由刚性配体构筑的锌配位聚合物的合成、表征、及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属有机配位聚合物由于迷人的结构以及在催化、吸附、离子交换、非线性光学和荧光等方面的潜在应用而受到广泛的关注。尽管一些具有迷人体系和有趣性质的配位聚合物已被报道,但是在合成化学领域,寻找一个合理的策略来制备目标材料仍是一个巨大的挑战。考虑到一些因素对合成这类材料的影响,如金属离子、配体、溶剂和温度等,我们主要研究了刚性多齿配体(或混合配体)与金属锌离子反应来构筑新颖的配位聚合物。
     d10的球形构造和灵活的配位环境使锌配位聚合物的几何构型多样化,如四面体、三角双锥、四方锥、八面体以及一些扭曲的多面体构型。此外,由于锌的配位聚合物普遍存在的不稳定性,配位键的形成过程是可逆的,这就使金属离子和配体在聚合过程中发生重新排列,得到更高规则度的网络结构。锌离子可以构筑多种类型的体系结构,即使选择及其相似的配体,也极有可能得到完全不同的配位排列方式。
     通过溶剂热方法,我们合成了二个化合物,经元素分析、单晶X-射线衍射、XRPD、IR和TG分析对晶体结构进行了表征,并对化合物的荧光性质进行了初步讨论。
     化合物(H3O)2[Zn(BTEC)] (1)是一个包含一维菱形孔道的三维网络结构.孔道窗口最大尺寸为8?,最小为5 ?,一维菱形孔道沿着c轴方向无限延伸。
     [Zn2 (BDC) (4, 4′-bipy) (HCOO) 2] (2)是一个基于混合配体的化合物。它代表着第一例由三个混合配体(BDC, 4, 4′-联吡啶和甲酸配体)桥连的金属有机配位聚合物结构,在化合物2中,BDC, 4, 4′-联吡啶交替连接Zn(Ⅱ)中心形成一个锯齿形配位链,临近的锯齿链进一步通过甲酸配体连接得到一个无限拓展的二维屏风层结构。值得注意的是,作为桥连配体的甲酸来自于溶剂DMF的水解,它在反应中与锌离子配位,使化合物2结构得以稳定,这在配位化合物合成上是较少见到的。
Metal-organic coordination polymers with well-regulated network structures has received considerable attention, mostly motivated by their intriguing structures and potential applications in the fields of catalysis, gas absorption, nonlinear optics, ion-exchange, luminescence and so on. Although a number of coordination polymers with intriguing architectures and interesting properties have been reported, a rational strategy to synthesize desired solid-state materials is still one of the great challenges in synthesis chemistry. Considering the synthetical factors on such materials, such as metal ion, ligand, solvent, temperature and so on, we investigated the reactions between the rigid multi-carboxylate ligands /mixed-ligand and Zn (Ⅱ) ions to construct novel coordination polymers. The spherical d10 configuration is associated with a flexible coordination environment so that geometries of Zn complexes can vary from tetrahedral through trigonal bipyramidal and square pyramidal to octahedral and severe distortion of the ideal polyhedron easily occurs. Furthermore, due to the general lability of Zn complexes the formation of coordination bonds is reversible which enables metal ions and ligands to rearrange during the process of polymerization to give highly ordered network structures. Consequently, Zn can readily accommodate all kind of architectures. In many cases rather similar ligands lead to completely different coordination arrays.
     Two compounds were isolated by solvothermal technique and structurally characterized by elemental analyses, XRPD, IR, single crystal X-ray diffractions and TG.. The luminescent properties were also investigated for the compounds.
     Compound (H3O)2[Zn(BTEC)] (1) is a three-dimensional network containing one-dimensional rhombic channels with the sizes of the windows are approximately 8 ? at the widest and 4.5 ? at the narrowest spacing (excluding the van der Waals radius of atoms in the framework) running along the c axis. [Zn2 (BDC) (4, 4′-bipy) (HCOO) 2] (2) is a compound based on mix-liangd. It provides the first coordination polymer structure constructed together by bridging BDC, 4, 4′-bipy and formate ligands. Both the BDC and 4, 4′-bipy link up zinc atoms alternatively resulting in a zigzag coordination chain, and adjacent chains are further linked by formates to form an infinite extended two-dimensional folding screen layer. Remarkably, the formate which comes from DMF hydrolyzation acting as bi-dentate bridging ligand coordinates to zinc ions, which has rarely been observed.
引文
[1]Das S, Kim H, Kim K. Metathesis in Single Crystal: Complete and Reversible Exchange of Metal Ions Constituting the Frameworks of Metal-Organic Frameworks[J]. J Am Chem Soc, 2009, 131:3814-3815.
    [2]Oh M, Carpenter G B, Sweigare D A. Metal-Mediated Self-Assembly of p-Bonded Benzoquinone Complexes into Polymers with Tunable Geometries[J]. Angew Chem Int Ed, 2001, 40: 3191-3194.
    [3]Cui Y, Ngo H L, Lin W B, et al. Homochiral 3D lanthanide coordination networks with an unprecedented 4966 topology[J]. Chem Commun, 2002, 1666-1667.
    [4]Moulton B, Zaworotko M J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids[J]. Chem Rev. 2001, 101: 1629-1658.
    [5]Dybtsev D N, Chun H, Kim K, et al. Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties[J]. J Am Chem Soc, 2004, 126: 32-33.
    [6]Rowsell L C, Spencer E C, Yaghi O M, et al. Gas Adsorption Sites in a Large-Pore Metal-Organic Framework[J]. Science, 2005, 309: 1350-1354.
    [7]Cheng J W, Zheng S T, Yang G Y. A Series of Lanthanide-Transition Metal Frameworks Based on 1-, 2-, and 3D Metal-Organic Motifs Linked by Different 1D Copper(I) Halide Motifs[J]. Inorg. Chem, 2007, 46(24): 10261-10267.
    [8] Eubank J F, Walsh R D, Eddaoudi M. Terminal co-ligand directed synthesis of a neutral, non-interpenetrated (10,3)-a metal–organic framework[J]. Chem Commun, 2005, 2095-2097.
    [9] Amouri H, Desmarets C, Bettoschi A,et al. Supramolecular Cobalt Cages and Coordination Polymers Templated by Anion Guests: Self-Assembly, Structures, and Magnetic Properties[J]. Chem Eur.J. 2007, 13: 5401– 5407.
    [10]Gu Z G, Zuo J L, You X Z. A three-dimensional ferromagnet based on linked copper–azido clusters[J]. Dalton Trans, 2007, 4067–4072.
    [11]Chen B L, Zhao X B, Thomas K M, et al. Surface Interactions and Quantum Kinetic Molecular Sieving for H2 and D2 Adsorption on a Mixed Metal-Organic Framework Material[J]. J Am Chem Soc, 2008, 130: 6411-6423.
    [12] Shulman A, Palmqvist E C. A Crystalline, Large-Pore, Microporous Semiconductor[J]. Angew Chem Int Ed, 2007, 46: 718-722.
    [13] Pichon A, Fierro C M, James S L, et al. A pillared-grid MOF with large pores based on the Cu2(O2CR)4paddle-wheel[J]. CrystEngComm, 2007, 9; 449–451.
    [14] Tanaka D, Horike S, Kitagawa S, et al. Anthracene array-type porous coordination polymer with host–guest charge transfer interactions in excited states[J]. Chem Commun, 2007, 3142-3144.
    [15] Ganesan S V, Lightfoot P, Natarajan S. A new zinc pyromellitate, [(C4N2H12)0.5(NH2(CH3)2][Zn(C10H2O8)]·1.78H2O, with a layered structure[J]. J Solid State Chem, 2004, 6: 757-762.
    [16]Xu N, Shi W, Liao D Z, et al. Template Synthesis of Lanthanide (Pr, Nd, Gd) Coordination Polymers with 2-Hydroxynicotinic Acid Exhibiting Ferro-/Antiferromagnetic Interaction[J]. Inorg. Chem, 2008, 47(19): 8748-8756.
    [17] Benelli C, Blake A J, Winpenny E P, et al. A Family of Polynuclear Cobalt and Nickel Complexes Stabilised by 2-Pyridonate and Carboxylate Ligands[J]. Chem Eur J, 2000, 6: 883-896.
    [18] Alkordi M H, Liu Y L, Eddaoudi M, et al. Zeolite-like Metal-Organic Frameworks as Platforms for Applications: On Metalloporphyrin-Based Catalysts[J]. J Am Chem Soc, 2008, 130(38):12639-12641.
    [19]王树军,彭玉苓,傅丽。新型手性金属卟啉的合成及非线性光学性质研究[J]。无机化学学报, 2009, 25(1):54-59.
    [20] Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers[J]. Angew Chem Int Ed, 2004, 43(18): 2334-2375.
    [21] Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622): 1127-1129.
    [22]Uemura K, Kitagawa S, Kondo M, Fukui K, Kitaura R, Chang H C, Mizutani T. Novel flexible frameworks of porous cobalt(II) coordination polymers that show selective guest adsorption based on the switching of hydrogen-bond pairs of amide groups[J]. Chem Eur J, 2002, 8:3587-3600.
    [23]Ma S Q, Sun D F, Simmons J M, Collier C D, Yuan D Q, Zhou H C. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake[J]. J Am Chem Soc, 2008, 130: 1012-1016.
    [24]Lu W G, Su C Y, Lu T B, et al. Two Stable 3D Metal-Organic Frameworks Constructed by Nanoscale Cages via Sharing the Single-Layer Walls[J]. J Am Chem Soc, 2006, 128: 34-35.
    [25]Maspoch D, Molina D R, Veciana J, et al. A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties[J]. Nature, 2003, 2: 190-195.
    [26] Kondo A, Noguch H, Kanoh H, et al. Double-Step Gas Sorption of a Two-Dimensional Metal-Organic Framework[J]. J Am Chem Soc, 2007, 129(41): 12362-12363.
    [27] Carlucci L, Ciani G, Porta F, et al. Crystal engineering of mixed-metal Ru-Ag coordination networks by using the trans-[RuCl2(PYZ)4] (pyz = pyrazine) building block[J]. Angew Chem Int Ed, 2002, 41(11): 1907-1911.
    [28] Bi M, Li G, Zou Y, et al. Zeolite-like copper iodide framwork with new 66 topology[J]. Inorg Chem, 2007, 46(3): 604-606.
    [29] McManus G J, Wang Z, Beauchamp D A, et al. A novel metal–organic ternary topology constructed from triangular, square and tetrahedral molecular building blocks[J]. Chem Commun, 2007, 5212–5213.
    [30] Lee H Y, Park J, Lah M S, et al. A hamburger-shaped helical stacking of disk-shaped ligands mediated by silver(II) ions[J]. Chem Commun, 2007, 5013–5015.
    [31] Delgado Friedrichs O, O’Keeffe M, Yaghi O M, et al. Three-periodic nets and tilings: regular and quasiregular nets[J]. Acta Crystallogr., Sect. A, 2003, A59: 22-27.
    [32] Batten S R, Robson R. Interpenetrating Nets: Ordered, Periodic Entanglement[J]. Angew Chem Int Ed, 1998, 37(11): 1460-1494.
    [33] Zaworotko M J. Superstructural diversity in two dimensions: crystal engineering of laminated solids[J]. Chem Commun, 2001, 37: 1-9.
    [34] Erxleben A. Structures and properties of Zn(II) coordination polymers[J]. Coord Chem Rev, 2003, 246: 203-228.
    [35] Masciocchi N, Ardizzoia G A, LaMonica G, et al. Thermally Robust Metal Coordination Polymers: The Cobalt, Nickel, and Zinc Pyrimidin-2-olate Derivatives[J]. Eur J Inorg Chem, 2000, 12 : 2507-2515.
    [36] Chen B L, Liang C D, Yang J, et al. Angew Chem Int Ed, 2006, 45: 1390-1393.
    [37] Hu C, Englert U, Dance L. Contrasting crystal supramolecularity for [Fe(phen)3]I8 and [Mn(phen)3]I8: complementary orthogonality and complementary helicity[J]. CrystEngComm. 2001, 3: 1-8.
    [38]Tong M L, Ye B H, Chen X M, et al. Clathration of Two-Dimensional Coordination Polymers: Synthesis and Structures of [M(4,4‘-bpy)2(H2O)2](ClO4)2·(2,4‘-bpy)2·H2O and [Cu(4,4‘-bpy)2(H2O)2](ClO4)4·(4,4‘-H2Bpy) (M = CdII, ZnII and bpy = Bipyridine)[J]. Inorg Chem. 1998, 37: 2645-2650.
    [39] Subramanian S, Zaworotko M J. Porous Solids by Design: [Zn(4,4 -bpy)2(SiF6)]n·xDMF, a Single Framework Octahedral Coordination Polymer with Large Square Channels[J]. Angew Chem Int Ed, 1995, 34(19): 2127-2129.
    [40] Martin S, Barandika M G, Lezama K, et al. Weak M(II)-Azide-4,4‘-Bipy Ferromagnets Based on Unusual Diamondoid (M = Mn) and 2D Arrays (M = Co, Ni)[J].Inorg Chem, 2001, 40: 4109-4115.
    [41] Lu J Y, Runnels K A, Norman C. A New Metal?Organic Polymer with Large Grid Acentric Structure Created by Unbalanced Inclusion Species and Its Electrospun Nanofibers[J]. Inorg Chem, 2001, 40 : 4516-4517.
    [42] Masciocchi N, Ardizzoia G A, Maspero A, et al. Metal Pyrazolato Complexes. Synthesis, Characterization, and X-ray Powder Diffraction Studies of Group 12 Coordination Polymers[J] Inorg Chem, 1999, 38: 3657-3664.
    [43] Verweij P D, Rietmeijer F J, Erdonmez A, et al. Pseudo-tetrahedral coordination compounds of cobalt, zinc, nickel and iron halides with 3(5)-methyl-5(3)-phenylpyrazole. The crystal and molecular structures of dichlorobis (3-methyl-5-phenylpyrazole) cobalt(II) and dibromobis (3-methyl-5-phenylpyrazole) zinc(II)[J]. Inorg Chim Acta 1989, 163: 223-230.
    [44] Yaghi O M, O’Keeffe M, Ockwig N W, et al. Reticular Synthesis and the Design of New Materials[J]. Nature, 2003, 423: 705-714.
    [45] Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279.
    [46] Dybtsev D N, Chun H, Kim K. Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior[J]. Angew Chem Int Ed, 2004, 43: 5033-5036.
    [47] Robl C, Kuhs W F. Hydrogen bonding in the chain-like coordination polymer ZnC4O4·4H2O: A neutron diffraction study[J]. J Solid State Chem. 1988, 75: 15-20.
    [48] Evans O R, Lin W. Synthesis of Zinc Oxalate Coordination Polymers via Unprecedented Oxidative Coupling of Methanol to Oxalic Acid [J].Crystal Growth Des. 2001, 1: 9-11.
    [49] Evans O R, Xiong R G, Lin W, et al. Crystal Engineering of Acentric Diamondoid Metal-Organic Coordination Networks [J]. Angew Chem Int Ed, 1999, 38: 536-528.
    [50] Evans O R, Lin W. Crystal Engineering of Nonlinear Optical Materials Based on Interpenetrated Diamondoid Coordination Networks[J]. Chem Mater, 2001, 13: 2705-2712.
    [51] Xiong R G, Zuo J L, You X Z, et al. Opto-electronic multifunctional chiral diamondoid-network coordination polymer: bis{4-[2-(4-pyridyl)ethenyl]benzoato}zinc with high thermal stability[J]. Chem Commun, 2000, 2061-2062.
    [52] Li H, M. Eddaoudi, Groy T L, Yaghi O M. Establishing Microporosity in Open Metal?Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate [J]. J Am Chem Soc, 1998, 120: 8571-8572.
    [53]Xie L H, Liu S X, Gao B, Zhang C D, Sun C Y, Li D H, Su Z M. A three-dimensional porous metal–organic framework with the rutile topology constructed from triangular and distorted octahedral building blocks[J]. Chem Comm, 2005, 2402–2404.
    [54]Xie L H, Liu S X, Gao C Y, Cao R G, Cao J F, Sun C Y, Su Z M. Mixed-valence iron(II, III) trimesates with open frameworks modulated by solvents[J]. Inorg. Chem, 2007, 46: 7782-7788.
    [55]Xie L H, Liu S X, Cao R G, Gao C Y, Cao J F. A double chain metal-organic framework constructed by tetrameric nickel(II) units and 1,3,5-benzenetricarboxylic trianions[J]. Z Anorg Allg Chem, 2007, 633: 2049–2053.
    [56] Ma J F, Liu J F, Xing Y, et al. Networks with hexagonal circuits in co-ordination polymers of metal ions (ZnII, CdII) with 1,1 -(1,4-butanediyl)bis(imidazole[J]. Dalton Trans, 2000, 123: 2403-2407.
    [57] Plater M J, Foreman J, Gelbrich T, Synthesis and characterisation of infinite di- and tri-nuclear zinc co-ordination networks with flexible dipyridyl ligands[J]. Dalton Trans, 2000, 123: 1995-2000..
    [58] Muthu S, Yip J H K, Vittal J J, et al. Coordination polymers of d10 metals and N,N’-bis (3-pyridinec arboxamide) -1,2-ethane[L]. Dalton Trans. 2001, 123: 3577-3584.
    [1] Hagrman P J, Hagrman D, Zubieta J. Organic-Inorganic Hybrid Materials: From Simple Coordination Polymers to Organodiamine-Templated Molybdenum Oxides[J]. Angew Chem Int Ed, 1999, 38(18): 2638-2684.
    [2] Lee Y G, Moon H R, Suh M P, et al. A Comparison of the H2 Sorption Capacities of Isostructural Metal–Organic Frameworks With and Without Accessible Metal Sites: [{Zn2(abtc)(dmf)2}3] and [{Cu2(abtc)(dmf)2}3] versus [{Cu2(abtc)}3][J]. Angew Chem Int Ed, 2008, 47: 7741-7745.
    [3] Chen B L, Zhao X B, Thomas K M, et al. Surface Interactions and Quantum Kinetic Molecular Sieving for H2 and D2 Adsorption on a Mixed Metal#Organic Framework Material[J]. J Am Chem Soc, 2009, 130;6411-6423.
    [4]Vimont A, Goupil J M, Férey G, et al. Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate[J]. J Am Chem Soc, 2006, 128(10): 3218-3227.
    [5] Xie L H, Liu S X, Gao B, et al. A three-dimensional porous metal-organic framework with the rutile topology constructed from triangular and distorted octahedral building blocks[J].Chem Commun, 2005, 2402-2404.
    [6] Xie L H, Liu S X, Cao R G, et al. A double chain metal-organic framework constructed by tetrameric nickel(II) units and 1,3,5-benzenetricarboxylic trianions[J].Z Anorg Allg Chem, 2007, 633: 2049-2052.
    [7] Xie L H, Liu S X, Gao C Y, et al. Mixed-valence iron(II, III) trimesates with open frameworks modulated by solvents[J].Inorg Chem, 2007, 46: 7782-7788.
    [8] Gao C Y, Liu S X, Xie L H, et al. Design and construction of a microporous metal–organic framework based on the pillared-layer motif[J].CrystEngComm, 2007, 9: 545-547.
    [9] Gao C Y, Liu S X, Feng D,et al. Rational design microporous pillared-layer frameworks: syntheses, structures and gas sorption properties[J].CrystEngComm, 2009, 11: 177-182.
    [10]Murugavel R, Krishnamurthy D, Sathiyendiran M. Anionic metal–organic and cationic organic layer alternation in the coordination polymers [{M(BTEC)(OH2)4}·{C4H12N2}·4H2O]n (M = Co, Ni, and Zn; BTEC = 1,2,4,5-benzenetetracarboxylate)[J].J Chem Soc Dalton Trans, 2002,34.
    [11] Wu C D, Lu C Z, Wu D M, et al. Hydrothermal synthesis of two new zinc coordination polymers with mixed ligands [J]. Inorg. Chem. Commun. 2001, 4, 561-564.
    [12] Hou Y, Wang S T, Wang E B, et al. A novel three-dimensional metal–organic network,Zn2(btec)(pipz)(H2O) (btec 1,2,4,5-benzenetetracarboxylate,pipziperazine), with blue fluorescent emission[J].Inorg Chim Acta, 2004, 357: 3155-3161.
    [13] Ganesan S V, Natarajan S. Synthesis and structures of new pyromellitate coordination polymers with piperazine as a ligand[J]. Inorg Chem, 2004, 43: 198-205.
    [14] Wang X L, Qin C, Wang E B. Polythreading of infinite 1D chains into different structural motifs: two poly(pseudo-rotaxane) architectures constructed by concomitant coordinative and hydrogen bonds[J]. Cryst Growth Des, 2006, 6: 439-443.
    [15] Tao J, Tong M L, Chen X M. Hydrothermal synthesis and crystal structures of three-dimensionalco-ordination frameworks constructed with mixed terephthalate (tp) and 4,4’-bipyridine (4,4’-bipy) ligands: [M(tp)(4,4’-bipy)] (M = CoII, CdII or ZnII)[J].J Chem Soc Dalton Trans, 2000, 3669-3674.
    [16] Dai J C, Wu X T, Hu S M, et al. Crystal Engineering of the Coordination Architecture of Metal Polycarboxylate Complexes by Hydrothermal Synthesis: Assembly and Characterization of Four Novel Cadmium Polycarboxylate Coordination Polymers Based on Mixed Ligands[J]. Eur J Inorg Chem, 2004, 2096-2106.
    [17] Chun H, Dybtsev D N, Kim K, et al. Synthesis, X-ray Crystal Structures, and Gas Sorption Properties of Pillared Square Grid Nets Based on Paddle-Wheel Motifs: Implications for Hydrogen Storage in Porous Materials[J]. Chem Eur J 2005, 11: 3521-3529.
    [18] Gao C Y,Liu S X, Xie L H, et al. A three-dimensional microporous coordination polymer with fluorescent property[J]. J Mol Struct, 2008, 891: 384-387.
    [19] Bellamy L J, The Infrared Spectra of Complex Molecules, Wiley, New York. 1958.
    [20] Tao J, Shi J X, Chen X M, et al. A new inorganic-organic photoluminescent material constructed with helical [Zn3(μ3-OH)(μ2-OH)] chains[J].Inorg Chem, 2001, 40: 6328-6330.
    [21] Dai J C, Wu X T, Fu Z Y, et al. Synthesis, structure, and fluorescence of the novel cadmium(II)-trimesate coordination polymers with different coordination architectures[J]. Inorg Chem, 2002, 41: 1391-1396.
    [22] Chen W, Wang J Y, Chen C, et al. Photoluminescent metal-organic polymer constructed from trimetallic clusters and mixed carboxylates[J]. Inorg Chem, 2003, 42: 944-946.
    [23] Tao J, Tong M L, Shi J X,et al. Blue photoluminescent zinc coordination polymers with supertetranuclear cores[J]. Chem Commun, 2000, 2043-2044.
    [1] Ma L Q, Lin W B. Unusual Interlocking and Interpenetration Lead to Highly Porous and Robust Metal–Organic Frameworks[J]. Angew Chem Int Ed, 2009, 48: 3637-3640.
    [2] Wu M Y, Jiang F L, Hong M C, et al. A Porous Polyhedral Metal-Organic Framework Based on Zn2(COO)3 and Zn2(COO)4 SBUs[J]. Cryst Growth Des, 2009, 9(6): 2559-2561.
    [3] Alkordi M H, Liu Y L, Larsen R W, et al. Zeolite-like Metal-Organic Frameworks as Platforms for Applications: On Metalloporphyrin-Based Catalysts[J]. J Am Chem Soc, 2008, 130(38): 12639-13641.
    [4] Furukawa H, Yaghi O. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications[J]. J Am Chem Soc, 2009. 131(25), 8875-8883.
    [5] Zhang X M, Hydro(solvo)thermal in situ ligand syntheses[J]. Coord Chem Rev, 2005, 249: 1201-1219.
    [6] Erxleben A, Structures and properties of Zn(II) coordination polymers[J]. Coord Chem Rev 2003, 246: 203-228.
    [7] Ma B Q, Mulfort K L, Hupp J T. Microporous Pillared Paddle-Wheel Frameworks Based on Mixed-Ligand Coordination of Zinc Ions[J]. Inorg Chem. 2005, 44(14), 4912-4914.
    [8] Tanaka D, Nakagawa K, Kitagawa S,et al. Kinetic Gate-Opening Process in a Flexible Porous Coordination Polymer[J]. Angew Chem Int Ed, 2008, 47(21): 3914-3918.
    [9] Li B K, Olson D H, Lee J Y, et al. Multifunctional Microporous MOFs Exhibiting Gas/Hydrocarbon Adsorption Selectivity, Separation Capability and Three-Dimensional Magnetic Ordering[J]. Adv Funct Mater, 2008, 18: 2205-2214.
    [10] Gao C Y, Liu S X, Feng D,et al. Rational design microporous pillared-layer frameworks: syntheses, structures and gas sorption properties[J].CrystEngComm, 2009, 11: 177-182.
    [11] Yang Y, Zeng M H, Zhang L J, et al. A zinc(II) coordination polymer, [Zn4(o-bda)4(p-pbim)4]n,with strong blue fluorescence[J]. J Coord Chem, 2009, 62: 886-893.
    [12] Viertelhaus M, Henke H, Anson C E, et al. Solvothermal Synthesis and Structure of Anhydrous Manganese(II) Formate, and Its Topotactic Dehydration from Manganese(II) Formate Dihydrate[J].Eur J Inorg Chem, 2003, 2283-2289.
    [13] Chen B L, Liang C D, Yang J, et al. Angew Chem Int Ed, 2006, 45: 1390-1393.
    [14] Djordjevic C, Lee M, Sinn E. Oxoperoxo(citrato)- and dioxo(citrato)vanadates(V): synthesis, spectra, and structure of a hydroxyl oxygen bridged dimer K2[VO(O2)(C6H6O7)]2.2H2O[J]. Inorg Chem, 1989, 28: 719-723.
    [15] Yuan Y P, Song J L, Mao J G. Hydrothermal synthesis, crystal structure and characterizations of a lanthanum(III) sulfate oxalate with a 3D network structure[J]. Inorg Chem Commun, 2004, 7: 24-26.
    [16] Bao J R, Zhao Y L, Zhu X W. Spectroscopy and Spectral Analysis[M]. 2007, 27: 539.
    [17] Mahata P, Natarajan S. Pyridine- and Imidazoledicarboxylates of Zinc: Hydrothermal Synthesis, Structure, and Properties[J]. Eur J Inorg Chem, 2005, 2156-2163.
    [18] Lu W G, Jiang L, Feng X L, et al. Three 3D Coordination Polymers Constructed by Cd(II) and Zn(II) with Imidazole-4,5-Dicarboxylate and 4,4‘-Bipyridyl Building Blocks[J]. Cryst Growth Des, 2006 6(2): 564-571.
    [19] Wen L L, Lu Z D, Lin J G, et al. Syntheses, Structures, and Physical Properties of Three NovelMetal?Organic Frameworks Constructed from Aromatic Polycarboxylate Acids and Flexible Imidazole-Based Synthons[J]. Cryst Growth Des, 2007, 7(1): 93-99.
    [20] Fang Q R, Zhu G S, Shi X, et al.Synthesis, structure and fluorescence of a novel three-dimensional inorganic–organic hybrid polymer constructed from trimetallic clusters and mixed carboxylate ligands[J]. J Solid State Chem, 2004, 177: 1060-1066.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700