2+ oxidation by Thiobacillusferrooxidans:chemiosmotic coupling to net H+ influx. FEMS Microbiol. Lett.,2:193-197.
    Ingledew WJ. (1982) Thiobacillus ferrooxidans. The bioenergetics of an acidophilic chemolithotroph. Biochim. Biophys. Acta,683:89-117.
    Jain CK, Ali I. (2000) Arenic:Occurrence, Toxicity and Speciation Techniques. Water Resources,34(17):4304-4312.
    Kai M, Yano T, Fukumori Y, Yamanaka T. (1989) Cytochrome oxidase of an acidophilic iron-oxidizing bacterium, Thiobacillus ferrooxidans, functions at pH 3.5. Biochem Biophys Res Commun,2:839-843.
    Kai M, Yano T, Tamegai H, Fukumori Y, Yamanaka T. (1992) Thiobacillus ferrooxidans cytochrome c oxidase:purification, and molecular and enzymatic features. Journal of Biological Chemistry,112:816-821.
    Keasling JD. (1997) Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Ann. N. Y. Acad. Sci.,829:242-249.
    Kornberg A, Rao N, Ault-Riche D. (1999) Inorganic polyphosphate:a molecule of many functions. Annu. Rev. Biochem.,68:89-125.
    Kusano T, Sugawara K, Inoue C, Suzuki N. (1991) Molecular cloning and expression of Thiobacillus ferrooxidans chromosomal ribulose bisphosphate carboxylase genes in Escherichia coli. Curr. Microbiol.,22:35-41.
    Kusano T, Takeshima T, Inoue C, Sugawara K. (1991) Evidence for two sets of structural genes coding for ribulose bisphosphate carboxylase in Thiobacillus ferrooxidans. J. Bacteriol.,173:7313-7323.
    Lane DJ, Harrison AP Jr, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace NR. (1992) Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J. Bacteriol., 174:269-278.
    Lin LS, Kim YJ, Meyer R. (1987) The 20 bp directly repeated DNA sequence of broad-host-range plasmid R1162 exerts incompatibility in vivo and inhibits R1162 DNA replication in vitro. Mol. Gen. Genet.,208:390-397.
    Liu Z, Guiliani N, Appia-Ayme C, Borne F, Ratouchniak J, Bonnefoy V (2000) Construction and characterization of a recA mutant of Thiobacillus ferrooxidans by marker exchange mutagenesis. J Bacteriol 182:2269-2276.
    Mackintosh ME. (1978) Nitrogen fixation by Thiobacillus ferrooxidans.J. Gen. Microbiol., 105:215-218.
    Magnani D, Solioz M. (2005) Copper chaperone cycling and degradation in the regulation of the cop operon of Enterococcus hirae. Biometals.18(4):407-412.
    Magnani D, Solioz M. (2007) How bacteria handle copper, p.259-285. In D. H. Nies and S. Silver (ed.), Bacterial transition metal homeostasis. Springer, Heidelberg, Germany.
    Malmstrom BG, Leckner J. (1998) The chemical biology of copper. Current Opinion in Chemical Biology,2(2):286-292.
    Maria E, Oswaldo G J, Arnaldo A C. (2001) Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Process Biochemistry,37: 111-114.
    Malarte G, Leroy G, Lojou E, Abergel C, Bruschi M, Giudici-Orticoni MT. (2005) Insight into molecular stability and physiological properties of the diheme cytochrome CYC41 from the acidophilic bacterium Acidithiobacillus ferrooxidans. Biochemistry, 44(17):6471-6481.
    Martin PAW, Dugan PR, Tuovinen OH. (1981) Plasmid DNA in acidophilic, chemolithotrophic thiobacilli. Can. J. Microbiol.27:850-853.
    Martin PAW, Dugan PR, Tuovinen OH. (1983) Uranium resistance of Thiobacillus ferrooxidans. Eur. J. Appl. Microbiol. Biotechnol.,18:392-395.
    Matin A, Wilson B, Zychlinsky E, Matin M. (1982) Proton motive force and the physiological basis of delta pH maintenance in Thiobacillus acidophilus. The Journal of Bacteriology,150:582-591.
    Misra TK, Brown NL, Fritzinger DC, Pridmore RD, Barnes WM, Haberstroh L, Silver S. (1984) The mercuric resistance operons of plasmids R100 and transposon Tn501:the beginning of the operon including the regulatory region and the first two structural genes. Proc. Natl. Acad. Sci.81:5975-5979.
    Misra TK, Brown NL, Haberstroh L, Schmidt A, Goddette D, Silver S. (1985) Mercuric reductase structural genes from plasmid R100 and transposon Tn501:functional domains of the enzyme. Gene,34:253-262.
    Mobley HL, Chen CM, Silver S. (1983) Cloning and expression of R-factor mediated arsenate resistance in Escherichia coli. Mol. Gen. Genet.,191(3):421-426.
    Navarro CA, Orellana LH, Mauriaca C, Jerez CA. (2009) Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper. Appl Environ Microbiol.,75(19):6102-6109.
    Neyt C, Iriarte M, Ha Thi V, Cornelis GR. (1997) Virulence and arsenic resistance in yersiniae. J. Bacteriol.,179:612-619.
    Nucifora G, Chu L, Silver S, Misra TK. (1989) Mercury operon regulation by the merR gene of the organomercurial resistance system of plasmid pDU1358. J. Bacteriol., 171:4241-4247.
    Olson GJ, Porter FD, Rubinstein J, Silver S. (1982) Mercuric reductase enzyme from a mercury-volatilizing strain of Thiobacillus ferrooxidans. J Bacteriol.151(3): 1230-1236.
    Olson GJ, Brierley JA, Brierley CL. (2003). Bioleaching review part B:progress in bioleaching:applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol.,63:249-257.
    Peng JB, Yan WM, Bao XZ. (1994) Plasmid and transposon transfer to Thiobacillus ferrooxidans. J Bacteriol.,176(10):2892-2897.
    Peng JB, Yan WM, Bao XZ. (1994) Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans. Appl. Envir. Microbiol.,60:2653-2656.
    Pretorius IM, Rawlings DE, Woods DR. (1986) Identification and cloning of Thiobacillus ferrooxidans structural nif genes in Escherichia coli. Gene,45:59-65.
    Pronk JT, Liem K, Bos P., Kuenen JG. (1991) Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans. Appl. Environ. Microbiol.,57:2063-2068.
    Pronk JT, Meijer WM, Haseu W, van Dijken JP, Bos P, Kuenen JG. (1991) Growth of Thiobacillus ferrooxidans on formic acid. Appl. Environ. Microbiol.,57:2057-2062.
    Poulin R, Lawrence RW. (1996) Economic and environmental niches of biohydrometallurgy. Miner. Eng.,9:799-810.
    Puig S, Rees EM, Thiele DJ. (2002) The ABCDs of periplasmic copper trafficking. Structure,10:1292-1295.
    Qin J, Fu HL, Ye J, Bencze KZ, Stemmler TL, Rawlings DE, Rosen BP. (2007) Convergent evolution of a new arsenic binding site in the ArsR/SmtB family of metalloregulators. J Biol Chem.,282(47):34346-34355.
    Rawlings DE, Gawith C, Petersen A, Woods DR. (1983) Characterization of plasmids and potential genetic markers in Thiobacillus ferrooxidans, p.555-570. In G. Rossi and A. E.Torma (ed.), Recent progress in biohydrometallurgy. Associazione Mineraria Sarda, Iglesias,Italy.
    Rawlings DE, Pretorius I.-M, Woods DR. (1984) Expression of a Thiobacillus ferrooxidans origin of replication in Escherichia coli., J. Bacteriol.158:737-738.
    Rawlings DE, Woods DR, (1985) Mobilization of Thiobacillus ferrooxidans plasmids among Escherichia coli strains. Appl Environ Microbiol.49(5):1323-1325.
    Rawlings DE. (1988) Sequence and structural analysis of the [alpha]-and [beta]-dinitrogenase subunits of Thiobacillus ferrooxidans. Gene,69:337-343.
    Rawlings DE. (1989) A comparison of the structure and expression of several genes from Thiobacillus ferrooxidans with those of other bacteria, p.3-8. In B. J. Scheiner, F. M. Doyle, and S. K. Kawatra (ed.), Biotechnology in minerals and metal processing. SME Press, Littleton, Colo.
    Rawlings DE, Dorrington RA, Rohrer J, Clennel AM. (1993) A molecular analysis of the replication and mobilization regions of a broad-host-range plasmid isolated from Thiobacillus ferrooxidans. FEMS Microbiol. Rev.,11:3-7.
    Rawlings DE, Woods DR. Development of improved biomining bacteria. In C. Gaylarde and H. Videla (ed.), Bioextraction and biodeterioration of metals,1995. Cambridge University Press, Cambridge.
    Rawlings, DE. Bioming:Theory,Microbes and Industrial Processes. Spring-Verlag and Landes Bioscience 1997:19-244.
    Rawlings DE. (2002) Heavy metal mining using microbes. Annu Rev Microbiol.,56:65-91.
    Rawlings DE, Dew D, Plessis C. (2003) Biomineralization of metal-containing ores and concentrates. TRENDS Biotechnol.,21:38-44.
    Remonsellez F, Orell A, Jerez CA. (2006) Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus:possible role of polyphosphate metabolism. Microbiology,152:59-66.
    Rensing C, Ghosh M, Rosen BP. (1999) Families of soft-metal-iontransporting ATPases. J. Bacteriol.,181:5891-5897.
    Rensing C, Grass G. (2003) Escherichia coli mechanism of copper homeostasis in a changing environment. FEMS Microbiol. Rev.,27:197-213.
    Rohwerder T, Gehrke T, Kinzler K, Sand W. (2003) Bioleaching review part A:progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol.,63:239-248.
    Rossi G. Biohydrometallurgy. Hamburg, Germany:McGraw-Hill,1990.1-7
    Ruan RM, Wen JK, Chen JH. (2006) Bacterial Heap-Leaching:Practice In Zijinshan Copper Mine. Hydrometallurgy,83:77-82.
    Ryu HW, Moon HS, Lee EY, Cho KS, Choi H. (2003). Leaching characteristics of heavy metals from sewage sludge by Acidithiobacillus thiooxidans MET. J. Environ. Qual., 32:751-759.
    Salazar O, Sagredo B, Jedlicki E, Soll D, Weygand-Durasevic I, Orellana O. (1994) Thiobacillus ferrooxidans tyrosyl-tRNA synthetase functions in vivo in Escherichia coli. J Bacteriol.,176(14):4409-4415.
    Sanchez H, Hevia E, Caseres B, Venegas A. (1986) Studies on native strains of Thiobacillus ferrooxidans. Biotechnol. Appl. Biochem.,8:300-308.
    Sato T, Kobayashi Y. (1998) The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J. Bacteriol.,180:1655-1661.
    Schippers A, Sand W. (1999) Bacterial Leaching of Metal Sulfides Proceeds by Two Indirect Mechanisms via Thiosulfate or via Polysulfides and Sulfur. Appl. Environ. Microbiol.,65(1):319-321.
    Schrader JA, Holmes DS. (1988) Phenotypic switching of Thiobacillus ferrooxidans. J. Bacteriol.,170:3915-3023.
    Seidel, A., Zimmels, Y., Armon, R. (2001). Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidans. Chemical Engineering Journal,83:123-130.
    Shiratori T, Inoue C, Sugawara K, Kusano T, Kitagawa Y. (1989) Cloning and Expression of Thiobacillus ferrooxidans Mercury Ion Resistance Genes in Escherichia coli. J Bacteriol.,171(6):3458-3464.
    Shiratori T, Inoue C, Numata M, Kusano T. (1991) Characterization and cloning of plasmids from the iron-oxidizing bacterium Thiobacillusferrooxidans. Curr. Microbiol., 23:321-326.
    Shoji K, Tanigawa M, Hori K, Tomozawa Y, Yamanaka T. (1999) The effects of several nucleotides on the molecular state and catalytic activity of Thiobacillus novellus cytochrome c oxidase ATP affects the oxidase uniquely. The Journal of Bacteriology, 264:960-964.
    Simon, R, U. Priefer, A. Ptihier (1983) A broad host range mobilization system for in vitro genetic engineering:transposon mutagenesis in Gram negative bacteria. Bio/Technology 1:784-791.
    Silver S, Walderhaug M. (1992) Gene regulation of plasmid-and chromosome-determined inorganic ion transport in bacteria. Microbiol Mol Biol Rev.,56(1):195-228.
    Silver S. (1996) Bacterial resistances to toxic metals——a review. Gene 179:9-19.
    Silver S, Phung LT. (1996) Bacterial heavy metal resistance:new surprises. Annu. Rev. Microbiol.,50:753-789.
    Solioz M, Stoyanov JV. (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev.,27:183-195.
    Solisio C, Lodi A, Veglio F. (2002) Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans. Waste Manag.,22:667-675.
    Stouthamer A H. Energetic aspects of the growth microorganisims. In:Haddock B A, Hamilton W A. Microbiol Energetics. London:Chambridge University Press,1977. 285-315
    Sugio T, Domatsu C, Munakata O, Tano T, Imai K. (1985) Role of a ferric ion-reducing system in sulfur oxidation of Thiobacillus ferrooxidans. Appl. Environ. Microbiol.,49: 1401-1406.
    Sugio T, Hirayama K, Inagaki K, Tanaka H, Tano T. (1992) Molybdenum oxidation by Thiobacillus ferrooxidans. Appl. Environ. Microbiol.,58:1768-1771.
    Sugio T, White KJ, Shute E, Choate D, Blake RC. (1992) Existence of a hydrogen sulfide:ferric ion oxidoreductase in iron-oxidizing bacteria. Appl. Environ. Microbiol., 58:431-433.
    Suzuki K, Wakao N, Kimura T, Sakka K, Ohmiya K. (1998) Expression and regulation of the arsenic resistance operon of Acidiphilium multivorum AIU 301 plasmid pK301 in Escherichia coli. Appl. Environ. Microbiol.,64:411-418.
    Suzuki I. (2001) Microbial leaching of metals from sulfide minerals. Biotechnology Advances,19:119-132.
    石绍渊 方兆珩.(2004)Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA 2004 14(3)
    Teitzel GM, Geddie A, De Long SK, Kirisits MJ, Whiteley M, Parsek MR. (2006) Survival and growth in the presence of elevated copper:transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J. Bacteriol.,188:7242-7256.
    Torma, AE.(1977) The role of Thiobacillus ferrooxidans in hydrometallurgical processes. Adv. Biochem. Eng.,6:1-38.
    Touvinen OH, Niemela SI, Gyllenberg HG. (1971) Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans. Biotechnol. Bioeng., 13:517-5.27.
    Touvinen OH, Niemela SI, Gyllenberg HG. (1971) Tolerance of Thiobacillus ferrooxidans to some metals. Antonie Leeuwenhoek,37:489-496.
    Tsai KJ, Hsu CM, Rosen BP. (1997) Efflux mechanisms of resistance to cadmium, arsenic and antimony in prokaryotes and eukaryotes. Zool. Stud.,36:1-16.
    Tyler B. (1978) Regulation of the assimilation of nitrogen compounds. Annu. Rev. Biochem.,47:1127-1162.
    UK Patent Application GB2148300A,1985
    UK Patent Application GB2149798A,1985
    Umita T. (1996) Biological mine drainage treatment. Resources,Conservation and Recycling,16:179-180.
    Valdes J, Veloso F, Jedlicki E, Holmes D. (2003) Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis. BMC Genomics,4:51.
    Valdes J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R 2nd, Eisen JA, Holmes DS. (2008).Acidithiobacillus ferrooxidans metabolism:from genome sequence to industrial applications. BMC Genomics,9:597.
    Vian M, Creo C, Dalmastri C, Gionni A, Palazzolo P, Levi G. (1986) Thiobacillus ferrooxidans selection in continuous culture, p.395-406. In R. W. Lawrence, R. M. R. Branion, and H. G. Ebner (ed.), Fundamental and applied biohydrometallurgy. Elsevier Science Publishing, Amsterdam.
    Valenti P, Polidoro M, Buonfiglio V, Visca P, Orsi N. (1990) Plasmid DNA profiles in Thiobacillus ferrooxidans. J. Gen. Appl. Microbiol.,36:351-355.
    van Aswegen PC, Godfrey MW, Miller DM, Haines AK. (1991) Developments and innovations in bacterial oxidation of refractory ores. Miner. Metallurg. Processing, 8:188-192.
    Viraraghavan T, Subramanian KS, Aruldoss JA. (1999) Arsenic in Drinking Water-Problems and Solutions. Water Science Technology,40(2):69-76.
    Woese CR. (1987) Bacterial evolution. Microbiol. Rev.,51:221-271.
    Wood TA, Murry KR. Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilized on sand for the purpose of treating acid mine-drainage. Appl Microbiol Biotechnol,56:560-565.
    Woods DR,Rawlings DE. (1989) Bacterial leaching and biomining.In Jean LM ed. A revolution in Biotechnology. Cambridge,UK:Cambridge University Press,82-92
    Wu J, Rosen BP. (1993) Metalloregulated expression of the ars operon. J Biol Chem., 268(1):52-58.
    Yang SR, Xie JY, Qiu GZ. (2002)Research and application of bioleaching and biooxidation technologies in China. Minerals Engineering,15:361-363.
    Yanjie Luo, Yuandong Liu, Chenggui Zhang, et al. (2008) Insights into two high homogenous genes involved in copper homeostasis in Acidithiobacillus ferrooxidans Curr Microbiol,57:274-280
    Yarzabal A, Brasseur G, Ratouchniak J, Lund K, Lemesle-Meunier D, DeMoss JA, Bonnefoy V. (2002) The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol, 184(1):313-317.
    Yarzabal A, Appia-Ayme C, Ratouchniak J, Bonnefoy V. (2004) Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology.150(Pt 7):2113-23.
    Yates JR, Lobos JH, Holmes DS. (1986) The use of probes to detect microorganisms in biomining operations. J. Ind. Microbiol.,1:129-135.
    Yates JR, Holmes DS. (1987) Two families of repeated sequences in Thiobacillus ferrooxidans. J. Bacteriol.,169:1861-1870.
    Zhao Q, Liu XM, Zhan Y, Lin JQ, Yan WM, Bian J, Liu Y (2005) Construction of an engineered Acidithiobacillus caldus with high-efficiency arsenic resistance. J Microbiology.45:675-679 (in Chinese).
    杨显万,邱定蕃著。(1998)湿法冶金.北京:冶金工业出版社。
    李浩然,冯雅丽。(2000)微生物浸出深海多金属结核中有价金属。有色金属,4:75-77。
    徐家振,会哲男。(2001)重金属冶金中的微生物技术.有色矿冶,2:31-34.
    陈勃伟,温健康。生物冶金中混合菌的应用。金属矿山,382:13-17
    李宏熙。(2007)硫化铜矿的生物冶金北京:冶金工业出版社。
    陈顺方,钟文远。(2000)难浸硫化金矿的微生物氧化预处理及应用现状。国外金属矿选矿,2:6-7。
    王方俊。(2006)黄金工业的生物冶金术。中国创业投资与高科技,10:23-25。
    邓恩建,杨朝晖,曾光明,徐峥勇。(2005)氧化亚铁硫杆菌的研究概况。黄金科学技术,13:8-12。
    王玮,屠传经,胡亚才。(1997)微生物烟气脱硫技术的展望。环境污染与控制,19(2):28-30。
    宣群,肖文彦。(2003)降解低浓度二氧化硫废气的菌株分离及其固定化研究。云南大学学报(自然科学版),25(2):157-160。
    周顺桂,周立祥,黄焕忠。(2002)生物淋滤技术在去除污泥中重金属的应用。生态学报,22(1):125-133。
    周立祥,王艮梅。(2001)污水污泥中重金属的细菌淋滤效果研究。环境科学学报,21(4):504-506。
    徐海岩,颜望明,刘振盈,等。(1997)利用氧化亚铁硫杆菌抗砷工程菌Tf-59(pSDX3)处理含砷金精矿,应用与环境微生物学报,3(4):366-370。
    张在海,王淀佐,胡岳华,邱冠周。氧化亚铁硫杆菌遗传选育方法探讨。湿法冶金,72:28-31。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700