含特异材料光子晶体的传输特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体,又称为光子带隙材料,是一种介电常数或磁导率在空间呈周期性排列的人工材料。光子晶体的最大特性是存在光子带隙,频率落在光子带隙中的电磁波将不能在其中传播。并且,利用这种带隙效应,在光子晶体中引入缺陷即能实现对波的操纵与控制。而特异材料,也叫超材料,是指不同于自然界中普通材料而具有奇异电磁特性(如负的介电常数、负的磁导率、负的折射率等)的人造电磁材料。电磁波在特异材料中传播时,将会出现许多不寻常的现象,例如,逆Doppler效应、逆Cerenkov效应、反常光压等。
     由于特异材料独特的电磁特性,在光子晶体中引入特异材料,将会带来很多新的规律和现象。本论文将对含特异材料的光子晶体的传输特性进行研究,具体内容包括:
     1.研究了“负磁导率材料—正折射率材料”、“负介电常数材料—正折射率材料”以及“负磁导率材料—负介电常数材料”组成的一维光子晶体结构的全方位带隙中,波的反射相位与入射角、介质厚度的缩放因子以及周期数之间的关系和变化规律。这方面的研究,弥补了理论上的不足,有利于全面理解含特异材料组成的一维光子晶体结构的相位特性,也为一维光子晶体相位补偿器和色散补偿器的制作提供了理论依据。
     2.研究了一种基于左手材料光子晶体异质结构的全方向缺陷模。从一维缺陷光子晶体的缺陷模的本征方程入手,得到了含左手材料一维缺陷光子晶体TE波的全方向缺陷模。并且,根据麦克斯韦方程中电矢量与磁矢量的对称性,证明了电介质材料一维缺陷光子晶体有利于获得TE波的全方向缺陷模,而磁介质材料一维缺陷光子晶体有利于获得TM波的全方向缺陷模。通过将电介质材料一维缺陷光子晶体与磁介质材料一维缺陷光子晶体组合形成的光子晶体异质结构,得到了与偏振无关的全方向缺陷模。最后通过计算缺陷模的电场分布,进一步验证了我们的结论。
     3.研究了一种含左手材料的光子晶体异质结构的窄通道窄角度缺陷模。该结构由两个一维缺陷光子晶体组成:其中一个完全由常规材料构成;另一个由含左手材料缺陷光子晶体构成,利用该结构可实现某一角度的窄通带窄角度缺陷模。设计这种光子晶体异质结构的关键点有两个:一是令某一角度时两个缺陷光子晶体缺陷模的频率相同;二是让两个缺陷光子晶体缺陷模的角度色散不相同,并且差别越大越好。该结构得到的频率滤波和方向滤波的效果均要比单纯使用常规材料的要好。
     4.研究了一种含双负材料的光子晶体量子阱结构,该结构由双负材料和常规材料交替堆叠而成的一维光子晶体分别作为阱和垒,组成两边为垒中间为阱的异质结构。合理选择参数,使得阱光子晶体的通带落于垒光子晶体的禁带中而满足光子晶体量子阱形成的条件,类似于半导体量子阱中的电子,由于光子的限制效应将导致量子化,电磁波只能以共振隧穿的方式通过光子晶体量子阱结构中的垒光子晶体,此时阱光子晶体通带频率范围内将出现规律性变化的谐振模。并且隧穿谐振模的个数等于阱光子晶体的周期数。谐振模随入射角的改变近似不变,以及随垒光子晶体厚度缩放因子变化不敏感。
Photonic crystals (PCs), also called photonic band gap (PBG) materials, are artificial materials which possess a periodic modulation of permittivity or permeability. The most important feature of PCs is the PBG. Electromagnetic (EM) waves with frequencies within the band gap cannot propagate through the PCs. Utilizing the effect of PBGs, the propagation of EM waves can be controlled by introducing the defect into the PCs. Metamaterials are a type of artificial EM materials with different EM properties from the ordinary materials, such as negative index, negative permittivity or negative permeability. When the EM waves pass through the metamaterials, there will be a lot of unusual phenomenon, such as converse Doppler Effect, converse Cerenkov Effect and unusual light pressure.
     Due to the unusual EM properties of metamaterials, if we introduce the metamaterials into PCs, there will be a lot of new rules and phenomenon. In this thesis, we investigate the transmission properties of PCs containing metamaterials. The major contents are given as follows.
     1. The reflection phase properties in the omnidirectional gap by one-dimensional PCs containing metamaterials are investigated. We consider three types of structure:‘mu-negative positive-index PC’,‘epsilon-negatvie positive-index PC’, and‘mu-negative epsilon-negative PC’. The properties of reflection phase versus the incident angle, the scaling factor of layer thickness and the periodic numbers are studied. These results can help us to have a better understanding of the reflection phase properties in one-dimensional PCs containing metamaterials, and valuable in designing phase compensator and dispersion compensator.
     2. A type of photonic heterostructure containing left-hand materials is studied, from which the polarization-independent and omnidirectional defect mode can be obtained. Firstly, we get the omnidirectional defect mode for TE wave from the one-dimensional defective PC containing left-hand materials by the use of the eigenfrequency equation of the defect mode. Then, according to the symmetry of Maxwell’s wave equations in electric and magnetic vectors, we found that the dielectric one-dimensional defective PC benefits to achieve the omnidirectional defect mode for TE waves, while the magnetic one-dimensional defective PC benefits for TM waves. By combining dielectric one-dimensional defective PC and magnetic one-dimensional defective PC, we get the polarization-independent and omnidirectional defect mode. Finally, the field distributions are also calculated and the results prove our deduction.
     3. A type of photonic heterostructure containing left-hand materials is investigated. The structure is made of two one-dimensional defective PCs: the first one consists of alternating positive-index material layers with a positive-index material defect; the second one consists of the same alternating positive-index material layers with a left-hand materials defect. The results show that the proposed structure can achieve the integrated functions of narrow pass-band frequency filtering and narrow transmission-angle direction filtering at a certain angle. The key in designing such a structure is first to make the frequencies of the defect modes the same in the sub-PCs at a certain angle, and secondly to make the dispersion deviation of the defect modes as large as possible between the sub-PCs. The results also show that the proposed structure can get more narrow pass-band and more narrow transmission-angle than the similar structure only containing ordinary materials.
     4. A type of photonic quantum well containing negative-index materials is studied. The structure is made of two different PCs with negative-index materials and positive-index materials. The left and right side PCs in the proposed heterostructure serve as photonic barriers, and the middle PC works as a well. When the passband of the well PC just locates inside the gap of the barrier PC, the condition of forming the photonic quantum well can be satisfied. Just like the electrons in the semiconductor quantum well, the waves can pass through the barrier PCs by the way of tunneling owing to the photonic confinement effects. The tunneling modes vary with different number of periods in the well PC and the number of modes is just the same as the number of periods in the well PC. Moreover, these types of modes are insensitive to the incident angle as well as the scaling of the barrier PC.
引文
[1] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, 58(20):2095-2062
    [2] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 1987, 58(23):2486-2489
    [3] J. D. Joannopoulos, R. D. Meade, J. N. Winn. Photonic Crystals. Princeton U. Press, 1998
    [4] K. Sakoda. Optical Properties of Photonic Crystals. Springer-Verlag, 2001
    [5] X. Y. Hu, P. Liang, C. Y. Ding, et al. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nat. Photonics., 2008, 2(3):185-189
    [6] M. F. Yanik, S. Fan, M. Soljacic, et al. All-Optical transistor action with bistable swtiching in a photonic crystal cross-waveguide geometry. Opt. Let., 2003, 28(24):2506-2508
    [7]欧阳征标,李景镇.光子晶体的研究进展.激光杂志,2000,21(2):4-6
    [8]廖先炳.光子晶体技术——(一)光子晶体光纤.半导体光电,2003,24(2):135-138
    [9]廖先炳.光子晶体技术——(二)光子晶体光波导.半导体光电,2003,24(3):212-216
    [10]廖先炳.光子晶体技术——(三)光子晶体激光器.半导体光电,2003,24(4):286-289
    [11]廖先炳.光子晶体技术——(四)光子晶体光无源器件.半导体光电,2003,24(5):371-376
    [12] V. G. Veselago. The electrodynamics of substances with simultaneously negative values ofεandμ. Sov. Phys. Usp., 1968, 10(4):509-514
    [13] D. R. Smith, W. J. Padilla, D. C. Vier, et al. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett., 2000, 84(18):4184-4187
    [14] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 2001, 292(6):77-79
    [15]唐晋发,顾培夫.薄膜光学与技术.北京:机械工业出版社,1989
    [16] C. Jamois, R. B. Wehrspohn, L. C. Andreani, et al. Silicon-based two-dimensional photonic crystal waveguides. Photonics and Nanostructures-Fundamentals and Applications., 2003, 1(1):1-13
    [17] L. Marko, D. Theodor, V. Jelena, et al. Design and fabrication of silicon photonic crystal optical waveguides. IEEE. J. Lightwave. Technol, 2000, 18(10):1402-1411
    [18] C. Y. Luo, S. G. Johnson, J. D. Joannopoulos. All-angle negative refraction without negativeeffective index. Phys. Rev. B, 2002, 65(20):201104-201108
    [19] K. M. Ho, C. T. Chan, C. M. Soukoulis. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett., 1990, 65(25):3152-3155
    [20] S. Y. Lin, J. G. Fleming, D. L. Hetherington, et al. A three-dimensional photonic crystal operating at infrared wavelengths. Nature., 1998, 394(6690):251-253
    [21] H. S. Sozuer, J. P. Dowing. Photonic band calculations for woodpile structures. J. Mod. Opt., 1994, 41(2):231-239
    [22] D. Roundy, J. Joannopoulos. Photonic crystal structure with square symmetry within each layer and a three-dimensional band gap. Appl. Phys. Lett., 2003, 82(22):3835-3837
    [23] S. Y. Lin, J. G. Fleming, R. Lin. Complete three-dimensional photonic band gap in a simple cubic symmetry. J. Opt. Soc. Am. B., 2001, 18(1):32-35
    [24] M. Maldovan, E. L. Thomas. Photonic crystals: six connected dielectric networks with simple cubic symmetry. J. Opt. Soc. Am. B., 2005, 22(2):466-473
    [25] Z. Y. Li, B. Y. Gu, G. Z. Yang. Large absolute band gap in 2D anisotropic photonic crystals. Phys. Rev. Lett., 1998, 81(12):2574-2577
    [26] S. Fan, P. R. Villeneuve, R. D. Meade, et al. Design of three-dimensional photonic crystals at submicron lengthscales. Appl. Phys. Lett., 1994, 65(11):1466-1468
    [27] E. Yablonovitch, T. J. Gmitter. Photonic band structure: The face-centered-cubic case. Phys. Rev. Lett., 1989, 63(18):1950-1953
    [28] K. M. Leung, Y. F. Liu. Full vector wave calculation of photonic band structures in Face-Centered-Cubic dielectric media. Phys. Rev. Lett., 1990, 65(21):2646-2649
    [29] E. Yablonovitch, T. Gmitter, K. M. Leung. Photonic band-structure: the Face-Centered-Cubic case employing nonspherical atoms. Phys. Rev. Lett., 1991, 67(17):2295-2298
    [30] R. Biswas, M. M. Sigalas, K. M. Ho. Three-dimensional photonic band gaps in modified simple cubic lattices. Phys. Rev. B., 2002, 65(20):205121-1-5
    [31] O. Toader, M. Berciu, S. John. Photonic band gaps based on tetragonal lattices of slanted pores. Phys. Rev. Lett., 2003, 90(23):233901-1-4
    [32] B. Gralak, M. D. Dood. Theoretical study of photonic band gaps in woodpile crystals. Phys. Rev. E., 2003, 67(6):066601-1-18
    [33] M. Maldovan, E. L. Thomas, C. W. Carter. Layer-by-layer diamond-like wood pile structure with a large photonic band gap. Appl. Phys. Lett., 2004, 84(3):362-364
    [34] S. Noda, K. Tomoda, N. Yamamoto, et al. Full three-dimensional photonic band gap crystals at near-infrared wavelengths. Science, 2000, 289(5479):604-606
    [35] S. John. Localization of light. Physics. Today., 1991, 44(5):32-40
    [36] A. Yoshihiro, A. Takashi, S. B. Shik, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 2003, 425(6961):944-947
    [37] J. S. Foresi, P. R. Villeneuve, J. Ferrera, et al. Photonic-bandgap microcavities in optical waveguides. Nature, 1997, 390(6656):143-145
    [38] J. Sabarinathan, P. Bhattacharya, P. C. Yu, et al. An electrically injected InAs/GaAs quantum-dot photonic crystal microcavity light-emitting diode. Appl. Phys. Lett., 2002, 81(20):3876-3878
    [39] S. G. Johnson, S. Fan, A. Mekis, et al. Multipole-cancellation mechanism for high-Q photonic cavities in the absence of a complete band gap. Appl. Phys. Lett., 2001, 78(22):3388-3390.
    [40] A. Mekis, J. C. Chen, I. Kurland, et al. High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett., 1996, 77(18):3787-3790
    [41] K. C. Kwan, X. D. Zhang, Z. Q. Zhang, et al. Effects due to disorder on photonic crystal-based waveguides. Appl. Phys. Lett., 2003, 82(25):4414-4416
    [42] A.Chutinan, M. Okano, S. Noda. Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs. Appl. Phys. Lett., 2002, 80(10):1698-1770
    [43] A. Talneau, P. Lalanne, M. Agio, et al. Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths. Opt. Lett., 2002, 27(17):1522-1524
    [44] Y. Zhang, B. J. Li. Ultracompact waveguide bends with simple topology in two-dimensional photonic crystal slabs for optical communication wavelengths. Opt. Lett., 2007, 32(7):787-789
    [45] S. H. Fan, P. Villeneuve, J. Joannopoulos, et al. Channel drop filters in photonic crystals. Opt. Express., 1998, 3(1):4-11
    [46] C. C. Chen, H. D. Chien, P. G. Luan. Photonic crystal beam splitters. Appl. Optics., 2004, 43(33):6187-6190
    [47] H. L. Ren, C. Jiang, W. S. Hu, et al. Channel drop filter in two-dimensional triangular lattice photonic crystals. J. Opt. Soc. Am. A., 2007, 24(10):A7-A11
    [48] C. C. Chen, H. D. Chien, P. G. Luan. Photonic crystal beam splitters. Appl. Optics., 2004, 43(33):6187-6190
    [49] J. D. Joannopoulos, P. R. Villeneuve, S. Fan. Photonic crystals: putting a new twist on light. Nature, 1997, 386(6621):143-149
    [50] A. Mekis, J. C. Chen, I. Kurland, et al. High Transmission through Sharp Bends in Photonic Crystal Waveguides. Phys. Rev. Lett., 1996, 77(18):3787-3790
    [51] S. G. Johnson, C. Manolatou, S. Fan, et al. Elimination of cross talk in waveguide intersections. Opt. Lett., 1998, 23(23):1855-1857
    [52] J. S. Foresi, P. R. Villeneuve, J. Ferrera, et al. Photonic-bandgap microcavities in optical waveguides. Nature, 1997, 390(6656):143-145
    [53] J. Zimmermann, M. Kamp, A. Forchel, et al. Photonic crystal waveguide directional couplers as wavelength selective optical filters. Opt. Commun., 2004(4-6), 230:387-392
    [54] T. Liu, A. R. Zakharian, M. Fallahi, et al. Design of a compact photonic-crystal-based polarizing beam splitter. IEEE. Photo. Technol. Lett., 2005, 17(7):1435-1437
    [55] A. Yariv, Y. Xu, R. K. Lee, et al. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett., 1999, 24(11):711-713
    [56] T. Yang, Y. Sugimoto, S. Lan, et al. Transmission properties of coupled-cavity waveguides based on two-dimensional photonic crystals with a triangular lattice of air holes. J. Opt. Soc. Am. B., 2003, 20(9):1922-1926
    [57] J. C. Knight, T. A. Birks, P. St. Russell, et al. Properties of photonic crystal fiber and the effective index model. J. Opt. Soc. Am. A., 1998, 15(3):748-752
    [58] D. Mogilevtsev, T. A. Birks, P. St. Russell. Group-velocity dispersion in photonic crystal fibers. Opt. Lett., 1998, 23(21):1662-1664
    [59] P. Rigby. A photonic crystal fiber. Nature, 1998, 396(4):415-416
    [60] R. F. Cregan, B. J. Managan, J. C. Knight, et al. Single-Mode Photonic Band Gap Guidance of Light in Air. Science., 1999, 285(5433):1537-1539
    [61] B. J. Mangan, J. Arriaga, T. A. Birks, et al. Fundamental-mode cutoff in a photonic crystal fiber with a depressed-index core. Opt. Lett., 2001, 26(19):1469-1471
    [62] J. C. Knight, T. A. Birks, P. St. Russell. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett., 1996, 21(19):1547-1549
    [63] A. O. Blanch, J. C. Knight, W. J. Wadsworth, et al. Highly birefringent photonic crystal fibers. Opt. Lett., 2000, 25(18):1325-1327
    [64] J. Limpert, T. Schreiber, S. Nolte, et al. High-power air-clad large-mode-area photonic crystal fiber laser. Opt. Express., 2003, 11(7):818-823
    [65] B. J. Eggleton, P. S. Westbrook, C. A. White, et al. Cladding-mode-resonances in air-silicamicrostructure optical fibers. IEEE. J. Lightwave. Technol., 2000, 18(8):1084-1100
    [66] J. C. Knight, J. Broeng, T. A. Birks, et al. Photonic band gap guidance in optical fibers. Science, 1998, 282(5393):1476-1478
    [67] T. T. Larsen, A. Bjarklev, D. S. Hermann, et al. Optical devices based on liquid crystal photonic band gap fibres. Opt. Express., 2003, 11(20):2589-2596
    [68] O. Painter, R. K. Lee, A. Yariv, et al. Two-Dimensional Photonic Band-Gap Defect Mode Laser. Science, 1999, 284(5421):1819-1821
    [69] L. Chen, E. Towe. Design of High-Q Microcavities for Proposed Two-Dimensional Electrically Pumped Photonic Crystal Lasers. IEEE. J. Sel. Topics Quantum. Electron., 2006, 12(1):117-123
    [70] M. H. Shih, K. Wan, Y. Tian, et al. Experimental Characterization of the Optical Loss of Sapphire-Bonded Photonic Crystal Laser Cavities. IEEE. Photon. Technol. Lett., 2006, 18(3):535-537
    [71] A. J. Danner, J. J. Raftery, et al. Single mode photonic crystal vertical cavity lasers. Appl. Phys. Lett., 2006, 88(9),09114-1-3
    [72] H. Yang, F. Lai, Y. Chang, et al. Single mode (SMSR > 40 dB) proton-implanted photonic crystal vertical-cavity surface-emitting lasers. Electron. Lett., 2005, 41(6)
    [73]唐海侠,王启明.半导体光子晶体激光器的研究进展.半导体光电,2005,26(3):165-171
    [74]高鹏,毛陆虹,李斌桥,等.光子晶体微腔半导体激光器的研究进展.高技术通讯,2003,13(12):94-97
    [75] Y. Fink, J. N. Winn, S. Fan, et al. A Dielectric Omnidirectional Reflector. Science, 1998, 282(27):1679-1682
    [76] S. D. Hart, G. R. Maskaly, B. Temelkuran, et al. External Reflection from Omnidirectional Dielectric MirrorFibers. Science, 2002, 296(5567):510-513
    [77] Z. Ouyang, D. Mao, C. P. Liu, et al. Photonic structures based on dielectric and magnetic 1-D PCs for wide omnidirectional total-reflection. J. Opt. Am. B., 2008, 25(3):297-301
    [78] V. Radisic, Y. Qian, T. Itoh. Broadband power amplifier using dielectric photonic bandgap structure. IEEE. Microwave. Guided. Wavelett., 1998, 8(1):13-14
    [79] E. R. Brown, C. D. Parker, E. Yablonovitch. Radiation properties of a planar antenna on a photonic-crystal substrate. J. Opt. Soc. Am. B., 1993, 10(2):404-407
    [80] R. Coccioli, W. R. Deal, T. Itoh. Radiation Characteristics of a Patch Antenna on a Thin PBG Substrate. IEEE. Antenna. And. Progation. Society., 1998, 2(2):656-659
    [81] Y. Horri, M. Tsutsumi. Harmonic Control by Photonic Band Gap on Microstrip Patch Antenna.IEEE. Microwave. Guided. Wave. Lett., 1999, 9(1):13-15
    [82] M. Notomi. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B., 2000, 62(16):10696-10705
    [83] B. Gralak, S. Enoch, G. Tayeb. Anomalous refractive properties of photonic crystals. J. Opt. Soc. Am. A., 2000, 17(6):1012-1020
    [84] S. Foteinopolou, E. N. Economou, C. M. Soukoulis. Refraction in media with a negative refractive index. Phys. Rev. Lett., 2003, 90(10):107402-1-4
    [85] X. Y. Lei, H. Li, F. Ding, et al. Novel application of a perturbed photonic crystal: High-quality filter. Appl. Phys. Lett., 1997, 71(20):2889-2891
    [86]欧阳征标,刘海山,李景镇.光子晶体超窄带滤波器.光学学报,2002,31(3):281-283
    [87] F. Qiao, C. Zhang, J. Wan, et al. Photonic quantum-well structures: Multiple channeled filtering phenomena. Appl. Phys. Lett., 77(23):3698-3700
    [88] D. Mao, Z. Ouyang, J. C. Wang, et al. A photonic-crystal polarizer integrated with the functions of narrow bandpass and narrow transmission-angle filtering. Appl. Phys. B., 2008, 90(1):127-131
    [89] G. Q. Liang, P. Han, H. Z. Wang. Narrow frequency and sharp angular defect mode in one-dimensional photonic crystals from a photonic heterostructure. Opt. Lett., 29(2):192-194
    [90] Y. Kanamori, K. Inoue. Photonic crystals switch by inserting nano-crystal defects using MEMS actuator. Proceedings of the 2003IEEE/LEOS International Conference on Optical MEMS Waikoloa., 2003, 107-108
    [91] M. Scalora, J. P. Dowling, C. M. Bowden, et al. Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials. Phys. Rev. Lett., 1994, 73(10):1368-1371
    [92] P. Tran. Optical limiting and switching of short pulses by use of a nonlinear photonic band gap structure with a defect. J. Opt. Soc. Am. B., 1997, 14(10):2589- 2594
    [93]龚旗煌,胡小永.超快速光子晶体全光开关研究.北京大学学报(自然科学版),2006,42(1):11-17
    [94] P. Dardano, L. Moretti, V. Mocella, et al. Investigation of a tunable T-shaped waveguide based on a silicon 2D photonic crystal. J. Opt. A: Pure. Appl. Opt., 2006, 8(7):S554-S560
    [95] J. Danglot, O. Vanbesien, D. Lippens. A 4-port resonant switch patterned in a photonic crystal. IEEE. Microwave. And. Guided. Wave. Lett., 1999, 9(7):274-276
    [96] Y. L. Zhang, Y. Zhang, B. J. Li. Optical switches and logic gates based on self-collimated beamsin two-dimensional photonic crystals. Opt. Express., 2007, 15(15):9287-9292
    [97] A. Sharkawy, S. Y. Shi, D. W. Prather. Electro-optical switching using coupled photonic crystal waveguides. Opt. Express., 2002, 10(20):1048-1059
    [98] M. Scalora, M. J. Bloemer, A. S. Pethel, et al. Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures . J. Appl. Phys., 1998, 83(5):2377-2383
    [99]徐晓创.一维金属_介质光子晶体的理论研究. [博士学位论文] .上海:复旦大学,2006
    [100] Y. Y. Li, P. F. Gu, M. Y. Li, et al. Research on the wide-angle and broadband 2D photonic crystal polarization splitter. Progress. In. electromagnetics. Research. Symposium., 2005, Hangzhou, China, 22-26.
    [101] X. P. Shen, K. Han, Y. F. Shen, et al. Dispersion-based all photonic crystals polarization beam splitter. Phys. Lett. A., 2007, 369(5-6):524-527.
    [102] P. Kramper, M. Agio, C. M. Soukoulis, et al. Highly directional emission from photonic crystal waveguides of subwavelength width. Phys. Rev. Lett., 2004, 92(11):113903-1-4
    [103] E. Moreno, F. J. Garcia-Vidal, L. Martin-Moreno. Enhanced transmission and beaming of light via photonic crystal surface modes. Phys. Rev. B., 2004, 69(12):121402-1-4
    [104] S. Fan, et al. High extraction efficiency of spontaneous emission from slabs of photonic crystals. Phys. Rev. Lett., 1997, 78(17):3294-3297
    [105] E. Chow, S. Y. Lin, S. G. Johnson, et al. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature., 2000, 407(6807):983-986
    [106] X. Y. Lei, W. Zhang, N. B. Ming, et al. Novel application of a perturbed photonic crystal: High-quality filter. Appl. Phys. Lett., 1997, 71(20):2889-2891
    [107] S. J. Jiang, Y. Liu, et al. Design and fabrication of narrow frequency sharp angular filter. Appl. Optics., 2005, 44(30):6353-6356.
    [108] E. Kuramochi, M. Notomi, T. Kawashima, et al. A new fabrication technique for photonic crystals: Nanolithography combined with lternating layer deposition. Optical. And. Quantum. Electronics., 2002, 34(1-3):53-61
    [109] N. Susumu, T. Katsuhiro, Y. Noritsugu. Full three dimensional photonic band gap crystals at near infrared wavelengths. Science, 2000, 289(5479):604-606
    [110] S. Noda, N. Yamamoto, H. Kobayashi, et al. Optical properties of three-dimensional photonic crystals based on III–V semiconductors at infrared to near-infrared wavelengths. Appl. Phys. Lett., 1999, 75(1):905-907
    [111] E. Ozbay, E. Michel, G. Tuttle, et al. Micromachined millimeter-wave photonic band-gapcrystals. Appl. Phys. Lett., 1994, 64(16):2059-2061
    [112] H. Benisty, J. M. Lourtioz, A. Chelnokov, et al. Recent advances toward optical devices in semiconductor-based photonic crystals. Proc. Of. The. IEEE., 2006, 94(5):997-1023
    [113] B. Y. Cheng, Z. L. Li, D. Z. Zhang. Visible and near-infrared silica colloidal crystals and photonic gaps. Phys. Rev. B., 1998, 58(1):35-38
    [114] V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, et al. Photonic band gap phenomenon and optical properties of artificial opals. Phys. Rev. E., 1997, 55(6):7619-7625
    [115] O. D. Velev, T. A. Jede, R. F. Lobo, et al. Porous silica via colloidal crystallization. Nature, 1997, 389(6650):447-448
    [116] A. Blanco, E. Chomski, S. Grabtchak, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 2000, 405(6785):437-439
    [117] R. C. Rumpf, E. G. Johnson. Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography. J. Opt. Soc. Am. A., 2004, 21(9):1703-1713
    [118] S. Shoji S, S. Kawata. Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin. Appl. Phys. Lett., 2000, 76(19):2668-2670
    [119]王霞,徐建峰,苏慧敏,等.亚微米结构的可见光聚合全息制作.物理学报,2002,51(3):527-531
    [120]曾兆华,王霞,杨建文,等.氩离子激光固化环氧树脂制作三维微结构.高等学校化学学报.2002,23(6):1025-1026
    [121] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 2000, 85(18):3966-3969
    [122] A. Grbic, G. V. Eleftheriades. Growing evanescent waves in negative-refractive-index transmission-line media. Appl. Phys. Lett., 2003, 82(12):1815-1817
    [123] Z. Liu, N. Fang, T. J. Yen, et al. Rapid growth of evanescent wave by a silver superlens. Appl. Phys. Lett., 2003, 83(25):5184-5186
    [124] A. Grbic, G. V. Eleftheriades. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett., 2004, 92(11):117403-1-4
    [125] N. Fang, H. Lee, C. Sun, et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721):534-537
    [126] J. Li, L. Zhou, C. T. Chan, et al. Photonic band gap from a stack of positive and negative index materials. Phys. Rev. Lett., 2003, 90(8):083901-1-4
    [127] H. T. Jiang, H. Chen, H. Q. Li, et al. Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials. Appl. Phys. Lett., 2003, 83(26):5386-5388
    [128] T. Jiang, Y. J. Feng. Transmission line realization of subwavelength resonator formed by a pair of conventional and LHM slabs. Journal of Zhejiang University-Science A, 2006, 7(1):76-78
    [129] H. Q. Li, J. M. Mao, L. Zhou, et al. All-dimensional subwavelength cavities made with metamaterials. Appl. Phys. Lett., 2006, 89(10):104101
    [130] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 2006, 312(5781):1780-1782
    [131] D. Schuring, J. J. Mock, B. J. Justice, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801):977-980
    [132] H. J. Lezec, J. A. Dionne, H. A. Atwater. Negative refraction at visible frequencies. Science, 2007, 316(5823):430-432
    [133] B. L. Zhang, H. S. Chen, B. I. Wu, et al. Response of a cylindrical invisibility cloak to electromagnetic waves. Phys. Rev. B., 2007, 76(12):121101-1-4
    [134] H. S. Chen, B. I. Wu, B. L. Zhang, et al. Electromagnetic wave interactions with a metamaterial cloak. Phys. Rev. Lett., 2007, 99(6):063903
    [135] N. I. Landy, S. Sajuyigbe, J. J. Mock, et al. Perfect metamaterial absorber. Phys. Rev. Lett., 2008, 100(20):207402-1-4
    [136] P. M. Valanju, R. M. Walser, A. P. Valanju. Wave refraction in negative-index media: always positive and very inhomogeneous. Phys. Rev. Lett., 2002, 88(18):187401
    [137] J. B. Pendry, A. J. Holden, W. J. Stewart, et al. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 1996, 76(25):4773-4776
    [138] J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory and Tech., 1999, 47(11):2075-2084
    [139] D. R. Smith, W. J. Padilla, D. C. Vier, et al. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett., 2000, 84(18):4184-4187
    [140] G. V. Eleftheriades, A. K. Lyer, P. C. Kremer. Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans. On Microwave Theory and Tech., 2002, 50(12):2702-2712
    [141] A. Alu, N. Engheta. Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency. IEEE Trans. Antennas Propag., 2003, 51(10):2558-2571
    [142] L. W. Zhang, Y. W. Zhang, L. He, et al. Experimental study of photonic crystals consisting ofε-negative andμ-negative materials. Phys. Rev. E., 2006, 74(5):056615
    [143] J. B. Pendry. A Chiral Route to Negative Refraction. Science., 2004, 306(5700):1353-1355
    [144] N. Engheta, A. Salandrino, A. Alu. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett., 2005, 95(9):095504-1-4
    [145] Z. M. Zhang, C. J. Fu. Unusual photon tunneling in the presence of layer with a negative refraction index. Appl. Phys. Lett., 2002, 80(6):1097-1099
    [146] H. Cory, C. Zach. Wave propagation in metamaterials multi-layered structures. Micro Opt Tech Lett., 2004, 40(6):460-465
    [147] V. S. Ilya, A. S. Andrey, S. K. Yuri. Beam shaping by a periodic structure with negative refraction. Appl. Phys. Lett., 2003, 82(22):3820-3822
    [148] V. S. Ilya, A. Z. Nina, A. Z. Alexander, et al. Defect modes and transmission properties of left-handed band gap structures. Phys. Rev. E., 2004, 70(4):046615
    [149] K. Y. Xu, X. G. Zheng, C. L. Li, et al. Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index. Phys. Rev. E., 2005, 71(6):066604-1-11
    [150] D. R. Fredkin, A. Ron. Effectively left-handed (negative index) composite material. Appl. Phys. Lett., 2002, 81(10):1753-1755
    [151] X. J. Xiang, X. Y. Dai, S. C. Wen, et al. Omnidirectional and multiple-channeled high-quality filters of photonic heterostructures containing single-negative materials. J. Opt. Soc. Am. A., 2007, 24(10):A28-A32
    [152] A. Lakhtakic, C. M. Krowne. Restricted equivalence of paired epsilon-negative and mu-negative layers to a negative phase-velocity material (alias left-handed material). Optik, 2003, 114(7):305-307
    [153] A. Alu, N. Engheta. Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers. IEEE Trans. Microw. Theory Tech., 2004, 52(1):199-210
    [154] H. T. Jiang, H. Chen, H. Q. Li, et al. Properties of one-dimensional photonic crystals containing single-negative materials. Phys. Rev. E., 2004, 69(6):066607
    [155] C. Caloz, T. Itoh. A novel mixed conventional microstrip and composite right/left-handed backward-wave directional coupler with broadband and tight coupling characteristics. IEEE Microwave Wireless Compon. Lett., 2004, 14(1):31-33
    [156] L. G. Wang, H. Chen, S. Y. Zhu. Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials. Phys. Rev. B., 2004, 70(24):245102-1-6
    [157] J. Yoon, S. Song, C. H. Oh, P. S. Kim. Backpropagating modes of surface polaritons on a cross-negative interface. Opt. Express., 2005, 13(2):417-427
    [158] K. Y. Kim. Properties of photon tunneling through single-negative materials. Opt. Lett., 30(4):430-432
    [159] K. Y. Kim. Polarization-dependent waveguide coupling utilizing single-negative materials. IEEE Photonics Tech Lett., 2005, 17(2):369-371
    [160] Y. H. Chen. Defect modes merging in one-dimensional photonic crystals with multiple single-negative material defect. Appl. Phys. Lett., 2008, 92(1):011925-1-3
    [161]邓新华,刘念华,刘根泉.单负材料异质结构光子晶体的频率响应.物理学报,2007,56(12):7280-7285
    [162] G. S. Guan, H. T. Jiang, H. Q. Li, et al. Tunneling modes of photonic heterostructures consisting of single-negative materials. Appl. Phys. Lett., 2006, 88(21):211112-1-3
    [163] Z. Zhang, S. Satpathy. Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations. Phys. Rev. Lett., 1990, 65(21):2650-2653
    [164] V. Kuzmiak, A. A. Maradudin, F. Pincemin. Photonic band structures of two-dimensional systems containing metallic components. Phys. Rev. B., 1994, 50(23):16835-16844
    [165] K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propagat., 1966, 14(3):302-307
    [166] M. Qiu, S. He. A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions. J. Appl. Phys., 2000, 87(12):8268-8275
    [167] A. J. Ward, J. B. Pendry. Calculating photonic Green’s functions using a nonorthogonal finite-difference time-domain method. Phys. Rev. B., 1998, 58(11):7252-7259
    [168] L. Wu, S. He. Revised finite-difference time-domain algorithm in a nonorthogonal coordinate system and its application to the computation of the band structure of a photonic crystal. J. Appl. Phys., 2002, 91(10):6499-6506
    [169] J. B. Pendry, A. MacKinnon. Calculation of photon dispersion relations. Phys. Rev. Lett., 1992,69(19):2772-2775
    [170]王辉,李永平.用特征矩阵法计算光子晶体的带隙结构.物理学报,2001,50(11):2172-2178
    [171] M. Born, E. Wolf. Principles of Optics. 7th (expanded) ed. Cambridge, Cambridge University Press, 1999
    [172] W. H. Butler. One-dimensional model for transition metals and their alloys. Phys. Rev. B., 1976, 14(2):468-478
    [173] K.M. Leung, Y. Qiu. Multiple-scattering calculation of the two-dimensional photonic band structure. Phys. Rev. B., 1993, 48(11):7767-7771
    [174] L. M. Li, Z. Q. Zhang. Multiple-scattering approach to finite-sized photonic band-gap materials. Phys. Rev. B., 1998, 58(15):9587-9590
    [175] L. Esaki, R. Tus. Superlattiee and negative differential conductivity semiconduetors. IBM J. Res. Dev., 1970, 14(1):61-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700