光泵太赫兹脉冲激光产生机理及关键器件特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迄今为止,光泵太赫兹(THz)脉冲激光技术仍是获取相干太赫兹辐射源的最有效的方式之一。该技术不仅可以获得窄线宽的激光支线,而且是除了自由电子激光之外的另外一种有望获得高能量太赫兹激光源的有效方式。该技术主要采用高能脉冲TEA(Transversely Excited Atmospheric) CO2激光器的适当支线与有机增益分子相互作用而获取太赫兹脉冲激光。
     本论文沿着太赫兹激光产生机理、光泵源的研究、输入输出耦合器的设计与特性分析、太赫兹激光器的实验研究这样一条主线从理论和实验两个方面逐一展开论述和讨论。
     从理论上首先对基于速率方程的连续太赫兹激光产生机理进行了简单的介绍,在分析了连续与脉冲太赫兹激光产生的差别后提出了基于速率方程的脉冲太赫兹激光产生模型;考虑到脉冲太赫兹激光的瞬态效应,然后又利用Maxwell-Bloch方程详细地分析了基于二能级模型的太赫兹激光建立过程以及三能级模型的太赫兹激光衰减过程。在讨论中,对过去理论中的一些问题点进行了完善,为建立一套完整的太赫兹激光理论奠定了坚实的基础。
     基于速率方程的脉冲太赫兹激光模型,解析求解了强泵浦场和强受激辐射太赫兹激光场在共振情况下与一个均匀加宽的三能级系统相互作用的问题。通过对含时与非含时方程的解析求解具体讨论了如吸收与增益系数、量子效率、泵浦强度范围等一系列问题。同时通过求解含时速率方程组,推导出了太赫兹增益分子吸收泵浦能量的表达式。为了验证理论的正确性,我们采用过去文献中的实验数据对推导出的结论给予了充分论证,结果表明理论推导与实验结果相当吻合。此外,对这些特性的研究有利于更加深入地了解和掌握太赫兹激光的工作机理。
     为了探讨太赫兹激光系统中光泵源的可行性、简易性问题,本论文从光放大和光注入锁定两个方面进行了实验研究。双程光放大和四程光放大的实验结果表明双程光放大可以部分有效地实现种子光的支线放大,而且可以获得近30倍的放大系数,然而四程光放大则完全达不到预期的效果。针对实验结果,我们从自激振荡的角度清晰地解释了产生这些现象的原因。与光放大的支线跳动、多模运转、输出激光峰值功率低的特点相比,注入锁定具有单支线、单纵模、输出激光峰值功率高的优点。在我们的光注入锁定实验中,这些优点得到很好体现。但由于注入激光频率与腔模式频率的失谐、较弱的注入光强、以及无光隔离措施等因素导致了单纵模的获取并不能达到100%的成功概率。通过和过去实验对比性分析,最终确定了上述因素是限制注入锁定实验成功的关键。综合上述不利因素后,本论文最终确定了利用可调谐TEA CO2激光直接泵浦产生太赫兹的实验方案。
     输入输出耦合器是腔式太赫兹激光器中重要的光学元件。本论文摒弃了过去传统的小孔输入输出耦合器,而采用基于厚衬底的电容性网栅输入输出耦合器,并且这些输入输出耦合器同时充当太赫兹激光器的封闭窗口。基于传输线理论模型,设计和制作了基于高阻硅衬底的镍金属电容性网栅输出耦合器以及基于ZnSe衬底的镍金属电容性网栅输入耦合器。输出耦合器的实验结果和理论预言在归一化共振频率ω0=0.85时比较吻合,而输入耦合器还有待改进。针对F-P双平衬底极易出现的etalon效应以及透射率对衬底厚度的依赖性,本论文提出了利用楔形衬底抑制etalon效应进而获得精确平坦透射率谱的想法,并且在理论上验证了其可行性。
     鉴于上述理论和实验研究,我们利用具有磁开关控制放电电路的TEA CO2激光器产生的短脉冲激光束与腔式F-P型太赫兹激光器中的NH3分子相互作用。并通过改变输出耦合器网栅参量、太赫兹增益物质工作气压、泵浦能量、泵浦支线等参量,最终获得了频率为3.33THz、最大光子转换效率为6.5%、最大能量为1.35mJ的太赫兹激光输出。同时对太赫兹工作特性进行了研究,这主要包括:(1)泵浦脉冲和太赫兹脉冲建立时刻的延时关系(2)泵浦能量与太赫兹辐射能量的关系(3)一定泵浦强度下,最佳太赫兹输出对NH3气压的依赖性(4)泵浦强度对最大太赫兹输出所对应的最佳工作气压的影响(5)最小泵浦强度和太赫兹激光阈值的确定(6)太赫兹大气传输。
So far, the technique of optically pumped terahertz (THz) is still one of the most powerful ways to generate coherent terahertz radiation. The technique not only can obtain narrow laser line, but also can gain higher THz output energy besides free-electron laser. The technique is realized by using high-energy TEA CO2 laser line interacting with organic molecule to obtain THz pulse laser.
     In the dissertation, the theories and the experiments related with THz laser have been gradually discussed from the mechanism of THz radiation, investigations on optically pumped source, the design and the properties analysis of the input and the output couplers, to the experimental investigations on THz laser.
     The generation mechanism of continuous-wave (CW) THz laser has been firstly theoretically analysed based on the rate equations. After analyzing the difference between CW and pulsed THz laser, a theory model of pulsed THz laser based on the rate equations has been proposed. Then, in order to study the transients in a pulsed THz laser, the Maxwell-Bloch equations based density matrix have been solved to investigate the THz laser setup in a two-level system and the THz decay in a three-level system. In the process of deduction, many errors in the past documents have been corrected, thus it helps to establish a completed THz laser theory.
     A theoretical model of pulsed THz laser based on the rate equations dealing with strong pump laser field and intense THz radiation field on resonance interacting with a homogeneously broadened three-level molecular system has been solved analytically. A discussion is presented on the properties of the solutions for time-independent and time-dependent absorption coefficients, gain coefficients, quantum efficiency, and pump intensity range and so on. On the other hand, the energy absorbed from pump light has been deduced by solving time-dependent rate equations. To demonstrate the rationality of the theory model, the data from the past documents have been used in the equations. It is demonstrated that these theoretical results agree well with the experimental data. In short, it is helpful to understand deeply the work mechanism of the THz laser by investigating the properties.
     To investigate the feasibility and simplicity of optical pumping source in THz laser system, optical amplification and optical injection-locking have been studied experimentally in the article. The results of two-pass and four-pass light amplification show that two-pass light amplification not only can be more effective to realize the amplification of the seed light but also can obtain an amplification factor of 30, however it is impossible to achieve expected result for the four-pass light amplification. With respect to the experimental results, the phenomena can be explained according to parasitic oscillation. Compared with the disadvantages of varied laser line, multi-mode operation and low peak power, injection-locking has great merit in single laser line, single longitudinal mode and high peak power. In our experiment, these advantages have been observed. However, the single longitudinal mode can not be achieved in a successful probability of 100% due to the frequency detuning between injected light and cavity mode, weak injection intensity and no optical isolation device. Compared with the experiments in the past documents, it is demonstrate that the factors mentioned above are the key to limit injection-locking to be successful. Considering the disadvantageous factors of the two experiment schemes, a feasible and simple scheme using tunable TEA CO2 laser as optical pumping source is determined.
     The input and output couplers are the important optical components in cavity THz laser. Unlike the past design schemes such as hole couplers, a novel coupler with capacitive mesh on thick substrate has been proposed. At the same time, the coupler acts as sealed window. Using the transmission line model, a nickel capacitive mesh output coupler with high-resistivity silicon substrate and a nickel capacitive mesh input coupler with ZnSe substrate have been designed and fabricated. The transmittance spectrum of output coupler agrees well with numerical result as a resonance frequency ofω0=0.85 is selected. However, it needs to be improved with respect to the input coupler. Considering the etalon effect and the thick-dependence of the transmittance occurring frequently in the coupler with the F-P shaped substrate, a novel output coupler with wedged substrate has been proposed to suppress the etalon effect and obtain a flat transmittance spectrum. The design concept has been approved to be feasible after numerical analysis.
     Combining the theoretical and experimental researches mentioned above, a home-made TEA CO2 laser with magnetic switch controlled discharge circuit has been utilized to interact with ammonia gas molecules in an F-P THz cavity. Finally, a THz laser with a frequency of 3.33THz, a photon conversion efficiency of 6.5% and an output energy of 1.35mJ has been developed successfully by changing some parameters such as mesh period and gap of the output coupler, operating gas pressure of THz laser, pump energy, and pump laser line. On the other hand some THz laser properties have been investigated, including:(1) the delay between start of pump pulse and start of THz pulse (2) the relations between pump energy and THz emitting energy (3) the dependence of optimum THz output on NH3 gas pressure under a particular pump intensity (4) the influence of the pump intensity on the optimum NH3 gas pressure suitable for the optimum THz output (5) the minimum pump intensity and the THz lasing threshold (6) THz atmospheric transmission.
引文
[1]Rubens H, Nichols E F. Heat rays of great wavelength. Phys. Rev.,1897,4:314~323
    [2]Ferguson B, Zhang X-C. Materials for terahertz science and technology. Nature Materials,2002,1:26~33
    [3]Cibella S, Ortolani M, Leoni R, et al. Wide dynamic range terahertz detector pixel for active spectroscopic imaging with quantum cascade lasers. Appl. Phys. Lett., 2009,95:213501/1~3
    [4]Kuroda R, Yasumoto M, Sei N, et al. Measurement of coherent terahertz radiation for time-domain spectroscopy and imaging. Radiat. Phys. Chem.,2009,78(12):1102-1105
    [5]Ariyoshi S, Otani C, Dobroiu A, et al. Terahertz imaging with a direct detector based on superconducting tunnel junctions. Appl. Phys. Lett.,2006,88:203503/1-3
    [6]Chen Q, Tani M, Jiang Z, et al. Electro-optic transceivers for terahertz-wave applications. Opt. Soc. Am. B,2001,18:823~831
    [7]Exter V M, Fattinger C, Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Opt. Lett.,1989,14:1128~1130
    [8]Kawase K, Ogawa Y, Watanabe Y, et al. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express,2003,11:2549~2554
    [9]Kuroda R, Sei N, Yasumoto M, et al.0.1 THz coherent synchrotron radiation with compact S-band linac at AIST. Infrared Phys. Technol,2008,51:390~393
    [10]Kuroda R, Sei N, Oka T, et al. Development of high power THz-TDS system based on S-band compact electron linac. Radiat. Phys. Chem.,2008,77:1131~1135
    [11]Kawayama I, Kotani K, Tonouchi M. Time-domain terahertz spectroscopy of SrBi2Ta209 thin films on MgO substrates. Jpn. J. Appl. Phys. Part 1,2002,41:6803-6805
    [12]Shen Y C, Lo T, Taday P F, et al. Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett.,2005,86:241116/1~3
    [13]Nagel M, Haring B P, Brucherseifer M, et al. Integrated THz technology for label-free genetic diagnostics. Appl. Phys. Lett.,2002,80:154~156
    [14]Taday P F, Bradley L V, Arnoni D D, et al. Using terahertz pulse spectroscopy to study the crystalline structure of a drug:a case study of the polymorphs of ranitidine
    hydrochloride. J. Pharm. Sci.,2003,92(4):831~838
    [15]Liu H B, Chen Y Q, Zhang X C. Characterization of anhydrous and hydrated pharmaceutical materials with THz time-domain spectroscopy. J. Pharm. Sci.,2007, 96(4):927~934
    [16]Auston D H. Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett.,1975,26(3):101~103
    [17]Lee C. Picosecond optoelectronic switching in GaAs. Appl. Phys. Lett.,1977,30 (2): 84~86
    [18]Gu P, Tani M, Kono S, et al. Study of terahertz radiation from InAs and InSb. J. Appl. Phys.,2002,91(9):5533~5537
    [19]Huber R, Brodschelm A, Tauser F, et al. Generation and field-resolved detection of femtosecond electromagenetic pulses tunable up to 41 THz. Appl. Phys. Lett.,2000, 76 (22):3191-3193
    [20]Liu K, Xu J, Zhang X C. GaSe crystals for broad band terahertz detection. Appl. Phys. Lett.,2004,85 (6):863~865
    [21]Dai J M, Karpowicz, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys. Rev. Lett.,2009,103: 023001-1-4
    [22]Esaki L. New phenomenon in narrow Ge p-n junctions. Phys. Rev.,1958,109: 603~609
    [23]Gunn J B. Microwave oscillations of current in Ⅲ-Ⅳ semiconductors. Sol. St. Comm.,1963,1:88-92
    [24]Dyakonov M, Shur M S. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys. Rev. Lett.,1993,71 (15):2465~2468
    [25]Knap W, Deng Y, Rumyantsev S, et al. Resonant detection of sub-terahertz and terahertz radiation by plasma waves in submicron field-effect transistors. Appl. Phys. Lett.,2002,81(24):4637~4639
    [26]Deng Y, Kersting R, Xu J, et al. Millimeter wave emission from GaN high electron mobility transistor. Appl. Phys. Lett.,2004,84 (1):70~72
    [27]Mathis L E S, Parker J T. Stimulated emission in band spectrum of nitrogen. Appl. Phys. Lett.,1963,16:16~19
    [28]Chang T Y, Bridges T J. Laser action at 452,496, and 541mm in optically pumped CH3F. Opt. Commun.,1970,1(9):423~426
    [29]Madey J M. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys.,1971,42:1906~1909
    [30]Carr G L, Martin M C, McKinney W R, et al. High-power terahertz radiation from relativistic electrons. Nature,2002,420:153~156
    [31]Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor heterostructure laser. Nature,2002,417:156~159
    [32]Hu Q, Williams B S, Kumar S, et al. Resonant phonon assisted THz quantum-cascade lasers with metal-metal waveguides. Semi. Sci. Tech.,2005,20:S228. S. Wieneke, S. Born, W. Viol. Multikilohertz TEA CO2 laser driven by an all-solid-state exciter. SPIE,2000,4184:18~22
    [33]Sargent III M, Scully M O, Lamb W E. Laser physics. Addison-Wesley:Reading, Mass,1974.2-48
    [34]Haken H. Laser theory, Handbuch der physik, light and matter. Springer-Verlag: Berlin,1970.25~30
    [35]Temkin R J, Cohn D R. Rate equations for an optically pumped far-infrared laser. Opt. Commun.,1976,16:213~217
    [36]DeTemple T A, Danielewicz E J. Continuous-wave CH3F waveguide laser at 496 mm: Theory and experiment. IEEE J. Quant. Electron.,1976,12(1):40-47
    [37]Weiss C O. Pump saturation in molecular far-infrared lasers. IEEE J. Quant. Electron.,1976,12(10):580~584
    [38]Seligson D, Ducloy M, Leite J R R, et al. Quantum mechanical features of optically pumped cw FIR lasers. IEEE J. Quant. Electron.,1977,13(6):468~472
    [39]Feld M S. Fundamental and Applied laser physics. Wiley:New York,1973.369~370
    [40]Bluyssen H J A, McIntosh R E, Van Etteger A F, et al. Pulsed operation of an optically pumped far-infrared molecular laser. IEEE J. Quant. Electron.,1975,11(7): 341~348
    [41]Javan A. Theory of a three level maser. Phys. Rev.,1957,107:1579~1589
    [42]Clogston A M. Susceptibility of the three level maser. J. Phys. Chem. Solids,1958,4: 271~277
    [43]Yatsiv S. Role of double quantum transitions in masers. Phys. Rev.,1959,113:
    1538~1544
    [44]Brewer R G, Hahn E L. Coherent two photon processes:transient and steady state cases. Phys. Rev. A,1975,11:1641~1649
    [45]Panock R L, Temkin R J. Interaction of two laser fields with a three-level molecular system. IEEE J. Quant. Electron.,1977,13(6):425~434
    [46]Heppner J, Weiss C O, Hubner U, et al. Gain in cw laser pumped FIR laser gases. IEEE J. Quant. Electron.,1980,16(4):392~401
    [47]Arjona M, Corbalan R, Laguarta F, et al. Influence of light polarization on the dynamics of optically pumped lasers. Phys. Rev. A,1990,41(11):6559~6562
    [48]Qin J Y, Zheng X S, Luo X Z, et al. Study on spectral characteristics and operating parameters of optically pumped NH3 FIR cavity laser. IEEE J. Quant. Electron.,1998, 34(1):32~39
    [49]Lefebvre M, Dangoisse D, Glorieux P. Transients in a far-infrared laser. Phys. Rev. A, 1984,29(2):758~767
    [50]Abraham N B, Dangoisse D, Glorieux P, et al. Observation of undamped pulsations in a low-pressure, far-infrared laser and comparison with a simple theoretical model. J. Opt. Soc. Am. B,1985,2(1):23~34
    [51]Cheo P K. Handbook of Molecular lasers. New York:Dkker,1987.496~521
    [52]Jahanpanah J, Loudon R. Theory of laser-amplifier injection locking. Phys. Rev. A, 1996,54(6):5210~5226
    [53]Jahanpanah J. Stability of theory of class-C (far-infrared) lasers with an injected signal. J. Opt. Soc. Am. A,2005,22(4):680~688
    [54]Jolliffe B W, Woods P T, Ravenhill D J. A simple carbon dioxide laser amplifier suitable for optically pumped infra-red laser applications. Opt. and Laser Tech.,1978, 4:86~88
    [55]Montgomery M D, Carison R L, Casperson D E, et al. Stabilizatioin of high-gain multipass power amplifiers using saturable absorbers:Experience on the LASL eight-beam system. Appl. Phys. Lett.,1978,32(5):324~326
    [56]Simmons W W, Speck D R, Hunt J T. Argus laser system:Performance summary. Appl. Opt.,1978,17(7):999~1005
    [57]McMahon J M, Burns R P, DeRieux T H, et al. The upgraded pharos II laser system. IEEE J. Quant. Electron.,1981,17(9):1629~1638
    [58]刘红婕,朱启华,蒋东镔等.双程放大实验中自激振荡的抑制.强激光与粒子束,2000,12(1):179~181
    [59]Weiss J A, Goldberg L S. Single longitudinal mode operation of transversely excited CO2 laser. IEEE J. Quant. Electron.,1972,8:757~758
    [60]Nurmikko A, DeTemple T A, Schwarz S E. single-mode operation and mode locking of high-pressure CO2 lasers by means of saturable absorbers. Appl. Phys. Lett.,1971, 18:130~132
    [61]Lachambre J L, Gilbert J, Blanchard M, et al. Mesure des caracteristiques d'un amplificateur CO2 TEA et l'etude experimentale de la propagation d'une impulsion laser a front exponentiel en milieu amplificateur et absorbant a10.6mm. DREV,1974. R-710
    [62]Gondhalekar A, Holzhauer E, Heckenberg N R. Single longitudinal mode operation of high pressure pulsed CO2 lasers. Phys. Lett. A,1973,46:229-230
    [63]Girard A. The effect of the insertion of a CW, low-pressure CO2 laser into a TEA CO2 laser cavity. Opt. Commun.,1974,11:346~351
    [64]Lachambre J L, Lavigne P, Otis G, et al. Injection locking and mode selection in TEA-CO2 laser oscillators. IEEE J. Quant. Electron.,1976,12(12):756~764
    [65]Okada T, Manabe Y, Muraoka K, et al. Off-line center operation of an injection-locked single-mode TEA CO2 laser. Appl. Opt.,1981,20(13):2176~2178
    [66]Schafer G, Hofmann H, Petersen W D. Single longitudinal mode operation of a CO2 TEA laser by injection locking with a tunable CO2 waveguide laser. IEEE J. Quant. Electron.,1982,18(2):296~300
    [67]Oppenheim U P, Menzies R T, Kavaya M J. Dependence of injection locking of a TEA CO2 laser on intensity of injected radiation. IEEE J. Quant. Electron.,1982, 18(9):1332~1336
    [68]Kar A K, Tratt D M, Harrison R G. Injection-locking of TEA CO2 lasers by an orthogonally-polarized injection source. Opt. Commun.,1982,43(4):274~276
    [69]Flamant P H, Menzies R T. Mode selection and frequency tuning by injection in pulsed TEA-CO2 lasers. IEEE J. Quant. Electron.,1983,19(5):821~825
    [70]Flamant P H, Menzies R T, Kavaya M J, et al. Pulse evolution and mode selection characteristics in a TEA-CO2 laser perturbed by injection of external radiation. Opt. Commun.,1983,45(2):105~111
    [71]Tashiro H, Shimada T, Toyoda K. Studies on injection locking of a TEA-CO2 laser for stable high-power operation. IEEE J. Quant. Electron.,1984,20(2):159~165
    [72]Cassard P, Lourtioz J M. Limits in cw injection-locking of stable resonator CO2 TEA lasers. Opt. Commun.,1984,51(5):325~330
    [73]Scott G, Smith A L S. Stabilization of single mode TEA laser. Opt. Commun.,1984, 50(5):325~329
    [74]Biswas D J, Harrison R G. Optical isolator for single mode TEA CO2 laser. J. Phys. E: Sci. Instrum.,1985,18:256~257
    [75]Clementi C, Hamadani S, Mataloni P, et al. Self-injection of the CO2 laser. Opt. Commun.,1986,58(6):423~426
    [76]Barbini R, Ghigo A, Giorgi M, et al. Injection-locked single-mode high-power low-divergence TEA CO2 laser using SFUR configuration. Opt. Commun.,1986, 60(4):239~243
    [77]Van Goor F A. Increased reliability of passive mode-locking a multi-atmosphere TE CO2 laser by injection mode-locking. Opt. Commun.,1986,57(4):254~256
    [78]Agnelie C, Capitini R, Girard P. Longitudinal mode selection by injection in a high pressure CO2 laser. Appl. Opt.,1987,26(6):1074~1080
    [79]Akmansoy E, lourtioz J M. Stable two-mode operation of a high-power pulsed laser with small signal injection. Opt. Commun.,1988,65(2):127~132
    [80]Barbini R, Ghigo A, Palucci A, et al. Line tunable TEA CO2 laser using SFUR configuration. Opt. Commun.,1988,68(1):41-44
    [81]Chandonnet A, Piche M. Single-mode pulsed from a high-pressure CO2 laser operated below emission threshold. IEEE J. Quant. Electron.,1991,27(9):2226-2231
    [82]Silakhori K, Behjat A, Soltanmoradi F, et al. A compact injection locked single longitudinal mode TEA CO2 laser. Proc. SPIE,2005,5777:433~437
    [83]Bahrampour A, Zandi M H. Transient behaviour analysis of injection-locked lasers. J. Phys. D:Appl. Phys.,2005,38:244~254
    [84]Ulrich R. Far-infrared properties of metallic mesh and its complementary structure. Infrared Phys.,1967,7:37~55
    [85]Born M, Wolf E. Principles of Optics. New York:Pergamon Press,1959.95~110
    [86]Wolfe S M, Button K J, Waldman J, et al. Modulated submillimeter laser
    interferometer system for plasma density measurements. Appl. Opt.,1976,15(11): 2645~2648
    [87]Weitz D A, Skocpol W J, Tinkham M. Capacitive-mesh output couplers for optically pumped far-infrared lasers. Opt. Lett.,1978,3(1):13~15
    [88]Compton R C, Whitbourn L B, McPhedran R C. Strip gratings at a dielectric interface and application of Babinet's principle. Appl. Opt.,1984,23(18):3236~3242
    [89]Whitbourn L B, Compton R C. Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary. Appl. Opt.,1985,24(2):217~220
    [90]Veron D, Whitbourn L B. Strip gratings on dielectric substrates as output couplers for submillimeter lasers. Appl. Opt.,1986,25(5):619~628
    [91]Ohba T, Ikawa S I. Far-infrared asbsorption of silicon crystals. J. Appl. Phys.,1988, 64(8):4141~4143
    [92]Grischkowsky D, Keiding S, Van Exter M, et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B,1990,7(10):2006~2015
    [93]Densing R, Ersting A, Gogolewski M, et al. Effective far-infrared laser opertion with mesh couplers. Infrared Phys.,1992,33(3):219~226
    [94]Gatesman A J, Giles R H, Waldman J. High-precision reflectometer for submillimeter wavelengths. J. Opt. Soc. Am. B,1995,12(2):212~219
    [95]Englert C R, Birk M, Maurer H. Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared. IEEE Trans. Geosci. Remote Sens.,1999,37(4): 1997~2003
    [96]Bailey Jr. W A, Gatesman A J, Gingras K R, et al. Fabrication and optimizatioin of uniform output couplers for far-infrared lasers. Opt. Lett.,2000,25(18):1349~1351
    [97]Moller K D, Sternberg O, Grebel H, et al. Thick inductive cross shaped metal meshes. J. Appl. Phys.,2002,91(12):9461~9465
    [98]Cao Q, Philippe L. Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys. Rev. Lett.,2002,88(5):057403/1-4
    [99]Barnes W L, Murray W A, Dintinger J, et al. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett.,2004,92(10):107401/1-4
    [100]Gatesman A J, Danylov A, Goyette T M, et al. Terahertz behavior of optical
    components and common materials. Proc.SPIE,2006,6212:62120E/1~12
    [101]Sternberg O, Stewart K P, Hor Y, et al. Square-shaped metal screens in the infrared to terahertz spectral region:resonance frequency, band gap, and bandpass filter characteristics. J. Appl. Phys.,2008,104:023103/1-7
    [102]Beaulieu A J. Transversely excited atmospheric pressure CO2 laser. Appl. Phys. Lett., 1970,16(2):504~505
    [103]Brown F, Silver E, Chase C E, et al.10-W methyl fluoride laser at 496mm. IEEE J. Quant. Electron.,1972,8:499~500
    [104]Izatt J R, Bean B L, Caudle G F. One watt, far infrared CH3OH laser. Opt. Commun., 1975,14(4):385~387
    [105]Semet A, Luhmann Jr. N C. High-power narrow-line pulsed 496- mm laser. Appl. Phys. Lett.,1976,28 (11):659~661
    [106]Semet A, Johnson L C, Mansfield D K. D2O submillimeter laser. Plenum publishing corporation,1983,7:231~246
    [107]Woskoboinikow P, Machuzak J S, Mulligan W J. A high-power 140GHz ammonia laser. IEEE J. Quant. Electron.,1985,21(1):14-17
    [108]Gross C T, Kiess J, Mayer A, et al. Pulsed high-power far-infrared gas lasers: performance and spectral survey. IEEE J. Quant. Electron.,1987,23(4):377~384
    [109]Mueller E R, Wilson T E, Waldman J. Generation of high repetition rate far-infrared laser pulses [J]. Appl. Phys. Lett.,1994,64 (25):3383~3385
    [110]Telles E M, Moraes J C S, Scalabrin A, et al. New far laser lines from CD3OD optically pumped by a CO2 waveguide laser. Appl. Phys. B,1991,52:36~41
    [111]Costa L F L, Cruz F C, Moraes J C S, et al. New Far-infrared laser lines from CH3OD methanol deuterated isotope. IEEE J. Quant. Electron.,2004,40(7):946-948
    [112]Viscovini R C, Cruz F C, Pereira D. Characterization of new FIR laser lines from CHD2OH. IEEE J. Quant. Electron.,2005,41(5):694~696
    [113]Michele A D, Carelli G, Moretti A, et al.12CH3OH and 13CH3OH optically pumped by the 10P and 10HP bands of a pulsed CO2 laser:new far-infrared laser emissions and assignments. Appl. Phys. B,2006,83:495~497
    [114]Carelli G, Michele A D, Moretti A. Optical pumping of CHD2OH and CH2DOH methanol isotopomers by means of a new pulsed CO2 laser:characterization of new far-infrared laser emissions. IEEE J. Quant. Electron.,2006,42(4):378~380
    [115]Moretti A, Moruzzi G, Strumia F, et al. New terahertz laser lines from 13CD3OH pumped by regular and hot bands CO2 laser. IEEE J. Quant. Electron.,2008,44(11): 1104~1106
    [116]Huang X, Qing J, Zheng X, et al. Experimental study on miniature pulsed CH3OH far-infrared laser. Int. J. IR&MMW,1997,18 (3):619~625
    [117]Qin J Y, Luo X Z, Huang X, et al. Experimental Study of Pulsed Optically Pumped Superradiant and Cavity NH3 Far-Infrared Laser. Int. J. IR&MMW,1999,20 (8): 1525~1531
    [118]Qin J Y, Huang X, Luo X Z, et al. Spectral Characteristics Comparison of Pulsed Optically Pumped NH3 and CH3OH Far-Infrared Laser. Int. J. IR&MMW,1999,20 (8):1515~1524
    [119]Qin J Y, Zheng X S, Luo X Z, et al. Study on spectral characteristics and operating parameters of optically pumped NH3 FIR cavity laser. IEEE J. Quant. Electron.,1998, 34(1):32~39
    [120]Kalugin N G, Rostovtsev Y V. Efficient generation of short terahertz pulses via stimulated Raman adiabatic passage. Opt. Lett.,2006,31(7):969~971
    [121]Kalugin N G, Rostovtsev Y V, Scully M O. Generation of intense short pulses of THz radiation via coherent scattering in atomic and molecular gases. In terahertz and gigahertz electronics and photonics V, edited by R. Jennifer Hwu, Kurt J. Linden. Proc. of SPIE,2005,6120:612002/1~5
    [122]Xie X, Dai J M, Zhang X C. Coherent control of THz wave generation in ambient air. Phys. Rev. Lett.,2006,96(7):075005/1-4
    [123]Houard A, Liu Y, Prade B, et al. Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Phys. Rev. Lett.,2008,100(25):255006/1~4
    [124]Chen M, Pukhov A. Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pluses with gases. Phys. Rev. E,2008,78(4): 046406/1-7
    [125]Pieer P, Pilz S, Muller F. Analysis of phase contrast imaging of terahertz phonon-polaritons. J. Opt. Soc. Am. B,2008,25:B70-B75
    [126]Singh R, Azad A K, O'Hara J F, et al. Effect of metal permittivity on resonant properties of terahertz metamaterials. Opt. Lett.,2008,33(13):1506~1508
    [127]Bluyssen H J A, McIntosh E R E, Van Etteger A F, et al. Pulsed operation of an optically pumped far-infrared molecular laser. IEEE J. Quant. Electron.,1975,11(7): 341~348
    [128]Written W J. The CO2 laser. Berlin:Spinger,1987.56~63
    [129]Weitz W, Flynn G W. Partial vibration energy transfer map for methyl fluoride:A laser fluorescence study. J. Chem. Phys.,1973,58(7):2781~2793
    [130]Hodges D T, Foote F B, Reel R D. Efficient high-power operation of the cw far-infrared waveguide laser. Appl. Phys. Lett.,1976,29(10):662~664
    [131]Rosenbluh M, Temkin R J, Button K J. Submillimeter laser wavelength tables. Appl. Opt.,1976,15(11):2635-2644
    [132]Jahanpanah J. Theory of frequency shift, injection-locking, and appearance of sidebands in class-C laser amplifiers. Opt. Commun.,2007,273:473-481
    [133]Huang X, Bao Y X, Qin J Y, et al. The spectrum of ground-state reversed transition of CH3OH far-infrared laser. Int. J. IR&MMW,1998,19 (12):1711~1719
    [134]Temkin R J, Cohn D R, Drozdowicz Z. Pumping and emission characteristics of a 4 kW, submillimeter CH3F laser. Opt. Commun.,1976,14(3):314~317
    [135]Tucker J R. Absorption saturation and gain in pulsed CH3F lasers. Opt. Commun., 1976,16(2):209~212
    [136]DeTemple T A, Plant T K, Coleman P D. Intense superradiant emission at 496μm from optically pumped methyl fluoride. Appl. Phys. Lett.,1973,22(12):644~646
    [137]Jacobsson S. Optically pumped far infrared lasers. Infrared Phys.,1989,29(5): 853~874
    [138]李小芬,左都罗,程祖海.紫外预电离TEA CO2激光器放电过程的数值模拟.激光技术,2004,28(5):476~479
    [139]赵翔,左都罗,卢宏等.TEA CO2激光器几种放电电极的比较.强激光与粒子束,2006,18(4):569~574
    [140]余文峰,孙峰,程祖海.夹持方式对镜面热变形及偏转的影响.强激光与粒子束,2005,17(1):29~32
    [141]Wang Z Z, Chi R L, Liu B, et al. Depolarization properties of cirrus clouds from polarization lidar measurements over Hefei in spring. Chin. Opt. Lett.,2008,6(4): 235~237
    [142]Okita Y, Yasuoka K, Ishii A, et al. Long-pulse, high-repetition-rate transversely excited CO2 laser for material processing. Proc. SPIE,1994,2118:22~31
    [143]Chen Yuqi, Zuo Duluo, Cheng Zuhai. Studies on large aperture volume discharge of TEA CO2 laser. Proc. SPIE,2007,6823:68230P/1-4
    [144]陈钰琦,左都罗,程祖海.TEA CO2激光器不同放电电路对放电过程影响的研究.强激光与粒子束,2008,20(5):729-733
    [145]陈钰琦,左都罗,程祖海.电极面型对横向激励高气压CO2激光器放电的影响.推进技术,2007,28(5):550~554
    [146]Chen Qingming, Cheng Zuhai, Zhu Haihong. Laser acoustics in water induced by high power CO2 pulsed laser. Proc. SPIE,2008,7276:727611/1-7
    [147]Qi Chun-Chao, Zuo Du-Luo, Lu Yan-Zhao, et al. An efficient photon conversion efficiency ammonia terahertz cavity laser. Chin. Phys. Lett.,2009,26(12): 124201/1-4
    [148]Bluyssen H J A, Van Etteger A F, Maan J C, et al. Very short far-infrared pulses from optically pumped CH3OH/D, CH3F, and HCOOH lasers using an EQ-Switched CO2 laser as a pump source. IEEE J. Quant. Electron.,1980,16(12):1347~1351
    [149]De Temble T A, Danielewicz E J. Continuous-wave optically pumped lasers. New York:Academic Press,1983.23~47
    [150]Behn R, Dicken D, Hackmann J, et al. Ion temperature measurement of Tokomak plasmas by collective Thomson scattering of D2O laser radiation. Phys. Rev. Lett., 1989,62(24):2833~2836
    [151]Chakrabarti A, Reid J. Long-pulse transversely excited 12CO2 and 13CO2 lasers. J. Appl. Phys.,1989,66(1):37-42
    [152]Singer S, Elliott C J, Figueira J, et al. High power, short pulse CO2 laser systems for inertial confinement fusion. In developments in high power lasers and their applications: Pellegrini C. North-Holland:Amsterdam,1981.115~120
    [153]Towes C H, Schawlow A L. Microwave Spectroscopy. New York:Dover,1975.20-54
    [154]De Temble T A. Pulsed Optically Pumped Far Infrared Lasers. New York:Academic, 1979.130~150
    [155]Lovold S. Frequency chirp in a 10 atm RF-excited CO? waveguide laser. IEEE J.
    Quant. Electron.,1988,24(12):2514~2524
    [156]Klovar G, Piche M, Belanger P A. Single-longitudinal mode operation of a continuously tunable high-pressure TE-CO2 laser. Proc.SPIE,1986,663:79~83
    [157]Buczek C J, Freiberg R J, Skolnick M L. Laser injection locking. Proc IEEE,1973, 73:1411~1431
    [158]Qi C C, Zuo D L, Meng F Q, et al. Long-pulse optical pumping THz laser based on optical amplification. Acta Phys. Sin.,2009,58(7):4641/1-6
    [159]Qi C C, Cheng Z H. Generation of intense THz pulsed lasers pumped strongly by CO2 pulsed lasers. Chin. Phys. Lett.,2009,26(6):064201/1-4
    [160]Qi C C, Zuo D L, Meng F Q, et al. A theoretical investigation of wedged capacitive strip-grating output couplers for optically pumped terahertz lasers. Opt. Commun., 2010,283:574~578
    [161]Qi C C, Zuo D L, Meng F Q, et al. Theoretical investigation and experiment design of intense THz pulsed lasers. Proc. SPIE,2009,7277:72770T/1~10
    [162]Qi C C, Zuo D L, Meng F Q, et al. Theoretical design of a wedged output coupler coated by capacitive strip-grating for optically pumped terahertz lasers. Chin. Phys. Lett.,2010,27(4):044205/1~4
    [163]Lloyd-Hughes J, Scalari G, van Kolck A, et al. Coupling terahertz radiation between sub-wavelength metal-metal waveguides and free space using monolithically integrated horn antennae. Opt. Express,2009,17(20):18387~18393
    [164]MacDonald M Alecnian A, York R A. Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters. IEEE Trans. Microwave Theory Tech.,2000, 48(4):712~718
    [165]Winnewisser C, Lewen F, Helm H. Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy. Appl. Phys. A,1998,66(6):593~598
    [166]Izatt J R, Bean B L, Caudle G F. One watt, far infrared CH3OH laser. Opt. Commun., 1975,14(4):385~387
    [167]Nishizawa S, Tsumura N, Kitahara H, et al. New application of terahertz time-domain spectrometry (THz-TDS) to the phonon-polariton observation on ferroelectric crystals. Phys. Med. Biol.,2002,47:3771~3776
    [168]Chen Q, Jiang Z, Xu G X, et al. Near-field terahertz imaging with a dynamic aperture. Opt. Lett.,2000,25(15):1122~1124
    [169]Zhang J, Grischkowsky D. Waveguide terahertz time-domain spectroscopy of nanometer wave layers. Opt. Lett.,2004,29(14):1617~1619
    [170]Costa L F L, Moraes J C S, Cruz F C, et al. CH3OH optically pumped by a 13CO2 laser:new laser lines and assignments. Appl. Phys. B,2007,86:703~706
    [171]Jacobson R H, Mittleman D M, Nuss M C. Chemical recognition of gases and gas mixtures with terahertz waves. Opt. Lett.,1996,21(24):2011~2013
    [172]Steffen H, Kneubuhl F K. Resonator Interferometry of pulsed submillimeter wave lasers. IEEE J. Quantum Electron.,1968,4(12):992~1008
    [173]Belland P, Veron D, Whitbourn L B. Scaling laws for cw 337-μm HCN waveguide lasers. Appl. Opt.,1976,15(12):3047~3053
    [174]Belland P. Waveguide CW 118.6μm H2O laser. Appl. Phys. B,1982,27:123~128
    [175]Baumann F, Bailey Jr W A, Naweed A, et al. Wet-etch optimization of free-standing terahertz frequency-selective structures. Opt. Lett.,2003,28(11):938~940
    [176]Porterfield D W, Hesler J L, Densing R, et al. Resonant metal-mesh bandpass filters for far-infrared laser. Appl. Opt.,1994,33(25):6046~6052
    [177]Xu L H, Lees R M, Vasconicellos E C C, et al. Methanol and the optically pumped far-infrared laser. IEEE J. Quantum Electron.,1996,32(3):392~399
    [178]Marchetti S, Martinelli M, Simili R, et al. Efficient millimetre far infrared laser emissions in different molecular systems. Infrared Phys. Technol.,2000,41:197~204
    [179]Zhang X-C. Terahertz wave imaging:horizons and hurdles. Phys. Med. Biol.,2002, 47 (21):3667~3677
    [180]Gordon J P, Zeiger H J, Townes C H. Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3. Phys. Rev.,1954; 95 (1): 282~284
    [181]Fetterman H R, Schlossberg H R, Waldman J. Submillimeter laser optically pumped off resonance. Opt. Commun.,1972,6 (2):156~159
    [182]Tiee J J, Wittig C. Optically pumped molecular lasers in the 11-17 μm region. J. Appl. Phys.,1978,49 (1):61~64
    [183]Jacobs R R, Prosnitz D, Bischel W K, et al. Laser generation from 6 to 35μm following two photon excitation in ammonia. Appl. Phys. Lett.,1976,29 (4): 710~712
    [184]Hirose H, Matsuda H, Kon S. High power FIR NH3 laser using a folded resonator. Int. J.IR and MMW,1981,2:1165~1176
    [185]Hirose H, Kon S. Compact, high power FIR NH3 laser pumped in a three mirror CO2 laser cavity. Int. J. IR and MMW,1984,5:1571~1579
    [186]Hirose H, Kon S. Compact, high-power FIR NH3 laser pumped in a CO2 laser cavity. IEEE J. Quantum Electron.,1986,22(9):1600~1603
    [187]Bowles K L. Observation of Vertical-Incidence Scatter from the Ionosphere at 41 Mc/sec. Phys. Rev. Lett.,1958,1(12):454~455
    [188]Mansfield D K, Johnson D W, Grek B, et al. Observations concerning the injection of a lithium aerosol into the edge of TFTR discharges. Nucl. Fusion,2001,41(12): 1823-1834
    [189]Plant T K, Newman L A, Danielewicz E J, et al. High power optically far infrared lasers. IEEE Trans. On Microwave Theory and Techniques,1974, MTT-22(12):988-990
    [190]Evans D E, Sharp L E, Peebles W A, et al. A high-intensity narrow bandwidth pulsed submillimeter laser for plasma diagnostics. IEEE J. Quantum Electron.,1977,13(2): 54~58
    [191]Woskoboinikow P, Mulligan W J, Erickson R.385μm D2O laser linewidth measurements to-60dB. IEEE J. Quantum Electron.,1983,19(1):4-7
    [192]Behn R, Dupertuis M A, Kjilberg I, et al. Buffer gases to increase the efficiency of an optically pumped far-infrared D2O laser. IEEE J. Quantum Electron.,1985,21(8): 1278~1285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700