云南新平大红山铁铜矿床地球化学特征及找矿分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大红山铁铜矿区位于云南省新平县戛洒、老厂、新化三乡(镇)的交界部位,以赋存“大红山式铜、铁矿”和铜铁资源高度集中而全国闻名。大红山铜矿的生产规模虽然在不断扩大,但矿山隐伏的资源危机已逐渐显现。因此,进一步加强大红山铜矿的矿床地球化学特征的研究,为下一步大红山铜矿开展深—边部和外围找矿工作奠定基础,显得十分必要和紧迫。
     本论文以科研项目《云南省新平县大红山铜矿深—边部及外围成矿预测》为依托,在分析研究前人资料的基础上,经现场地质调查,采集岩、矿石标本和样品,通过对样品的分析测试及其综合研究,获得了以下认识和成果:
     1、常量元素化学特征。区内矿石与围岩在常量元素组成上并没有明显的差异,说明大红山铜矿床的矿石与围岩具有近似或相同的形成条件和环境。
     2、微量元素地球化学特征。围岩与含矿层的富集元素基本相同,后者的Cu、Mn、Co相对更富集,说明两者在微量元素种类及其组合上存在一致性,但富集顺序不尽一致,可能存在环境的变异性,受成岩期成矿影响的结果,使元素富集顺序改变。
     3、稀土元素地球化学特征。大红山群含矿岩系稀土总量普遍较低,∑REE含量为47.4-2811ppm,且明显富集轻稀土,LREE/HREE比值为1.17-9.18,钇族稀土含量相对较低,铈族稀土相对含量较高,属轻稀土富集型,其(La/Yb)比值均>1(DT-5为0.91),介于1.07-8.8之间。
     4、同位素地球化学特征。(1)铅同位素:据大红山铜矿床的11个铅同位素数据说明,这种铅显然是不同源的,是在不同u和(ω)值环境中演化、不同时间形成的混合铅。(2)硫同位素:大红山铜矿床硫化物的硫同位素测定结果表明,铜矿床硫化物的硫同位素组成-3.4-12.41‰,大多数为正值。大红山铁矿的硫同位素组成也和大红山铜矿床硫同位素一样,是非平衡状态形成,硫也可能是火山与海水两种来源的硫混合而成。(3)氢、氧同位素:从获得的大红山式铜矿床3件石英,1件方解石和1件石榴子石的δ18O (SMOW)和δD数据看,矿物的δ18O值在9.12-13.48%之间,表明成矿热液有岩浆水、变质水和大气降水参与流动,愈到成矿晚期大气降水的作用愈明显。。(4)K/Ar同位素年龄。从已有K/Ar和本次获得的K/Ar同位素年龄来看,平均主要集中在8.00Ma±20,530-590 Ma±20,300-366±7Ma,表明K/Ar同位素年龄反映的是“大红山式”铜铁矿床后期变质改造的事件,不代表原岩的同位素年龄,代表了晋宁运动期间火山作用、变质作用及铀矿化的时间,也是大红山铜矿床的改造年龄。
     5、找矿有利度分析。根据成矿系列的观点,用地理信息系统分层次进行预测,共圈定了找矿有利地段5处。其中:Ⅰ级找矿有利地段2处,Ⅱ级找矿有利地段3处。
Dahongshan copper area locates in the Junction site of Gasa county, Laochang county and Xinhua in Xinping, Yunnan. It's well-known as high concentration of copper and iron resources. Though the yielding scale of Dahongshan copper is increasing, the mine has been gradually emerging resource crisis. Therefore, further strengthening the Dahongshan geochemical characteristics of copper deposits"in the study for further development of deep Dahongshan copper-edge and peripheral lay the foundation for the work of prospecting, it is extremely necessary and urgent.
     This paper has scientific research "Dahongshan Xinping County, Yunnan Copper Mine-edge and external ore project," Relying on the analysis of research data on the basis of their predecessors, after on-site geological survey, collecting rocks, minerals specimens and samples. Through the analysis of test samples and its integrated research, awareness and access to the following results:
     1. Constant element chemical characteristics. Ore zone with the constant element in the composition of rock, and there is no significant difference, indicating Dahongshan copper deposits of ore and rock formation with a similar or identical conditions and environment.
     2. Trace element geochemistry. Surrounding rock and the enrichment of ore bed containing the same elements, the latter Cu, Mn, Co relatively more enriched in trace elements shows that both types and combinations there consistency, but the enrichment of the order are not consistent, there may be environmental variability, subject to the results of the impact of diagenetic mineralization period, so that changes in the order of element enrichment.
     3. Rare earth elements geochemistry. The Red Hills of total rare earth ore-bearing rocks is generally low, SREE content of 47.4-281ppm, and markedly enriched light REE, LREE/HREE ratio is 1.17-9.18, Y family of rare earth content is relatively low, the relative content of rare earth cerium family high, are LREE-enriched type, the (La/Yb) ratios were> 1 (DT-5 is 0.91), ranging between 1.07-8.8.
     4.Isotope geochemistry. (1) Lead isotope:It Dahongshan copper bed 11 lead isotope data suggest that this lead is obviously different sources at differentμand (ω) the value of the environment in the evolution of the formation of mixed lead at different times. (2) sulfur isotopes:Dahongshan sulphide copper deposits of sulfur isotopic results show that the copper deposits of sulfide sulfur isotopic composition of-3.4-12.41‰, most of them positive. Dahongshan sulfur isotopic composition of iron ore and copper deposits of sulfur isotopes Dahongshan as a non-equilibrium formation of volcanic sulfur may also be two sources of sulfur and seawater mixture. (3), hydrogen and oxygen isotopes:From the get-type copper deposit Dahongshan 3 quartz, calcite, and a garnet one of d180 (SMOW), and dD data shows that the mineral d180 values between 9.12-13.48%, indicating that ore-forming hydro thermal there magmatic water, metamorphic water and meteoric water involved in movement, the more to the ore-forming role of precipitation in the more advanced significantly. (4) K/Ar isotopic age. From the existing K/Ar and the current obtained K/Ar isotopic age shows that on average mainly in 800Ma±20,530-590 Ma±20,300-366±7Ma, that K/Ar isotopic ages reflects " Dahongshan-style "post-metamorphic transformation of iron and copper deposits of the event, does not mean that the original rock isotopic ages, representing Jinning campaign period volcanism, metamorphism and uranium mineralization of the time, is a large copper deposit in the transformation of the Hongshan age.
     5. Benefit Analysis. According to metallogenic series point of view, using geographic information systems at different levels to predict a total of delineation of the ore-finding area 5. Of which:I grade ore-finding area 2, II grade ore-finding area 3.
引文
[1]云南有色地质局三一三队,云南省新平县大红山铜矿综合地质报告.2006.
    [2]查寿才.大红山铜矿资源战略的目标规划.大红山铜矿内部资料.
    [3]陈道公,支霞臣,杨海涛.地球化学,中国科学技术出版社,1994
    [4]赵伦山,张本仁.地球化学[M].北京:地质出版社,1988
    [5]陈骏,王鹤年.地球化学[M].北京:科学出版社,2004
    [6]中国科学院地球化学研究所,高等地球化学[M].北京:科学出版社
    [7]黎彤,倪守斌,地球和地壳的化学元素丰度[M].北京:科学出版社,2000
    [8]钱锦和,沈远仁.云南大红山古火山岩铁铜矿[R].地质专报,矿床与矿产,第15号.1990.
    [9]肖庆辉,施俊法,刘树臣.国外矿产资源研究的重要发展趋势[J].国土资源情报,2003,12:1-4.
    [10]朱炳泉.同位素地质年代学和同位素示踪(讲义)[M].合肥:中国科学技术大学,1980
    [11]中国地质矿产信息研究院.跨世纪的地学态势——调查与科技.1998
    [12]国土资源部信息中心.国外重要成矿区带典型找矿案例和勘查技术应用.1999
    [13]谢学锦.巨型矿床的地表地球化学显示.见:张炳熹,主编面向21世纪的应用地球化学———谢学锦院士从事地球化究50周年[M].北京:地质出版社,2002,425-432.
    [14]施俊法,姚华军,李友枝等.信息找矿战略与勘查百例,北京,地质出版社,2005:118-125
    [15]中国地质调查局,中国国土资源经济研究院.国外矿产资源勘查过程实例分析.2003:73-80,232-235
    [16]云南第九地质队.云南省新平县大红山矿区东段铁矿详勘铜矿初勘地质报告[R].1979.
    [17]陈贤胜.云南新平老厂—大红山矿区成矿系列及其成因.西南矿产地质,1995.(2):1-11
    [18]沈远超,邹为雷,曾庆栋等.矿床地质学研究的发展趋势:深部构造与成矿作用[J].大地构造与成矿学,1999,23(2):180-185
    [19]陈毓川.当代矿产资源勘查评价的理论与方法,北京,地质出版社,1999:458~472
    [20]飞云.大红山铜矿2007年地质找矿工作计划.大红山铜矿内部资料,2007
    [21]滕吉文,杨立强,姚敬全,刘洪臣,刘财,韩立国,张雪梅等.金属矿产资源的深部找矿、勘探与成矿的深层动力过程.2007,22(2):317-334
    [22]肖克炎,冯京,高兰,等.阿舍勒铜锌矿床及三维定位预测[M].北京:地质出版社,2002.
    [23]中国有色金属工业昆明勘察设计研究院,云南省新平县大红山铜矿深部找矿地质报告.2007
    [24]傅容栅,冷伟,常筱华.地幔对流与深部物质运移研究的新进展[J].地球物理学进展,2005,20(1):170-179.
    [25]施俊法,肖庆辉.区域构造与成矿作用研究的几个问题[J].国土资源情报,2001(8):12-19.
    [26]于文卿.现代成矿规律学的基本问题[J].国外铀金地质,1997,14(1):31-39.
    [27]Cart G R, et al.“玻璃地球”——穿透覆盖层勘查的地球化学前沿[J].国土资源情报,2002(12):46-50.
    [28]肖庆辉,施俊法,刘树臣.国外矿产资源研究的主要发展趋势[J].国土资源情报,2003,(12):1-4.
    [29]翟裕生.成矿系统研究与找矿.地质调查与研究,2003,26(2)
    [30]张照志,赵磊,孟庆祝等.电子探针化学测年技术及其在地学中的应用.现代地质[J],2001,(01):71-75
    [31]陈国达,彭省临,戴塔根等,云南铜—多金属壳体大地构造成矿学[M].长沙:中南大学出版社,2003,12:.69-73
    [32]蔺朝晖,大红山铁矿Ⅰ号铁铜矿带的矿床成因探析,有色金属设计,2005.3
    [33]秦德先,燕永锋,田毓龙,刘伟,大红山铜矿床的地质特征及成矿作用演化,地质科学,2000.4
    [34]蔡从定,大红山铜矿两类斑岩及其与矿床成因关系,第二届全国应用地球化学学术讨论会论文专辑,25卷
    [35]王铠元,论哀牢山构造变质带的几个主要问题,云南地质,1993.1
    [36]曾健年,范永香,谭铁龙,现代成矿理论述评,矿产与地质,1996.6
    [37]李佩兰.铅锌硫化物活化迁移形式实验研究.矿物与岩石,1984(4).32-38
    [38]李蟀中,海底热液成矿活动研究的进展、热点及展望,地球科学进展,9卷1期,1994.5-11
    [39]魏民姚永慧,大红山式铜铁矿床地球化学找矿模型研究.地球科学——中国地质大学学报.第23卷第2期1998年3月
    [40]刘家铎,张成江,等.扬子地台西南缘成矿规律及找矿方向.北京:地质出版社,2004.
    [41]涂光炽等,中国层控矿床地球化学(第三卷),科学出版社,1988.
    [42]廖文.滇东黔西铅锌金属区硫、铅同位素组成特征与成矿模式探讨.地质与勘探,1984(1).1-6
    [43]中国科学院矿床地球化学开放实验室.矿床地球化学.地质出版社.1995.
    [44]郑永飞,陈江峰.稳定同位素地球化学.科学出版社.2000.
    [45]G.P. Watson, A.N. Rencz and G.F. BonhamrCarte. Geographic information system are being applied to mineral resource assessment in Northern New Brunswick. GEOS (J),1989,18(1)
    [46]Ross S. Lunetta, John G.Lyon.Reomte sensing and G1S accuracy assessment Boca Raton:CRC Press,2004
    [47]C.M. Knox—Robinson, L.A.I. Wyborn. Twoards a holistic exploration strategy: Using geographic information systems as a tool to enhance exploration. Australian journal of earth sciences (J),1997, (44):453-463.
    [48]Groves D I, et al. Archean lode2gold deposit s; the product s of crustal scale hydrot hermal systems[J]. Brazil Gold'91:1992,299-305.
    [49]Kerrich R, Goldfarb R, Groves D I, et al, The Characteris2 tics, Origins, and Geodynamic Settings of Supergiant Gold Metallogenic Provinces [J]. Science in China, Series D,2000,43 (Sup.):1-68.
    [50]Belousova E A, Griftin W L, Walters S G, et al. Crustal evolution and crust mantle interaction in t he Mount lsa Eastern Succcessions:Terrance Chron analysis of det rital zircons. In:Williams P J, ed. A Hydrot hermal Odyssey Extended Conference Abstract s. J ame Cook University[J]. Economic Geology Research Unit Cont ribution,2001,59:18-19.
    [51]Condie K C. Plate Tectonics and Crustal Evolution[M]. Oxford:Pergamon Press, 1989,476.
    [52][51]Sawkins F J S. Metal Deposit s in Relation to Plate Tectonics [M]. Berlin Springer Verlag,1990,461.
    [53]Cook,D.R,The Evolution of Mineral Exporation Technology-past,and Future,Integrated Methods in Explomuon and Discovery,1993.
    [54]Schelov A.D,The ore deposit and mantle,Global Tectonics and Metallogengy,1991,4(2):69-74.
    [55]Faure,G,principles of isotope Geologyjohn wiley & sones,1986.
    [56]Singer D A. Basic concepts in three-part quantitative assessments of undiscovered mineral resources. Nonrenewable Resources[J],1993,2(2):69-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700