基于纳米材料化学修饰电极的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料具有独特的电学和化学性能,在电化学及电分析化学领域有着广阔的应用前景,而以普鲁士蓝为代表的多核金属铁氰化物一直是人们研究的热点。在制备化学修饰电极方面,通过改进制备方法来提高这类修饰电极的稳定性与电催化活性是该领域的研究热点之一。本论文采用电化学方法制备了Nano-CuHCF、Nano-NiHCF/PPyox、Nano-PB/PPyox、Nano-NiHCF/PB及HCF/PPy、MWNT/HCF/PPy六种金属铁氰化物修饰电极,采用电化学方法及扫描电镜技术研究了以上修饰电极的电化学性质及其对相关物质的电催化活性。其次,研究了纳米CeO_2以及多壁碳纳米管对违禁药物克伦特罗的电催化测试性能,建立了相应的电化学检测方法。本研究工作在改善修饰电极稳定性、拓宽其在电分析化学领域的实际应用方面具有潜在的应用价值。主要内容如下:
     1、采用循环伏安法,从含有EDTA和HAuCl4的沉积液中制备了Nano-CuHCF、Nano-PB/PPyox修饰的复合陶瓷碳电极;在EDTA存在下将Nano-NiHCF沉积于PPyox表面,制备了Nano-NiHCF/PPyox修饰的复合陶瓷碳电极,并研究了制备上述三种电极的实验条件及修饰电极的电催化性能。采用电化学与扫描电镜技术对可能的机理进行了研究,并优化了制备修饰电极的实验条件。结果表明:EDTA控制了金属铁氰化物的成核速率与沉积速率,而沉积于电极表面的金粒子为金属铁氰化物的生成提供了成核点,在EDTA与HAuCl_4的协同作用下,电极表面沉积了均匀致密的薄膜,而PPyox膜的存在进一步提高了PB在电极表面的沉积速率。Nano- CuHCF与Nano-NiHCF/PPyox对N_2H_4具有较强的电催化活性,Nano-PB/PPyox对H_2O_2的电化学还原也表现出了较强的催化活性,计时安培法测得Nano-CuHCF/ CCE、Nano-NiHCF/PPyox/CCE、Nano-PB/PPyox/CCE修饰电极对N_2H_4和H_2O_2的异相催化反应速率常数分别为1.4×10~4、4.83×10~4及7.73×10~3 L·mol~(-1)·s~(-1),灵敏度分别为194.0、110与220.0μA·(mmol·L~(-1))~(-1)。
     2、在EDTA存在下,以复合陶瓷碳电极为基础电极在含有Ni~(2+)、Fe~(3+)、K_3Fe(CN)_6的混合溶液中采用循环伏安法制备了Nano-NiHCF/PB复合膜修饰电极,并研究了该电极的电化学性质及其对H_2O_2的电催化活性。结果表明,Nano-NiHCF/PB循环伏安图上的两对氧化还原峰与普鲁士蓝的两对特征氧化还原峰峰电位有所不同,这表明该修饰电极并不是铁氰化镍和普鲁士蓝的简单混合,而是生成了混合多核金属铁氰化物,Ni~(2+)占据了PB格子中的某些点位。与单一PB修饰电极相比,该修饰电极在酸性、中性及弱碱性溶液中均具有很好的稳定性,且对H_2O_2的还原有较强的电催化活性。安培法检测的线性范围为7.94×10~(-6 ~ 2.30×10~(-2 mol·L~(-1),检出限为2.50×10~(-6) mol·L~(-1),检测灵敏度为77.50μA·(mmol·L~(-1))~(-1)。
     3、采用循环伏安法在裸复合陶瓷碳电极及多壁碳纳米管滴涂的复合陶瓷碳电极表面电沉积了HCF/PPy,制备了HCF/PPy和MWNT/HCF/PPy修饰电极,研究了这两种修饰电极的电化学和电催化性能。实验表明,上述两种修饰电极分别对H_2O_2和NO_2~-的还原具有较强的电催化活性。安培法检测这两种物质的线性范围分别为2.0×10~(-6) ~ 2.4×10~(-3 mol·L~(-1)和1.5×10~(-6) ~ 1.8×10~(-3) mol·L~(-1),检出限分别为7.0×10~(-7 mol·L~(-1)与3.0×10~(-7) mol·L~(-1),检测灵敏度为61.30与81.39μA·(mmol·L~(-1))~(-1),响应时间均小于5 s。
     4、制备了MWNT修饰的碳糊电极,并采用全固相法合成了纳米CeO2,制备了Nano-CeO2修饰的碳糊电极。研究了克伦特罗在以上两种修饰电极上的电化学行为。与裸碳糊电极相比,这两种修饰电极能显著提高测定克伦特罗的灵敏度,据此建立了测定克伦特罗的微分脉冲伏安法,该法已用于模拟尿样与模拟血样中克伦特罗含量的测定。微分脉冲伏安法检测克伦特罗的线性范围分别为5.0×10~(-9 ~ 6.0×10-6 mol·L~(-1)和2.0×10~(-9 ~ 1.0×10~(-5 mol·L~(-1),检出限分别为2.5×10~(-9 mol·L~(-1)与7.0×10~(-1)0 mol·L~(-1)。
Nanoparticles provide unique electrical and chemical properties and have attracted much research interest, such as electrochemistry and electroanalytical chemistry. Among various electron transfer mediators, metal hexacyanoferrates (MHCF), a class of polynuclear metal hexaeyanoferrate, have attracted much attention since the pioneering work of Prussian blue (PB). To improve the stability and analytical performance of the modified electrodes, convenient methods were investigated in the preparation of chemically modified electrodes. Six kinds of hexacyanoferrates including Nano-CuHCF, Nano-NiHCF/PPyox, Nano-PB/PPyox, Nano-NiHCF/PB, HCF/PPy and MWNT/HCF/ PPy were electrochemical deposition on carbon ceramic composite electrodes (CCE). The electrochemical and electrocatalytic activity of the above electrodes were investigated using electrochemical and scanning electron microscopy methods. Additionally, two kinds of carbon paste modified electrodes (CPE) including Nano- CeO2/CPE and multi-walled carbon nanotubes modified CPE were fabricated. These two kinds of nanoparticles modified CPE were used in the determination of clenbuterol and established the corresponding electrochemical detection methods. The research possessed potential applications in improving the stability and broaden the analytical chemistry of modified electrodes.
     This thesis carefully studied the preparation, characterization, electrochemical properties and electrocatalytic activity of the following modified electrodes. The main contents were as follows:
     1. Two kinds of metal hexacyanoferrates modified CCE, Nano-CuHCF/CCE and Nano-PB/PPyox/CCE, were fabricated using cyclic voltammetry from the solution containing HAuCl4 and EDTA. Additionally, Nano-NiHCF was deposited on the surface of PPyox modified CCE in the presence of EDTA. The possible mechanism was investigated by using electrochemical and SEM techniques and the electrodeposition conditions were optimized. The results showed that, EDTA controlled the efficient concentration of mental ions in solution, while the gold particles deposited on the electrode surface provided heterogeneous crystal seeds once they had been produced and thus speeded up the rate of MHCF deposition. Under the synergic action of EDTA and HAuCl4, uniform and compact films were formed. Additionally, the presence of PPyox film further enhanced the deposition rate of PB on the electrode surface. The Nano-CuHCF/CCE and Nano-NiHCF/PPyox/CCE had strong electrocatalytic activity toward the oxidation of hydrazine, while the Nano-PB/PPyox/CCE had electrocatalytic activity toward the reduction of H_2O_2. The heterogeneous catalytic reaction rate constants by chronoamperometry were 1.4×10~(4 for Nano-CuHCF, 4.83×10~(4 for Nano-NiHCF/ PPyox, and 7.73×10~(3 L·mol~(-1)·s~(-1) for Nano-PB/PPyox with the sensitivity of 194.0、110.0 and 220.0μA·(mmol·L~(-1))~(-1), respectively.
     2. A Nano-NiHCF/PB film modified CCE was typically fabricated in the presence of EDTA, Ni~(2+), Fe~(3+) and K_3Fe(CN)6 using cyclic voltammetry method. The electrochemical properties and electrocatalytic activity toward H_2O_2 was studied. The results showed that, the Nano-NiHCF/PB exhibited two pair of redox peaks, which were quite different from the redox peaks of PB, indicating that the mixed material wasn’t seems to be a simple mixture of hexacyanoferrates of nickel and iron, that Ni~(2+) occupies certain position of PB lattice. Compared with single metal hexacyanoferrates electrodes, the Nano-NiHCF/PB/ CCE exhibited perfect stability in acidic, neutral and weak alkaline solution and showed high electrocatalytic activity toward the reduction of H_2O_2. The calibration curve was over the range of 7.94×10~(-6) to 2.30×10~(-2) mol·L~(-1) with a detection limit of 2.50×10~(-6) mol·L~(-1), and the sensitivity to H_2O_2 reduction was 77.50μA·(mmol·L~(-1))~(-1).
     3. Fe(CN)64- doped polypyrrole composite film modified electrode was electro- chemical deposited on bare CCE and multi-walled carbon nanotubes dropped CCE using cyclic voltammetry, and the HCF/PPy/CCE and MWNT/HCF/PPy/CCE were fabricated. The electrocatalytic properties of both modified electrode were studied. Experiments showed that the two kinds of modified electrodes had strong electrocatalytic activity toward the reduction of H_2O_2 and NO_2~-. Amperometric detection of H_2O_2 and NO_2~- were in the linear ranges of 2.0×10~(-6) ~ 2.4×10~(-3 mol·L~(-1) and 1.5×10~(-6) ~ 1.8×10~(-3) mol·L~(-1), the detection limits were 7.0×10~(-7) and 3.0×10-7 mol·L~(-1) with the sensitivity of 61.30 and 81.39μA·(mmol·L~(-1))~(-1), respectively, and both of the corresponding time were less than 5s.
     4. Nano-CeO2 was synthesized by all-solid-phase method and a Nano-CeO2/CPE was prepared. On the other hand, a MWNT/CPE was also prepared. Comparing with that of a bare electrode, the current of clenbuterol was greatly increased at above modified electrodes. Based on this, differential pulse voltammetric methods for the determination of clenbuterol were established. The methods were applied in the determination of clenbuterol in simulated urine and blood samples. Under the optimum conditions, linear dependences of the catalytic current versus the concentration of clenbuterol were obtained in the ranges of 5.0×10~(-9) ~ 6.0×10~(-6 and 2.0×10~(-9) ~ 1.0×10~(-5) mol·L~(-1) with the detection limits of 2.5×10~(-9) and 7.0×10~(-1)0 mol·L~(-1).
引文
1. B.F. Watkins, J.R. Behling, E. Kariv, L.L. Miller. Chiral electrode[J]. J. Am. Chem. Soc. 1975, 97 (12): 3549-3550.
    2. P.R. Moses, L. Wier, R.W. Murry. Chemically modified tin oxide electrode[J]. Anal. Chem. 1975, 47 (12): 1882-1886.
    3.董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社, 2003, 5-6.
    4. F. Patolsky, G. Zheng, C.M. Lieber. Nanowire based biosensors[J]. Anal. Chem. 2009, 78 (13): 4260-4269.
    5. M. Boutonnet, S. L?gdberg, E.E. Svensson. Recent developments in the application of nanoparticles prepared from w/o microemulsions in heterogeneous catalysis[J]. Curr. Opin. Colloid Interface Sci. 2008, 13 (4): 270-286.
    6. M. Pumera, S. Sanchez, I. Ichinose. Electrochemical nanobiosensors[J]. Sens. Actuat. B: Chem. 2007, 123 (2): 1195-1205.
    7. L. Agüí, P. Yá?ez-Sede?o, J. M. Pingarrón. Role of carbon nanotubes in electroanalytical chemistry: A review[J]. Anal. Chim. Acta 2008, 622 (1-2): 11-47.
    8. Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties[J]. Prog. Polym. Sci. 2010, 35 (3): 357-401.
    9. P.J. Britton, K.S.V. Santhanam, P.M. Ajayan. Carbon nanotube electrode for oxidation of dopamine[J]. Bioelectrochem. Bioenerg. 1996, 41 (1): 121-125.
    10. B.C. Janegitz, L.H. Marcolino-Junior, S.P. Campana-Filho, R.C. Faria, O. Fatibello-Filho. Anodic stripping voltammetric determination of copper(II) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan[J]. Sens. Actuat. B: Chem. 2009, 142 (1): 260-266.
    11. M.R. Ganjali, N. Motakef-Kazami, F. Faridbod, S. Khoee, P. Norouzi. Determination of Pb2+ ions by a modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and nanosilica[J]. J. Hazard Mater. 2010, 173 (1-3): 415-419.
    12. S. Shahrokhian, E. Asadian Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode[J]. Electrochim. Acta 2010, 55 (3): 666-672.
    13. M. Mazloum-Ardakani, H. Beitollahi, B. Ganjipour, H. Naeimi, M. Nejati. Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode[J]. Bioelectrochemistry 2009, 75 (1): 1-8.
    14. A.A. Ensafi, H. Karimi-Maleh Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator[J]. J. Electroanal. Chem. 2010, 640 (1-2): 75-83.
    15. Z.H. Wang, Y.M. Wang, G.A. Luo. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid[J]. Analyst 2002, 127: 653-658.
    16.王宗花,刘军,颜流水,王义明,罗国安.碳纳米管修饰电极的孔性界面对电分离多巴胺和抗坏血酸的影响[J].高等学校化学学报, 2003, 24 (2): 236-240.
    17. R.N. Hegde, R.R. Hosamani, S.T. Nandibewoor. Voltammetric oxidation and determination of cinnarizine at glassy carbon electrode modified with multi-walled carbon nanotubes[J]. Colloids Surf. B 2009, 72 (2): 259-265.
    18. L. Zheng, J.F. Song. Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine[J]. Sens. Actuat. B: Chem. 2009, 135 (2): 650-655.
    19. X.Y. Bao, Y.F. Tang, H. Yang, X. Chen. Sensitive voltammetric determination of xanthinol nicotinate at a carbon nanotubes-ionic liquid gel modified electrode[J]. Chin. Chem. Lett. 2009,
    20 (7): 849-851.
    20. X.H. Kang, Z.B. Mai, X.Y. Zou, P.X. Cai, J.Y. Mo. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes[J]. Anal. Biochem. 2007, 369 (1): 71-79.
    21. S.P. Zhang, L.G. Shan, Z.R. Tian, Y. Zheng, L.Y. Shi, D.S. Zhang. Study of enzyme biosensor based on carbon nanotubes modified electrode for detection of pesticides residue[J]. Chin. Chem.Lett. 2008, 19 (5): 592-594.
    22. J.D. Huang, Z. Song, J. Li, Y. Yang, H.B. Shi, B.Y. Wu, J. Anzai, T. Osa, Q. Chen. A highly-sensitive l-lactate biosensor based on sol-gel film combined with multi-walled carbon nanotubes (MWCNTs) modified electrode[J]. Mater. Sci. Eng. C 2007, 27 (1): 29-34.
    23. S.Y. Niu, B. Han, W. Cao, S.S. Zhang. Sensitive DNA biosensor improved by Luteolin copper(II) as indicator based on silver nanoparticles and carbon nanotubes modified electrode[J]. Anal. Chim. Acta 2009, 651 (1): 42-47.
    24. N. Torto. Recent progress in electrochemical oxidation of saccharides at gold and copper electrodes in alkaline solutions[J]. Bioelectrochemistry 2009, 76 (1-2): 195-200.
    25. J.S. Spendelow, P.K. Babu, A. Wieckowski. Electrocatalytic oxidation of carbon monoxide and methanol on platinum surfaces decorated with ruthenium[J]. Curr. Opin. Solid State Mater. Sci. 2005, 9 (1-2): 37-48.
    26. J. Hu, X. Lu, J.S. Foord. Nanodiamond pretreatment for the modification of diamond electrodes by platinum nanoparticles[J]. Electrochem. Commun. 2010, doi:10.1016/j.elecom.2010.03.004.
    27. D. Brondani, C.W. Scheeren, J. Dupont, I. Cruz. Vieira Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline[J]. Sens. Actuat. B: Chem. 2009, 140 (1): 252-259.
    28. W. Xia, Y.Y. Li, Y.J. Wan, T. Chen, J. Wei, Y. Lin, S.Q. Xu. Electrochemical biosensor for estrogenic substance using lipid bilayers modified by Au nanoparticles[J]. Biosens. Bioelectron. 2010, doi:10.1016/j.bios.2010.03.004.
    29. P. Kalimuthu, S.A. John. Size dependent electrocatalytic activity of gold nanoparticles immobilized onto three dimensional sol-gel network[J]. J. Electroanal. Chem. 2008, 617 (2): 164-170.
    30. B. Yang, S.Q. Wang, S.B. Tian, L.Z. Liu. Determination of hydrogen sulfide in gasoline by Au nanoclusters modified glassy carbon electrode[J]. Electrochem. Commun. 2009, 11 (6): 1230- 1233.
    31. S.S. Nair, S. A. John, T. Sagara Simultaneous determination of paracetamol and ascorbic acid using tetraoctylammonium bromide capped gold nanoparticles immobilized on 1,6-hexanedithiolmodified Au electrode[J]. Electrochim. Acta 2009, 54 (27): 6837-6843.
    32. P. Wang, Z.B. Mai, Z. Dai, Y.X. Li, X.Y. Zou. Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite[J]. Biosens. Bioelectron. 2009, 24 (11): 3242-3247.
    33. S.Y. Ma, J. Mu, Y. Qu, L. Jiang. Effect of refluxed silver nanoparticles on inhibition and enhancement of enzymatic activity of glucose oxidase[J]. Colloids Surf. A 2009, 345 (1-3): 101- 105.
    34. J. Tashkhourian, M.R. Hormozi Nezhad, J. Khodavesi, S. Javadi. Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid[J]. J. Electroanal. Chem. 2009, 633 (1): 85-91.
    35. S. Thiagarajan, R.F. Yang, S.M. Chen Palladium nanoparticles modified electrode for the selective detection of catecholamine neurotransmitters in presence of ascorbic acid[J]. Bioelectrochemistry 2009, 75 (2): 163-169.
    36. J.H. Huang, Y. Liu, H.Q. Hou, T.Y. You. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode[J]. Biosens. Bioelectron. 2008, 24 (4): 632-637.
    37. J.M. Pingarrón, P. Yá?ez-Sede?o, A. González-Cortés. Gold nanoparticle-based electrochemical biosensors[J]. Electrochim. Acta 2008, 53 (19): 5848-5866.
    38. D. Vairavapandian, P. Vichchulada, M.D. Lay. Preparation and modification of carbon nanotubes: Review of recent advances and applications in catalysis and sensing[J]. Anal. Chim. Acta 2008, 626 (2): 119-129.
    39. Y.R. Wang, P. Hu, Q.L. Liang, G.A. Luo, Y.M. Wang. Application of carbon nanotube modified electrode in bioelectroanalysis[J]. Chin. J. Anal. Chem. 2008, 36 (8): 1011-1016.
    40. M. D. Musick, C.D. Keating, M.H. Keefe. Stepwise construction of conductive Au colloid multilayers from solution[J]. Chem. Mater. 1997, 9 (7): 1499-1501.
    41. R. Shenhar, T.B. Norsten, V.M. Rotello. Polymer-mediated nanoparticle assembly: structural control and applications[J]. Adv. Mater. 2005, 17 (6): 657-669.
    42. J.J. Li, R. Yuan, Y.Q. Chai, X. Che. Fabrication of a novel glucose biosensor based on Ptnanoparticles decorated iron oxide-multiwall carbon nanotubes magnetic composite[J]. J. Mol. Catal. B 2010, doi:10.1016/j.molcatb.2010.03.005.
    43. Q. Xu, C. Mao, N.N. Liu. Direct electrochemistry of horseradish peroxidase based on bio- compatible carboxymethyl chitosan-gold nanoparticle nanocomposite[J]. Biosens. Bioelectron. 2006, 22 (5): 768-773.
    44. U. Lange, N.V. Roznyatovskaya, V.M. Mirsky. Conducting polymers in chemical sensors and arrays[J]. Anal. Chim. Acta 2008, 614 (1): 1-26.
    45. B. He, T.J. Morrow, C.D. Keating. Nanowire sensors for multiplexed detection of biomolecules Curr. Opin. Chem. Biol. 2008, 12 (5): 522-528.
    46. D. Li, J.X. Huang, R.B. Kaner. Polyaniline nanofibers: a unique polymer nanostructure for versatile applications[J]. Acc. Chem. Res. 2009, 42 (1): 135-145.
    47. N.F. Ferreyra, S. Bollo, G.A. Rivas. Self-assembled multilayers of polyethylenimine, DNA and gold nanoparticles. A study of electron transfer reaction[J]. J. Electroanal. Chem. 2010, 638 (2): 262-268.
    48. Rajesh, T. Ahuja, D. Kumar. Recent progress in the development of nanostructured conducing polymers/nanocomposites for sensor applications[J]. Sens. Actuat. B: Chem. 2009, 136 (1): 275- 286.
    49. L.M. Guo, Z.Q. Peng. One-pot synthesis of carbon nanotube-polyaniline-gold nanoparticle and carbon nanotube-gold nanoparticle composites by using aromatic amine chemistry[J]. Langmuir 2008, 24 (16): 8971-8975.
    50. K.R. Reddy, B.C. Sin, K.S. Ryu, J.C. Kim, H. Chung. Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: Synthesis, morphological characteristics and electrical properties[J]. Synth. Met. 2009, 159 (7-8): 595-603.
    51. K.M. Manesha, P. Santhosha, S. Komathi. Electrochemical detection of celecoxib at a poly- aniline grafted multiwall carbon nanotubes modified electrode[J]. Anal. Chim. Acta 2008, 626 (1): 1-9.
    52. X.T. Zhang. Comparison of chiral polyaniline carbon nanotube nanocomposites synthesized by aniline dimer-assisted chemistry and electrochemistry methods[J]. Synth. Met. 2008, 158 (8-9):336-344.
    53. V.D. Neff. Electrochemical oxidation and reduction of thin films of Prussian blue[J]. J. Electrochem. Soc. 1978, 125 (6): 886-887.
    54. K. Itaya, T. Ataka, S. Toshima. Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes[J]. J. Am. Chem. Soc. 1982, 104 (18): 4767-4772.
    55. J.F. Keggin, F.D. Miles. Structures and formul? of the Prussian blues and related compounds[J]. Nature 1936, 137 (4): 577-578.
    56. P. Day, F. Herren, A. Ludi, H.U. Güdel, F. Hulliger, D. Givord. Valence delocalization in Prussian blue FeIII4[FeII(CN)6]3·XD2O, by polarized neutron diffraction[J]. Helv. Chim. Acta 1980, 63 (1): 148-153.
    57. Z.Y. Xun, C.X. Cai, W. Xing, T.H. Lu. Electrocatalytic oxidation of dopamine at a cobalt hexacyanoferrate modified glassy carbon electrode prepared by a new method[J]. J. Electroanal. Chem. 2003, 545: 19-27.
    58. M.H. Pournaghi-Azar, H. Nahalparvari. Zinc hexacyanoferrate film as an effective protecting layer in two-step and one-step electropolymerization of pyrrole on zinc substrate[J]. Electrochim. Acta 2005, 50 (10): 2107-2115.
    59. S. Longchampa, F. Goubard. AB5-type intermetallic compound as a substrate for nickel hexacyanoferrate modified electrodes[J]. Sens. Actuat. B: Chem. 2004, 99 (2-3): 516-524.
    60. A. Salimi, K. Abdi. Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step sol-gel technique: application to amperometric detection of hydrazine and hydroxyl amine[J]. Talanta 2004, 63 (2): 475-483.
    61. D.R. Shankaran, S.S. Narayanan. Chemically modified sensor for amperometric determination of sulphur dioxide[J]. Sens. Actuat. B: Chem. 1999, 55 (2-3): 191-194.
    62. A. Dostal, B. Meyer, F. Scholz, U. Schriider. Electrochemical study of microcrystalline solid Prussian blue particles mechanically attached to graphite and gold electrodes: electrochemically induced lattice reconstruction[J]. J. Phys. Chem. 1995, 99 (7): 2096-2103.
    63. H. Yu, Q.L. Sheng, J.B. Zheng. Preparation, electrochemical behavior and performance ofgallium hexacyanoferrate as electrocatalyst of H2O2[J]. Electrochim. Acta 2007, 52 (13): 4403- 4410.
    64. B. Haghighi, H. Hamidi, L. Gorton. Electrochemical behavior and application of Prussian Blue nanoparticle modified graphite electrode[J]. Sens. Actuat. B: Chem. 2010, doi:10.1016/j.snb. 2010.03.020.
    65. W.L. Cheng, S.J. Dong, E.K. Wang. Site-selective self-assembly of MPA-bridged CuHCF multilayers on APTMS-supported gold colloid electrodes[J]. Chem. Mater. 2003, 15 (13): 2495- 2501.
    66. A. Boyer, K. Kalcher, R. Pietsch. Voltammetric behavior of perborate on Prussian blue modified carbon paste electrodes[J]. Electroanalysis 1990, 2 (2): 155-161.
    67. A.A. Karyakin, O.V. Gitelmacher. E.E. Karyakina. A high-sensitive glucose amperometric biosensor based on Prussian blue modified electrodes[J]. Anal. Lett. 1997, 27 (15): 2861- 2869.
    68. A.A. Karyakin, M.F. Chaplin. Polypyrrole-Prussian blue films with controlled level of doping: codeposition of polypyrrole and Prussian blue[J]. J. Electroanal. Chem. 1994, 370 (1-2): 301- 303.
    69. H.B. Dunford, B.B. Hasinoff. Kinetics of the oxidation of ferrocyanide by horseradish peroxidase compounds I and II[J]. Biochemistry 1970, 9 (25): 4930-4939.
    70. D. Jayasri, S. Sriman Narayanan. Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite-wax composite electrode[J]. J. Hazard Mater. 2007, 144 (1-2): 348-354.
    71. A. Abbaspour, A. Khajehzadeh, A. Ghaffarinejad. Electrocatalytic oxidation and determination of hydrazine on nickel hexacyanoferrate nanoparticles modified carbon ceramic electrode[J]. J. Electroanal. Chem. 2009, 631 (1-2): 52-57.
    72. S.J. Richard Prabakar, S. Sriman Narayanan. Amperometric determination of hydrazine using a surface modified nickel hexacyanoferrate graphite electrode fabricated following a new approach [J]. J. Electroanal. Chem. 2008, 617 (2): 111-120.
    73. H. Yu, J.B. Zheng. Preparation, electrochemical behavior and electrocatalytic activity of a copper hexacyanoferrate modified ceramic carbon electrode[J]. Chin. J. Chem. 2007, 25: 503-509.
    74. J.B. Zheng, Q.L. Sheng, L. Li, Y. Shen. Bismuth hexacyanoferrate-modified carbon ceramic electrodes prepared by electrochemical deposition and its electrocatalytic activity towards oxidation of hydrazine[J]. J. Electroanal. Chem. 2007, 611 (1-2): 155-161.
    75. L. Tian, L. Chen, L. Liu, N. Lu, W.B. Song, H.D. Xu. Electrochemical determination of ascorbic acid in fruits on a vanadium oxide polypropylene carbonate modified electrode[J]. Sens. Actuat. B: Chem. 2006, 113 (1): 150-155.
    76.于浩,盛庆林,郑建斌.铁氰化镧修饰碳糊电极的制备及电化学性质[J].西北大学学报(自然科学网络版), 2007, 5 (6): 1-7.
    77. Q.L. Sheng, H. Yu, J.B. Zheng. Sol-gel derived terbium hexacyanoferrate modified carbon ceramic electrode: Electrochemical behavior and its electrocatalytical oxidation of ascorbic acid [J]. J. Electroanal. Chem. 2007, 606, 39-46.
    78. W. Chen, J. Tang, H.J. Cheng, X.H. Xia. A simple method for fabrication of sole composition nickel hexacyanoferrate modified electrode and its application[J]. Talanta 2009, 80 (2): 539-543.
    79. Y.M. Shi, B. Zhou, P. Wu, K.Y. Wang, C.X. Cai. Templated fabrication, characterization and electrocatalysis of cobalt hexacyanoferrate nanotubes[J]. J. Electroanal. Chem. 2007, 611 (1-2): 1-9.
    80. H. Razmi, A. Azadbakht. Electrochemical characteristics of dopamine oxidation at palladium hexacyanoferrate film, electroless plated on aluminum electrode[J]. Electrochim. Acta 2005, 50 (11): 2193-2201.
    81. D. Jayasri, S. Sriman Narayanan. Electrocatalytic oxidation and amperometric determination of BHA at graphite-wax composite electrode with silver hexacyanoferrate as electrocatalyst[J]. Sens. Actuat. B: Chem. 2006, 119 (1): 135-142.
    82. D. Jayasri, S. Sriman Narayanan. Manganese(II) hexacyanoferrate based renewable amperometric sensor for the determination of butylated hydroxyanisole in food products[J]. Food Chem. 2007, 101 (2): 607-614.
    83. F. Arduini, A. Cassisi, A. Amine, F. Ricci, D. Moscone, G. Palleschi. Electrocatalytic oxidation of thiocholine at chemically modified cobalt hexacyanoferrate screen-printed electrodes[J]. J.Electroanal. Chem. 2009, 626 (1-2): 66-74.
    84. Thiago R.L.C. Paix?o, M. Bertotti. Electrocatalytic oxidation of deoxyguanosine on a glassy carbon electrode modified with a ruthenium oxide hexacyanoferrate film[J]. Electrochim. Acta 2007, 52 (5): 2181-2188.
    85. F.L. Qu, M.H. Yang, Y.S. Lu, G.L. Shen, R.Q. Yu. Amperometric determination of bovine insulin based on synergic action of carbon nanotubes and cobalt hexacyanoferrate nanoparticles stabilized by EDTA[J]. Anal. Bioanal. Chem. 2006, 386: 228-234.
    86. A. Abbaspour, A. Ghaffarinejad. Electrocatalytic oxidation of l-cysteine with a stable copper- cobalt hexacyanoferrate electrochemically modified carbon paste electrode[J]. Electrochim. Acta 2008, 53 (22): 6643-6650.
    87. T. García, E. Casero, E. Lorenzo, F. Pariente. Electrochemical sensor for sulfite determination based on iron hexacyanoferrate film modified electrodes[J]. Sens. Actuat. B: Chem. 2005, 106 (2): 803-809.
    88. D. Ivekovi?, S. Milardovi?, B.S. Grabari?. Palladium hexacyanoferrate hydrogel as a novel and simple enzyme immobilization matrix for amperometric biosensors[J]. Biosens. Bioelectron. 2004, 20 (4): 872-878.
    89. H. Yu, Q.L. Sheng, J.B. Zheng. Sol-gel derived carbon ceramic electrode for the investigation of the electrochemical behavior and electrocatalytic activity of neodymium hexacyanoferrate[J]. Electrochim. Acta 2007, 52, 4506-4512.
    90. H.W. Chu, R. Thangamuthu, S.M. Chen. Preparation, characterization and electrocatalytic behavior of zinc oxide/zinc hexacyanoferrate and ruthenium oxide hexacyanoferrate hybrid film-modified electrodes[J]. Electrochim. Acta 2008, 53 (6): 2862-2869.
    91. H. Razmi, R. Mohammad-Rezaei. Flow injection amperometric determination of pyridoxine at a Prussian blue nanoparticle-modified carbon ceramic electrode[J]. Electrochim. Acta 2010, 55 (5): 1814-1819.
    92. H. Heli, S. Majdi, N. Sattarahmady. Ultrasensitive sensing of N-acetyl-l-cysteine using an electrocatalytic transducer of nanoparticles of iron(III) oxide core-cobalt hexacyanoferrate shell[J]. Sens. Actuat. B: Chem. 2010, 145 (1): 185-193.
    93.é.N. Oiye, N. Biziak de Figueiredo, J. Fernando de Andrade, H.M. Trist?o, M. Firmino de Oliveira. Voltammetric determination of cocaine in confiscated samples using a cobalt hexacyanoferrate film-modified electrode[J]. Forensic Sci. Int. 2009, 192 (1-3): 94-97.
    94. B. Fang, Y. Wei, M.G. Li, G.F. Wang, W. Zhang. Study on electrochemical behavior of tryptophan at a glassy carbon electrode modified with multi-walled carbon nanotubes embedded cerium hexacyanoferrate[J]. Talanta 2007, 72 (4): 1302-1306.
    95. N.F. Zakharchuk, B. Meyer, H. Henning, F. Scholz, A. Jaworksi, Z. Stoje. A comparative study of Prussian-blue-modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized Prussian blue[J]. J. Electroanal. Chem. 1995, 398 (1-2): 23-35.
    96. Q.L. Sheng, K. Luo, J.B. Zheng, H.F. Zhang. Enzymatically induced formation of neodymium hexacyanoferrate nanoparticles on the glucose oxidase/chitosan modified glass carbon electrode for the detection of glucose[J]. Biosens. Bioelectron. 2008, 24 (3): 429-434.
    97. Y. Liu, Z.Y. Chu, Y.N. Zhang, W.Q. Jin. Amperometric glucose biosensor with high sensitivity based on self-assembled Prussian Blue modified electrode[J]. Electrochim. Acta 2009, 54 (28): 7490-7494.
    98. M.H. Yang, J.H. Jiang, Y.S. Lu, Y. He, G.L. Shen, R.Q. Yu. Functional histidine/nickel hexacyanoferrate nanotube assembly for biosensor applications[J]. Biomaterials 2007, 28 (23): 3408-3417.
    99. M.S. Lorraine, K. Theodore. Electrochemical and spectroscopic studies of metal hexacyano- metalate films[J]. J. Electrochem. Soc. 1983, 130 (2): 396-402.
    100. A. Abbaspour, M.A. Kamyabi. Electrocatalytic oxidation of hydrazine on a carbon paste electrode modified by hybrid hexacyanoferrates of copper and cobalt films[J]. J. Electroanal. Chem. 2005, 576 (1): 73-83.
    101. P.A. Fiorito, C.M.A. Brett, S.I. Córdoba de Torresi. Polypyrrole/copper hexacyanoferrate hybrid as redox mediator for glucose biosensors[J]. Talanta 2006, 69 (2): 403-408.
    102. K. Itaya, N. Shoji, I. Uchida. Catalysis of the reduction of molecular oxygen to water at Prussian blue modified electrodes[J]. J. Am. Chem. Soc. 1984, 106 (12): 3423-3429.
    103. K. Itaya, I. Uchida, V.D. Neff. Electrochemistry of polynuclear transition metal cyanides:Prussian blue and its analogues[J]. Acc. Chem. Res. 1986, 19 (6): 162-168.
    104. P.J. Kulesza, M.A. Malik, S. Zamponi, M. Berrettoni, R. Marassi. Electrolyte-cation-dependent coloring, electrochromism and thermochromism of cobalt(II) hexacyanoferrate(III, II) films[J]. J. Electroanal. Chem. 1995, 397 (1-2): 287-292.
    105. M.K. Carpenter, R.S. Conell. A single-film electrochromic device[J]. J. Electrochem. Soc. 1990, 137 (8): 2464-2467.
    106. J.A. Cox, P.J. Kulesza. Electrocatalytic oxidation and determination of arsenic(III) on a glassy carbon electrode modified with a thin film of mixed-valent ruthenium(III, II) cyanide[J]. Anal. Chem. 1984, 56 (6): 1021-1025.
    107. K. Ogura, I. Yoshida. Electrocatalytic reduction of carbon dioxide to methanol-VI. Use of a solar cell and comparison with that of carbon monoxide[J]. Electrochim. Acta 1987, 32 (8): 1191- 1195.
    108. C. Lin, A.B. Bocarsly. Catalytic electrooxidation of hydrazine at the nickel ferricyanide modified electrode: can an array of surface bound one-electron redox centers act in concert?[J]. J. Electroanal. Chem. 1991, 300 (1-2): 325-345.
    109. B.D. Humphrey, S. Sinha, A.B. Bocarsly. Mechanisms of charge transfer at the chemically derivatized interface: the Ni/[NiII(CN)FeII/III(CN)5]2-/1- system as an electrocatalyst[J]. J. Phys. Chem. 1987, 91 (3): 586-593.
    110. P.J. Kulesza, K. Brajter, E. Dabek-Zlotorzynska. Application of chelate-forming resin and modified glassy carbon electrode for selective determination of iron(III) by liquid chromato- graphy with electrochemical detection[J]. Anal. Chem. 1987, 59 (23): 2776-2780.
    111. S.M. Chen. Electropolymerization of iron phenanthrolines and voltammetric response for pH and application on electrocatalytic sulfite oxidation[J]. J. Electroanal. Chem. 1996, 401 (1-2): 147-154.
    112. S.M. Chen. Characterization and electrocatalytic properties of cobalt hexacyanoferrate films[J]. Electrochim. Acta 1998, 43 (21-22): 3359-3369.
    113. S.M. Chen. Preparation, characterization, and electrocatalytic oxidation properties of iron, cobalt, nickel, and indium hexacyanoferrate[J]. J. Electroanal. Chem. 2002, 521 (1-2): 29-52.
    114.李丽,花徐琴,王海燕,胡效亚.普鲁士蓝-多壁碳纳米管复合材料修饰电极测定过氧化氢[J].分析化学, 2007, 35 (6): 835-838.
    115. K. Tanaka, R. Tamamushi. Voltammetry in low temperature liquid solutions and frozen media: hexacyanoferrate(II/III) redox system in aqueous LiCl solutions at temperatures between 170 K and 300 K[J]. J. Electroanal. Chem. 1995, 380 (1-2): 279-282.
    116. H. Kahlert, U. Retter, H. Lohse, K. Siegler, F. Scholz. On the determination of the diffusion coefficients of electrons and of potassium ions in copper(II) hexacyanoferrate(II) composite electrodes[J]. J. Phys. Chem. B. 1998, 102 (44): 8757-8765.
    117. L.T. Kubota, Y. Gushikem. Cyclic voltammetry studies of copper and nickel hexacyanoferrate immobilized on a silica gel surface coated with titanium(IV) oxide[J]. J. Electroanal. Chem. 1993, 362 (1-2): 219-225.
    118. S. Gaur. Determination of Cs-137 in environmental water by ion-exchange chromatography [J]. J. Chromatography A. 1996, 733 (1-2): 57-71.
    119. S.M. Chen, C.M. Chan. Preparation, characterization, and electrocatalytic properties of copper hexacyanoferrate film and bilayer film modified electrodes[J]. J. Electroanal. Chem. 2003, 543: 161-173.
    120. A.P. Baioni, M. Vidotti, P.A. Fiorito, S.I. Córdoba de Torresi. Copper hexacyanoferrate nano- particles modified electrodes: A versatile tool for biosensors[J]. J. Electroanal. Chem. 2008, 622 (2): 219-224.
    121. F.A. Wang, J.L. Wang, H.J. Chen, S.J. Dong. Assembly process of CuHCF/MPA multilayers on gold nanoparticles modified electrode and characterization by electrochemical SPR[J]. J. Electroanal. Chem. 2007, 600 (2): 265-274.
    122. I.A. Rutkowska, J. Stroka, Z. Galus. Electrochemical properties of modified copper-thallium hexacyanoferrate electrode in the presence of different univalent cations[J]. Electrochim. Acta 2008, 53 (11): 3870-3878.
    123. O.S. Wolfbeis, R. Koncki. Composite films of Prussian blue and N-substituted polypyrroles: fabrication and application to optical determination of pH[J]. Anal. Chem. 1998, 70, 2544-2550.
    124. G.C. Yang, Y. Shen, M.K. Wang, H.J. Chen, B.F. Liu, S.J. Dong. Copper hexacyanoferratemultilayer films on glassy carbon electrode modified with 4-aminobenzoic acid in aqueous solution[J]. Talanta 2006, 68 (3): 741-747.
    125. M.S. Tsai. Powder synthesis of nano grade cerium oxide via homogenous precipitation and its polishing performance[J]. Mater. Sci. Eng.: B 2004, 110 (2): 132-134.
    126. M. Ocana, M.P. Morales, C.J. Serna. Homogeneous precipitation of uniformα-Fe2O3 particles from iron salts solutions in the presence of urea[J]. J. Colloid Interface Sci. 1999, 212 (2): 317- 323.
    127. S.R. Ali, V.K. Bansal, A.A. Khan, S.K. Jain, M.A. Ansari. Growth of zinc hexacyanoferrate nanocubes and their potential as heterogeneous catalyst for solvent-free oxidation of benzyl alcohol[J]. J. Mol. Catal. A: Chem. 2009, 303 (1-2): 60-64.
    128. H. Yu, Q.L. Sheng, L. Li, J.B. Zheng. Rapid electrochemical preparation of a compact and thick Prussian blue film on composite ceramic carbon electrode from single ferricyanide solution in the presence of HAuCl4[J]. J. Electroanal. Chem. 2007, 606 (1): 55-62.
    129. M. Tsionsky, J. Gun, V. Glezer, O. Lev. Sol-gel-derived ceramic-carbon composite electrodes: introduction and scope of applications[J]. Anal. Chem. 1994, 66 (10): 1747-1753.
    130. F.N. Crespilho, V. Zucolotto, M.A. Brett, O.N. Oliveira, F.C. Nart. Enhanced charge transport and incorporation of redox mediators in layer-by-layer films containing PAMAM-encapsulated gold nanoparticles[J]. J. Phys. Chem. B. 2006, 110 (35): 17478-17483.
    131. D. Zhang, K. Wang, D.C. Sun, X.H. Hua, H.Y. Chen. Ultrathin layers of densely packed Prussian blue nanoclusters prepared from a ferricyanide solution[J]. Chem. Mater. 2003, 15 (22): 4163-4165.
    132. Y.Z. Guo, A.R. Guadalupe, O. Resto, L.F. Fonseca. Chemically derived Prussian blue sol-gel composite thin films[J]. Chem. Mater. 1999, 11 (1): 135-140.
    133. E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. J. Electroanal. Chem. 1979, 101 (1): 19-28.
    134. A.J. Bard, L.R. Faulkner. Electrochemical methods, fundamentals and applications, Wiley, New York, 2001, p. 163 (Chapter 5).
    135. M.H. Pournaghi-Azar, R. Sabzi. Electrochemical characteristics of a cobalt pentacyano-nitrosylferrate film on a modified glassy carbon electrode and its catalytic effect on the electrooxidation of hydrazine[J]. J. Electroanal. Chem. 2003, 543 (2): 115-125.
    136. G.E.D. Benesetto, T.R.I. Cataldi. Highly-stabilized polynuclear indium-hexacyanoferrate film electrodes modified by ruthenium species[J]. Langmuir 1998, 14 (21): 6274-6279.
    137.刘海燕,王艳玲,张国荣.铁氰化镍/银复合无机膜修饰电极对肼的催化氧化作用[J].分析科学学报, 2003, 19 (4): 330-332.
    138. P. J. Kulesza, T. Jedral, Z. Galus. A new development in polynuclear inorganic films: Silver(I)/“crosslinked”nickel(II)-hexacyanoferrate(III, II) microstructures[J]. Electrochim. Acta 1989, 34 (6): 851-853.
    139. E.V. Shevchenko, D.V. Talapin, H. Schnablegger, A. Komowski, O. Festin, P. Svedlindh, M. Haase, H. Weller. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals[J]. J. Am. Chem. Soc. 2003, 125 (30): 9090-9101.
    140. S. Auer, D. Frenkel. Prediction of absolute crystal-nucleation rate in hard-sphere colloids[J]. Nature 2001, 409: 1020-1023
    141. J.B. Raoof, R. Ojani, S. RaShid-Nadirni. Voltammetric determination of ascorbic acid and dopamine in the same sample at the surface of a carbon paste electrode modified with polypyrrole/ferrocyanide films[J]. Electrochim. Acta 2005, 50 (24): 4694-4698.
    142. J.C. Vidal, J. Espuelas, E. Garcia-Ruiz, J.R. Castillo. Amperometric cholesterol biosensors based on the electropolymerization of pyrrole and the electrocatalytic effect of Prussian-blue layers helped with self-assembled monolayers[J]. Talanta 2004, 64 (3): 655-664.
    143. P. Gros, M. Comtat. A bioelectrochemical polypyrrole-containing Fe(CN)63- interface for the design of a NAD-dependent reagentless biosensor[J]. Biosens. Bioelectron. 2004, 20 (2): 204- 210.
    144. J. Li, X. Q. Lin. Glucose biosensor based on immobilization of glucose oxidase in poly (o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode[J]. Biosens. Bioelectron. 2007, 22 (12): 2898-2905.
    145. Y.D. Jiang, T. Wang, Z.M. Wu, D. Li, X.D. Chen, D. Xie. Study on the NH3-gas sensitiveproperties and sensitive mechanism of polypyrrole[J]. Sens. Actuat. B: Chem. 2000, 66 (1-3): 280-282.
    146. T.Van Schaffinghen, C. Deslouis, A. Hubin, H. Terryn. Influence of the surface pretreatment prior to the film synthesis, on the corrosion protection of iron with polypyrrole films[J]. Electrochim. Acta 2006, 51 (8-9): 1695-1703.
    147. Y.S. Choi, S.H. Joo, S.A. Lee, D.J. You, H. Kim, C. Pak, H. Chang, D. Seung. Surface selective polymerization of polypyrrole on ordered mesoporous carbon:enhancing interfacial conductivity for direct methanol fuel cell application[J]. Macromolecules 2006, 39 (9): 3275-3282.
    148. V. Selvaraj, M. Alagar, I. Hamerton. Electrocatalytic properties of monometallic and bimetallic nanoparticles incorporated polypyrrole films for electrooxidation of methanol[J]. J. Power Sources 2006, 160 (2): 940-948.
    149. D. Cossement, F. Plumier, J. Delhalle, L. Hevesi, Z. Mekhalif. Electrochemical deposition of polypyrrole films on organosilane-modified ITO substrates[J]. Synthetic Metals. 2003, 138 (3): 529-536
    150. V.E. Mouchrek Filho, A.L.B. Marques, J.J. Zhang, G.O. Chierice. Surface complexation of copper(II) with alizarin red S adsorbed on a graphite electrode and its possible application in electroanalysis[J]. Electroanalysis 1999, 11 (15): 1130-1136.
    151. K. Kalcher, J.M. Kauffman, J. Wang, I. Svancara. Sensors based on carbon paste in electrochemical analysis: a review with particular emphasis on the period 1990-1993[J]. Electroanalysis 1995, 7 (1): 5-22.
    152. H.Z. Bu, S.R. Mikkelsen, A.M. English. Characterization of a ferrocene-containing poly- acrylamide based redox gel for biosensor use[J]. Anal. Chem. 1995, 67 (22): 4071-4076.
    153. D.W.M. Arrigan. Tutorial review. Voltammetric determination of trace metals and organics after accumulation at modified electrodes[J]. Analyst 1994, 119: 1953-1966.
    154. J.B. Raoof, R. Ojani, S. Rashid-Nadimi. Preparation of polypyrrole/ferrocyanide films modified carbon paste electrode and its application on the electrocatalytic determination of ascorbic acid[J]. Electrochim. Acta 2004, 49 (2): 271-280.
    155. M.R. Anderson, B.R. Mattes, H. Reiss, R.B. Kaner. Conjugated polymer films for gasseparations[J]. Science 1991, 252 (7): 1412-1415.
    156. E.M. Genies, M. Marchesiello. Conducting polymers for biosensors, application to new glucose sensors GOD entrapped into polypyrrole, GOD adsorbed on poly (3-methylthiophene)[J]. Synth. Met. 1993, 57 (1): 3677-3682.
    157. G.H. Lian, S.J. Dong. Electrochemical behaviour of Fe(CN)63-/4- redox ions in a polypyrrole film[J]. J. Electroanal. Chem. 1989, 260 (1): 127-136.
    158. M. Zagórska, H. Wycislik, J. Przylski. Electrochemical studies of polypyrrole doped with ferrocyanide anions[J]. Synth. Met. 1987, 20 (3): 259-268.
    159. J. Wang, S.P. Chen, M.S. Lin. Use of different electropolymerization conditions for controlling the size-exclusion selectivity at polyaniline, polypyrrole and polyphenol films[J]. J. Electroanal. Chem. 1989, 273 (1-2): 231-242.
    160. S.J. Dong, G.H. Lian. Redox reactions of Fe(CN)63-/4- in polypyrrole films: accumulation and removal of cations[J]. J. Electroanal. Chem. 1990, 291 (1-2): 23-39.
    161. B. Keita, D. Bouaziz, L. Nadjo, A. Deronzier. Surface functionalization with oxometallates entrapped in polymeric matrices: Part 21. Substituted pyrrole-based ion-exchange polymers[J]. J. Electroanal. Chem. 1990, 279 (1-2): 187-203.
    162. P. Gros, H. Durliat, M. Comtat. Use of polypyrrole film containing Fe(CN)63- as pseudo- reference electrode: application for amperometric biosensors[J]. Electrochim. Acta 2001, 46 (5): 643-650.
    163. R. Ojani, J.B. Raoof, E. Zarei. Electrocatalytic reduction of nitrite using ferricyanide; application for its simple and selective determination[J]. Electrochim. Acta 2006, 52 (3): 753-759.
    164. D. Oukil, L. Makhloufi, B. Saidani. Preparation of polypyrrole films containing ferrocyanide ions deposited onto thermally pretreated and untreated iron substrate: application in the electro- analytical determination of ascorbic acid[J]. Sens. Actuat. B: Chem. 2007, 123 (2): 1083-1089.
    165. J. Ding, W.E. Price, S.F. Ralph, G.G. Wallace. Synthesis and properties of a mechanically strong poly(bithiophene) composite polymer containing a polyelectrolyte dopant[J]. Synth. Met. 2000, 110 (2): 123-132.
    166. Y.H. Tang, Y. Cao, S.P Wang, G.L. Shen, R.Q. Yu. Surface attached-poly(acrylic acid) networkas nanoreactor to in-situ synthesize palladium nanoparticles for H2O2 sensing[J]. Sens. Actuat. B: Chem. 2009, 137 (2): 736-740.
    167. A.K.M. Kafi, D.Y. Lee, S.H. Park, Y.S. Kwon. Amperometric biosensor based on direct electrochemistry of hemoglobin in poly-allylamine (PAA) film[J]. Thin Solid Films 2007, 515 (12): 5179-5183.
    168. D. Shan, G.X. Cheng, D.B. Zhu, H.G. Xue, S. Cosnier, S.N. Ding. Direct electrochemistry of hemoglobin in poly (acrylonitrile-co-acrylic acid) and its catalysis to H2O2[J]. Sens. Actuat. B: Chem. 2009, 137 (1): 259-265.
    169. W.Y. Tao, D.W. Pan, Y.J. Liu, L.H. Nie, S.Z. Yao. An amperometric hydrogen peroxide sensor based on immobilization of hemoglobin in poly(o-aminophenol) film at iron-cobalt hexacyano- ferrate-modified gold electrode[J]. Anal. Biochem. 2005, 338 (2): 332-340.
    170. A. Witkowski, M.S. Freund, A. Brajtertoth. Effect of electrode substrate on the morphology and selectivity of overoxidized polypyrrole films[J]. Anal. Chem. 1991, 63 (6): 622-626.
    171. M. Freund, L. Bodalbhai, A. Brajtertoth. Anion-excluding polypyrrole films[J]. Talanta 1991, 38 (1): 95-99.
    172. A. Witkowski, A. Brajtertoth. Overoxidized polypyrrole films: a model for the design of permselective electrodes[J]. Anal. Chem. 1992, 64 (6): 635-641.
    173. K. Pihel, Q.D. Walker, R.M. Wightman. Overoxidized polypyrrole-coated carbon fiber micro- electrodes for dopamine measurements with fast-scan cyclic voltammetry[J]. Anal. Chem. 1996, 68 (13): 2084-2089.
    174. N. Hamdi, J.J. Wang, H.G. Monbouquette. Polymer films as permselective coatings for H2O2 sensing electrodes[J]. J. E1ectroanal. Chem. 2005, 581 (2): 258-264.
    175. A. Guerrieri, G.E. De Benedetto, F. Palmisano, P.G. Zambonin. Electrosynthesized non- conducting polymers as permselective membranes in amperometric enzyme electrodes: a glucose biosensor based on a co-crosslinked glucose oxidase/overoxidized polypyrrole bilayer[J]. Biosens. Bioelectron. 1998, 13 (1): 103-112.
    176. L.M. Martins dos Santos, J.C. Lacroix, K.I. Chane-Ching, A. Adenier, L.M. Abrantes, P.C. Lacaze. Electrochemical synthesis of polypyrrole films on copper electrodes in acidic and neutralaqueous media[J]. J. Electroanal. Chem. 2006, 587: 67-78.
    177. A.F. Diaz, K.K. Kanzawa, G.P. Gardini. Conducting poly-N-alkylpyrrole polymer films[J]. J. Electroanl. Chem. 1982, 133 (2): 233-239.
    178.董绍俊,车广礼,谢远武,化学修饰电极[M].北京:科学出版社, 2003, 29-31.
    179.李建平,彭图治.聚吡咯固定胆固醇氧化酶/普鲁士蓝安培传感器的研制[J].分析化学, 2003, 31 (6): 669-673.
    180. X.Q. Zou, Y. Shen, Z.Q. Peng. Preparation of a phosphopolyoxomolybdate P2Mo18O626- doped polypyrrole modified electrode and its catalytic properties[J]. J. Electroanal. Chem. 2004, 566 (1): 63-71.
    181.吴鸣虎,王升富.亚硝酸根在磷钼镍杂多酸-聚吡咯膜修饰电极上的伏安行为及其含量测定[J].分析试验室, 1999, 18 (3): 49-52.
    182.张国权,杨凤林.蒽醌/聚吡咯复合膜修饰电极的电化学行为和电催化活性[J].催化学报, 2007, 28 (6): 504-508.
    183.罗济文,李家洲,黄志伟.聚吡咯掺杂溴酚蓝修饰玻碳电极的制备和电化学性质[J].玉林师范学院学报, 2005, 26 (3): 48-50.
    184.杨庆雄,王宅中,肖怡玲.铜(Ⅱ)-4,7-二苯基-1,10-邻菲罗啉二磺酸根-聚吡咯H2O2传感器的研制[J].分析试验室, 1997, 16 (4): 73-75.
    185. A. Walcarius, D. Mandler, J.A. Cox, M. Collinson, O. Lev. Exciting new directions in the intersection of functionalized sol-gel materials with electrochemistry[J]. J. Mater. Chem. 2005, 15: 3663-3689.
    186. S. Ashok Kumar, S.M. Chen. Electrocatalytic reduction of oxygen and hydrogen peroxide at poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrodes[J]. J. Mol. Catal. A: Chem. 2007, 278 (1-2): 244-250.
    187. Y. Tian, J.X. Wang, Z. Wang. Solid phase extraction and amperometric determination of nitrite with polypyrrole nanowire modified electrodes[J]. Sens. Actuat. B: Chem. 2005, 104 (1): 23-28.
    188. A.F. Daizaf, J.I. Castllo. A polymer electrode with variable conductivity: polypyrrole[J]. J. Chem. Soc. Chem. Commun. 1980, 14 (9): 397-398.
    189. F. Palmisano, C. Malitesta. Correlation between permselectivity and chemical structure ofoveroxidized polypyrrole membranes used in electroproduced enzyme biosensors[J]. Anal. Chem. 1995, 67 (13): 2207-2211.
    190. H. Okuno, T. Kitano, H. Yakabe. Characterization of overoxidized polypyrrole colloids imprinted with L-lactate and their application to enantioseparation of amino acids[J]. Anal. Chem. 2002, 74 (16): 4184-4190.
    191. W. Adam, S. Omowunmia. Electrochemical detection of lead using overoxidized polypyrrole films[J]. J. Electroanl. Chem. 2002, 537 (1-2): 135-143.
    192. X.H. Jiang, X.Q. Lin. Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine[J]. Anal. Chem. Acta 2005, 537 (1-2): 145-151.
    193. I. Fernandez, M. Trueba, C.A. Nuez. Some features of the overoxidation of polypyrrole synthesized on austenitic stainless steel electrodes in aqueous nitrate solutions[J]. Surf. Coat. Technol. 2005, 191 (1): 134-139.
    194.岑仲浙,蔡水洪.手性溶剂萃取麻黄碱差向异构体[J].化工学报, 2000, 51 (3): 418-420.
    195. P.J. Kulesza, M.A. Malik, R. Schmidt. Electrochemical preparation and characterization of electrodes modified with mixed hexacyanoferrates of nickel and palladium[J]. J. Electroanal. Chem. 2000, 487 (1): 57-65.
    196. P.J. Kulesza, K. Miecznikowski, M. Chojak. Electrochromic features of hybrid films composed of polyaniline and metal hexacyanoferrate[J]. Electrochim. Acta 2001, 46 (28): 4371-4378.
    197. M. Hermes, M. Lovric, M. Hartl. On the electrochemically driven formation of bilayered systems of solid Prussian-blue-type metal hexacyanoferrates: a model for Prussian blue cadmium hexacyanoferrate supported by finite difference simulations[J]. J. Electronal. Chem. 2001, 501 (1-2): 193-204.
    198.马洪宝.兽药残留对动物性食品安全的影响[J].中国动物检疫, 2007, 24 (2): 21-22.
    199.刘军,刘清,李志强.高效液相色谱法测定肉类中克伦特罗等激素类生长促进剂残留量[J].理化检验化学分册, 2005, 41 (7): 504-506.
    200. X.Z. Zhang, Y.R. Gan, F.N. Zhao. Determination of clenbuterol in pig liver by highperformance liquid chromatography with a coulometric electrode array system[J]. Anal. Chim. Acta 2003, 489(1): 95-101.
    201.张雪曼,程雪梅,苏青云.气相色谱-质谱联用法同时测定动物尿液中克伦特罗和沙丁胺醇[J].分析试验室, 2007, 26 (2): 89-93.
    202. S. Sirichai, P. Khanatharana. Rapid analysis of clenbuterol, salbutamol, procaterol, and fenoterol in pharmaceuticals and human urine by capillary electrophoresis[J]. Talanta 2008, 76 (5): 1194- 1198.
    203.胥传来,彭池方,郝凯.化学发光酶免疫方法检测克伦特罗残留[J].分析化学, 2005, 33 (5): 699-702.
    204. W.L. Shelver, D.J. Smith. Enzyme-linked immunosorbent assay development for theβ- adrenergic agonist zilpaterol[J]. J. Agric. Food Chem. 2004, 52 (8): 2159-2166.
    205.陈颖,廖文榕,段建平.盐酸克伦特罗在玻碳电极上的伏安行为研究[J].分析试验室, 2006, 25 (12): 67-69.
    206. P.L. He, Z.Y. Wang, L.Y. Zhang. Development of a label-free electrochemical immuno- sensor based on carbon nanotube for rapid determination of clenbuterol[J]. Food Chem. 2009, 112 (3): 707-714.
    207. R.X. Guo, X. Qin, D.Y. Wang, X.Y. Hu. Trace determination of clenbuterol with an MWCNT-Nafion nanocomposite modified electrode[J]. Microchim. Acta 2008, 161: 265-272.
    208. L.L. Beecroft , C.K. Ober. Nanocomposite materials for optical applications[J]. Chem. Mater. 1997, 9 (6): 1302-1317.
    209. Y. Wang, N. Herron. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties[J]. J. Phys. Chem. 1991, 95 (2): 525-532.
    210.宋晓岚,王海波,吴雪兰.纳米CeO2的制备技术及应用[J].稀土, 2004, 6 (3): 55-61.
    211.张亚辉,齐兴义,郭林,张琦. CeO2纳米粒子的自组装结构合成、表征及催化特性[J].北京航空航天大学学报, 2004, 30 (10): 1021-1024.
    212. L.X. Yin, Y.Q. Wang, G.H. Pang. Effect of electrostatic interaction on the adsorption of globular proteins on octacalcium phosphate crystal film[J]. J. Colloid Interface Sci. 2002, 246 (1): 70-77.
    213. B. Jacques, O. Laetitia, R. Benoist. Catalytic wet air oxidation of ammonia over M/CeO2 catalysts in the treatment of nitrogen-containing pollutants[J]. Catalysis Today 2002, 75 (1-4):29-34.
    214. F. Bondioli, A.C. Bonam, C. Leonelli. Nanosized CeO2 powders obtained by flux method[J]. Mater. Res. Bull. 1999, 34 (14-15): 2159-2166.
    215.陶明大,陈云贵,闫康平,周川,吴朝玲,涂铭旌.稀土氧化物对贮氢合金电极电化学性能的影响[J].稀有金属材料与工程, 2005, 34 (4): 552-556.
    216. X. WANG, Y.D. Li. Rare-earth-compound nanowires, nanotubes, and fullerene-like nano- particles: synthesis, characterization and properties[J]. Chem. Eur. J. 2003, 9 (22): 5627-5635.
    217.李生英,徐飞,王永红,许世红,何丽君.微波辐射下CeO2纳米粉末的制备及表征[J].稀土, 2007, 28 (5): 112-114.
    218.董相廷,闰景辉,于薇.水热晶化法制备CeO2纳米晶[J].稀有金属材料与工程, 2002, 1 (4): 312-314.
    219.石硕,鲁润华,汪汉卿. W/O微乳液中CeO2超细粒子的制备[J].化学通报, 1998, 3 (12): 52- 54.
    220. N. Guillou, L.C. Nistor, H. Fuess. Microstructural studies of nanocrystalline CeO2 produced by gas condensation[J]. Nanostructured Materials. 1997, 8 (5): 545-557.
    221.董相廷,李铭,张伟.沉淀法制备CeO2纳米晶与表征[J].中国稀土学报, 2001, 19 (1): 24- 26.
    222. M. Ricken, J. Noelting, I. Riess. Specific heat and phase diagram of nonstoichiometric ceria (CeO2?x)[J]. Solid State Chem. 1984, 54 (1): 89-99.
    223.邱冠周,宋晓岚,曲鹏.影响纳米CeO2沉淀法合成的工艺因素研究[J].中国稀土学报, 2005, 6 (3): 321-327.
    224.庄稼,迟燕华,吴修贤.固相反应两步法制备纳米CeO2及其机制研究[J].中国稀土学报, 2004, 22 (5): 641-646.
    225.王艳荣,李彦涛,李亚萍.纳米CeO2的紫外吸收和表面改性研究[J].化工时刊, 2008, 22 (1): 4-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700