青海白石崖多金属矿成矿构造与矿床地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白石崖铁多金属矿床位于青海都兰柴达木盆地东南隆起边缘,系受控于花岗质侵入体与石炭纪沉积岩--早三叠世火山岩接触带控制的矽卡岩型矿床。
     笔者从青海都兰地区成矿地质背景研究出发,基于构造成矿学、矿床地球化学和成矿预测学理论,开展了白石崖多金属矿床的M1-M18矿段的地质调查、成矿构造研究和矿床地球化学分析,提出了成矿模式,指出了进一步勘查的方向。主要研究成果与认识如下:
     (1)本区铁铜钴、铜铅锌和钨锡钼矿共生根本原因是其所处的特殊地质背景:柴北缘与昆北两大成矿带的交汇部,柴北缘、昆中和哇洪山3条深大断裂的夹持区,柴达木盆地与共和盆地间的近南北向构造岩浆隆起区。
     (2)白石崖矿床产于上三叠统鄂拉山组火山岩--石炭系沉积岩内的矽卡岩中,与花岗质岩浆侵入体(或隐伏花岗岩)有关,而不是火山岩引起的,属于外矽卡岩型-远矽卡岩型矿床,具有上磁铁矿相,下硫化物相的成矿特征。
     (3)铁钴铜矿化主要与基底岩系和偏基性的闪长岩-花岗闪长岩体有关,铜铅锌和钨锡钼矿化则与盖层岩系和偏酸性花岗岩有关,反映了前者幔源组分较多,后者陆源组分较多,及岩浆演化规律。
     (4)岩浆侵入是本区成矿的主要成矿动力机制和成矿物质来源的提供者。正接触带矽卡岩型矿体将是本区进一步勘探的主要目标。
Locating in the eastsouthern uplift edge of the Qaidam basin, Dulan, Qinhai, China, Baishiya Iron-Polymetallic Deposit is a skarn deposit controlled by the contact zones between granitic intrusive bodies and Carboniferous sedimentary to early Triassic volcanic rocks.
     Based on the metallgonenic geological setting of the Dulan region, and the theories of tectonometallogeny, geochemistry and metallogenic prognosis, the author has surveyed into ore geology of M1-M18 ore sections in Baishiya deposit, studied metallotectonic features and geochemistry of ores and wallrocks, proposed a metallogenic model, and points out the direction for further exploration. The main results are as follows:
     (1) The key cause of the coexistence of iron-copper-cobalt, copper-lead-zinc and tungsten-tin-molybdenum minerilizations is its special geological setting:the intersection of the North Qaidam Metallogenic Belt and North Kunlun Metallogenetic Belt, the junction among the deep fault in the northern edge of Qaidam Basin, middle Kunlun deep fault and Wahongshan deep fault, the North-South-trending tectonic-magmatic uplift between Qaidam Basin and the Gonghe Basin.
     (2) Baishiya iron-polymetallic deposit occurred in skarns from Carboniferous sedimentary to early Triassic volcanic rocks, related to the granitic magma intrusion (or hidden granite), belong to the exsoskarn type or distal skarn type, characterized with the mineralization zoning of upper magnetite phase and under sulfide phase.
     (3) Iron-Copper-Cobalt mineralizations are associated chiefly with the basement rocks and meta-basic granodiorite and dioritic rocks, whereas copper-lead-zinc and tungsten-tin-molybdenum mineralizations are mainly related to the cover rocks and the meta-acidic rocks such as biotitic granite, reflecting the fact of the former one with more mantle-derived elements and the latter one with more continental composition, as well as the evolution law of magma.
     (4) The granitic intrusion is the main source of ore-forming kinetics and ore-forming metals in the deposit. Contact skarn-type ore bodies are main explorating targets future in the Baishiya deposit.
引文
[1]地质部航空物探大队904队.柴达木盆地东部边缘山区航空磁测结果报告[R].1967:3-45
    [2]丁振举,刘丛强,姚书振,等.东沟坝多金属矿床矿质来源的稀土元素地球化学限制[J].吉林大学学报(地球科学版),2003,6(4):16-28
    [3]古风宝,吴向农,姜常义.东昆仑华里西期-印支期花岗岩组合及构造环境[J].青海地质,1996,5(1):18-36
    [4]郝国杰,陆松年,王蕙初,等.柴达木盆地北缘前泥盆纪构造格架及欧龙布鲁克古陆块地质演化[J].地学前缘,2004,11(3):115-122
    [5]胡正国,刘继庆,钱壮志,等.东昆仑区域成矿规律初步研究[J].黄金科学技术,1998,6(5-6):6-13
    [6]焦明路,王旭春,申勇胜.青海都兰地区航磁异常的初步认识[J].甘肃冶金,2007,29(5):44-46
    [7]黎彤.化学元素地球化学[J].地球化学,1976,3(1):23-29
    [8]李洪普,曹永亮,关有国,等.青海东昆仑山四角羊地区铁多金属矿床的成矿地质特征[J].地质通报,2009,28(6):787-792
    [9]李厚民,沈远超,胡正国,等.青海五龙沟金矿床矿石、矿物含金性及金的赋存状态[J].矿物学报,2001,21(1):89-94
    [10]李文渊,董福辰,姜寒冰,等.西北地区重要金属矿产成矿特征及其找矿潜力.西北地质[J],2006,4(02):5-2
    [11]李智明,薛春纪,王晓虎,等.东昆仑区域成矿特征及有关找矿突破问题分析[J].地质论评,2007,53(5):708-718
    [12]梁祥济.中国矽卡岩和矽卡岩矿床形成机理的实验研究[M].北京:学苑出版社,2000,1-365
    [13]刘继顺,舒广龙,高珍权.鄂东丰山矿田卡林型金矿地质地球化学特征[J].地学前缘,2004,11(2):379-385
    [14]刘继顺.西旺集团都兰矿业发展战略与开发建议[R].2007,1-15
    [15]刘继顺.西旺集团都兰铁多金属成矿规律、找矿方向与勘查建议[R].2008,2-10
    [16]刘孝忠,刘继顺,潘彤.青海省都兰县果洛龙洼金矿的发现—化探找矿实例[J].矿产与地质,2006,20(4-5):484-488
    [17]陆智平,李发明.青海省都兰县一棵松铅-锌-银矿多元成矿信息与找矿方向[J].矿产与地质,2006,20(4-5):465-468
    [18]马慧英,刘继顺,尹利君,等.青海省都兰小卧龙锡、铁、钨多金属矿地质特征及找矿标志[J].矿产与地质,2009(4):311-315
    [19]马永铨,姜洪成.青海省沙柳河南区有色金属矿床成矿物质来源及矿床成矿模式探讨[J].青海地质,1994,1:26-39
    [20]潘彤,罗才让等.青海省金属矿产成矿规律及找矿预测[M].北京:地质出版社.2005,45-57
    [21]钱壮志,胡正国,李厚民.东昆仑中带印支期浅成-超浅成岩浆岩及其构造环境[J].矿物岩石,2000,20(2):14-18
    [22]青海省地调院.都兰幅(J-47-33)1:20万区域重力调查报告[R].2004,1-37
    [23]青海省地勘局.都兰J47E021009(查查香卡农场)幅、J47E021010(曲录)幅1:5万区域地质调查报告[R].1999,2-41
    [24]青海省地矿八队.青海省都兰地区地质矿产综合研究初步总结[R].1988,3-9
    [25]青海省地质矿产局.青海省岩石地层[M].武汉:中国地质大学出版社,1997,112-171
    [26]青海省区调综合大队.都兰幅(J-47-33)1/20万区域地质测量报告[R].1971,1-30
    [27]青海省区调综合大队.青海省都兰地区矽卡铁矿成矿特征及找矿方向研究报告[R].1977,1-22
    [28]青海省区调综合地质大队.青海省铁矿矿产资源总量预测报告[R].1986,5-67
    [29]青海省有色地质八队.青海省都兰县白石崖铁矿床东区南段地质勘探报告[R].1979,1-50
    [30]青海西旺矿业开发有限公司.青海省都兰县白石崖铁矿床勘探地质报告[R].2006,7-121
    [31]邱家骧.应用岩浆岩岩石学[M].武汉:中国地质大学出版社,1991,26-400。
    [32]舒广龙,马诗敏,刘继顺.基于斑岩成矿体系结构的深部找矿预测—以鄂东丰山铜金矿田为例[J].地质与勘探,2007,43(2):1-7
    [33]苏金明,傅荣华.统计软件SPSS FOR WINDOWS实用指南[M].北京:电子工业出版社,2000,21-58,69-87
    [34]孙崇仁主编,青海省岩石地层[M].武汉:中国地质大学出版社,1997.57-94
    [35]天津地质矿产研究所.都兰县幅(J-47-C004002)1/25万区域地质调查报告[R].2004,1-32
    [36]王训练,高金汉,张海军,等.柴达木盆地北缘石炭系顶、底界线再认识[J].地学前缘,2002,9(3):65-72
    [37]文雪峰,王怀超,窦洪伟.青海省典型铁矿矿床特征及其成矿系列的浅析[J].矿产与地质,2006,20(4-5):450-454
    [38]吴向农.青海省构造体系纲要.青藏高原文集(1)[M].北京:地质出版社,1982,183-219
    [39]肖成东,刘学武.东蒙地区夕卡岩石榴石稀土元素地球化学及其成因[J].中国地质,2002,3:38-55
    [40]薛培林,肖静,薛福林,等.青海祁漫塔格-都兰成矿带铜矿找矿前景初探[J].矿产与地质,2006,20(3):247-250
    [41]薛培林,肖静,薛福林,董琳.青海祁漫塔格—都兰成矿带铜矿找矿前景初探.矿产与地质,2006,20(3):247-250
    [42]杨钻云,雍自权,荣光华,等.青海都兰察汗乌苏地区银、铅等多金属矿找矿前景分析[J].新疆地质,2006,24(2):198-201
    [43]袁万明,莫宣学,喻学惠,等.东昆仑早石炭世火山岩的地球化学特征及其构造背景[J].岩石矿物学杂志,1998,17(4):289-295
    [44]袁万明,莫宣学,喻学惠,等.青海省五龙沟矿区金矿化的石英稀土元素地球化学指示[J].地质与勘探,2002,38(1):15-17
    [45]翟裕生,等.区域成矿学[M].地质出版社,1999.4-25
    [46]翟裕生,林新多.矿田构造学.北京:地质出版社,1993.2-4
    [47]张彩华,刘继顺,刘德利.滇西南澜沧江带官房铜矿矿床成因和成矿模式探讨[J].大地构造与成矿学,2006,30(3):369-380
    [48]张德全,丰成友,李大新,等.柴北缘-东昆仑地区的造山型金矿床[J].矿床地质,2001,20(2):137-146
    [49]张德全,王富春,佘宠全,等.柴北缘-东昆仑地区造山型金矿床的三级控矿构造系统[J].中国地质,2007,84(1):92-100
    [50]张德全,王彦,丰成友.驼路沟喷气沉积钻(金)矿床的地质-地球化学[J],矿床地质,2002,21(3):213-222
    [51]张洪培,刘断顺,李晓波,等.滇东南花岗岩与锡、银、铜、锌多金属矿床的成因关系[J].地质找矿论丛,2006,21(2):87-90
    [52]赵斌,赵劲松,刘海臣.长江中下游地区若干Cu(Au)、 Cu-Fe(Au)和Fe矿床中钙质夕卡岩的稀土元素地球化学[J].地球化学,1999,(2):47-54
    [53]赵斌.中国主要夕卡岩及夕卡岩矿床[M].北京:科学出版社.1989,1-342
    [54]赵一鸣,林文蔚,毕承思.中国矽卡岩型矿床[M].北京:地质出版社,1990,1-354
    [55]赵一鸣.夕卡岩矿床研究的某些重要新进展[J].矿床地质,2002,21(2):113-123
    [56]郑永飞,陈江峰.稳定同位素[M].北京:科学出版社,2000,168-169
    [57]周显强,宋友贵,邓军,等.青海都兰地区控矿构造特征研究[J].地质力学报,1996,2(1):34-41
    [58]周显强,宋友贵,邓军,等.青海都兰地区矿田构造与控矿特征[M].北京:地质出版社,1996,1-146
    [59]周余国,高启芝,刘继顺,等.个旧地区区域地球化学环境的系统评价.物探与化探[J].2009(12):620-625
    [60]Aleksandrov S.M.,Geochemistry of Skarn and Ore Formation in Dolomites. Brill Academic Publishers,1998.1-300
    [61]Baker, T., Pollard, P.J., Mustard, R., Mark, G., and Graham, J.L.. A comparison of granite-related tin, tungsten, and gold-bismuth deposits:implications for exploration. Society Of Economic Geologists Newsletter,2005,61:5-17
    [62]Bau M, Dulski P. Comparative study of yttrium and rare-earth element behaviors in fluorine-rich hydrothermal fluids. contrib Mineral petrol,1995,119:213
    [63]Burke W.H., Denison R.E, Hetherington E.A.,et al.,Varition of seawater 87Sr/86Sr throughout Phanerozoic time Geology,1982,10(10):516-519
    [64]Coplen T B,kendall Cand Hopple J, comparison of stable isotope reference samples. Nature,1983,302:236-238
    [65]Denison R.E.,Koepnick R.B.,Burke W.H., Construction of the Cambrian and Ordorician seawater 87Sr/86Sr curve Chemical Geology,1998,152(3-4):325-340
    [66]Einaudi M T, Meinert L D and Newberry R T. Skarn deposits[J]. Economic Geology,75th Anniv.,1981,317-391
    [67]Hedenquist J.W., Lowenstein J.B, The Role of Magmas In the Formation of Hydrothermal Ore Deposits [J].Nature,1994,370:519-527
    [68]Hoef s, Stable isotope Geochemistry,4th editon, springer-verlag 1997.18-55
    [69]Hoefs J, Stable Isotope Geochemistry,3th editon, springer-verlag 1987.4-42
    [70]Hubert Lloyd Barnes. Geochemistry of hydrothermal ore deposits. New York: Wiley,1979.8-29
    [71]Liu Yuping, LiChaoyang, Zeng Zhigang, The metallogenic epoch and ore-forming metal source of some large and super-large deposits in Laojunshan,
    Yunan-Evidence from Rb-Sr isotopic studies. Chinese Science Bulletion,1999, 44(Supplement 2):30-32
    [72]Meinert, L.D. Application of skarn deposit zonation models to mineral exploration[J]. Explor. Mining Geol.,1997.6 (2):185-208
    [73]Meinert, L. D. Skarn and skarn deposit. Geosci. Canada,1992,19,145-162.
    [74]Nordin A., Chemical Elemental Characteristicsof Biomass. Fuels,1994,6(5): 339-347
    [75]Pirajno F., Hydrothermal Processes and Mineral Systems[M]. Springer,2009, 1-1243
    [76]R.V.Kirkham...et al. Mineral deposit modeling. Toronto:Geological Association of Canada,1995.1-14
    [77]RollisonH.R., Usingg eochemical data. Lonman:Scientific&Technical,1993.8-29
    [78]Shimizu M and Iiyama J T. Zinc-Lead Skarn Deposits of the Nakatatsu Mine, Central Japan[J]. Economic Geology,1982.77 (4):1000-1012
    [79]Taloy H P Jr, The application of oxygen and hydrogen istope studies to problems of hydrothermal alteration and ore deposition. Econ, Geol.1974,69,843-883
    [80]Tomkins A.G., Mavrogenes J.A., Generation of Metal-Rich Felsic Magmas During Crustal Anatexis. Geology 2003,31:765-768
    [81]Vigneresse J.L., The Role of Discontinuous Magma Inputs in Felsic Magma and Ore Generation[J]. Ore Geology Review,2007,30:181-216

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700