机载天线设计与Ku波段双工滤波器的机电耦合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合科研项目,论文对机载天线和Ku波段双工滤波器的机电耦合进行了研究。论文内容分为两部分:第一部分设计研制了嵌入机载全向天线,完成了仿真设计及样件加工,并对天线样机进行了测试,仿真和实测结果说明了该设计方法可行;第二部分对Ku波段双工滤波器的耦合机理进行了研究,讨论分析结构变形对双工器电性能的影响,计算整理出在工程误差允许范围内所允许的结构变形量的上下界,并对双工器实物进行了测量。
     首先,简要论述了机载天线的基本概念,详细讨论了机载天线的电参数和设计要求,列举说明了机载天线的分类及电磁兼容性。在此基础上,提出了工作在5.9~7.3GHz频段机载天线的两种设计方案。方案一采用介质微带缝隙天线的形式,简便起见,简化机体表面模型为一倾斜放置的超大金属平面。方案二采用腔体内放置单极子的天线结构形式,简便起见,对机体模型按照电尺寸由小到大的顺序进行截取,讨论天线的电性能。对比方案一和方案二的仿真分析结果,针对方案二研制了天线的实物样机,并进行实际测量。测量结果表明在6.13GHz~6.96GHz的频率范围内,天线电压驻波比(VSWR)均小于2;天线增益在整个工作频率范围内大于1dB;天线的H面辐射方向图基本保持了较好的全向特性,全向不圆度小于8dB。实测结果与仿真结果较好吻合,从而证明该设计方案的可行性。
     其次,本文给出了微波与波导传输的基本理论,并在此基础上,结合一个Ku波段双工滤波器的实物案例,讨论分析结构变形对双工器电性能的影响,仿真得到了波导表面结构变形与电性能的影响关系曲线;并结合所得数据和计算结果,推论出在工程使用所允许电性能误差范围(±15%)的条件下,双工器波导结构所允许结构变形的上下界。最后对双工器实物案例进行了测试。
Combing with the scientific research projects, an airborne antenna is designed in the dissertation and the coupled field of a diplexer for Ku band is analyzed. The concept of this dissertation can be divided into two parts: in the first part, an unidirectional airborne antenna has been analyzed and simulated, and a prototype has been fabricated and tested, the airborne antenna is verified with simulation and test; the coupled field of a diplexer for Ku band is analyzed in the second part, according to the simulated results, the relationship between structure distortion on the surface of waveguide and the electrical performance has been studied, and the diplexer has been tested.
     The elementary knowledge of airborne antenna is introduced firstly, which consists of the characteristic parameter, the general design requirements, the classification and the electromagnetic compatibility of the airborne antennas. Basis of this, two design methods about the airborne antenna, which works in the frequency range of 5.9~7.3GHz, are proposed. Planar slot antenna is proposed firstly, simplifying the surface of the airplane to be a large mental plane which inclines against the ground plane. Then proposed a monopole antenna which is placed in a cavitary, and discussing the various characters of the antenna when the electrical size of the airplane is changing from small to large. The simulated results of the two antennas are analyzed, and based on the second antenna design method; the engineering prototype of antenna is fabricated and tested. The measured results indicate that in the frequency range of 6.13GHz to 6.96GHz, the VSWR of the monopole antenna, which is placed in a cavitary, is less than 2, and the peak gain of the antenna is more than 1dB. The non-circularities of the H-plane Omni-directional pattern is less than 8dB and the measured results show good agreement with the simulated results, means that the design is valid.
     Secondly, basic theory of the waveguide transmission is introduced in this dissertation, and based on that, a diplexer for Ku band is discussed, and the relationship between structure distortion on the surface of waveguide and the electrical performance has been studied, and then get the limit of the distortion. The measured results of the sample diplexer are given finally.
引文
[1]梁福生,王广学.《飞机天线工程手册》[M].中国民航出版社,1997.
    [2] 630所编. AD 742439,天线分析报告[R]. 1985.
    [3]航空工业部标准,HB6088-86.机载天线通用技术条件[S]. 1986.
    [4] Hasserjian G.,Jshimaru A,Excitation of a Conducting Cylindrical Surface of Large Radius of Curvature [J]. Trans. of the IRE, Vol. 10, May 1962. pp. 264-273.
    [5]魏文元,宫德明,陈必森,《天线原理》[M].国防工业出版社,1995. 20-60.
    [6]魏文元,宫德明,陈必森,《天线原理》[M].国防工业出版社,1995. 109-114.
    [7]梁福生,王广学.《飞机天线工程手册》[M].中国民航出版社.1997. 9-12.
    [8]张福顺,张进民.《天线测量》[M].西安:西安电子科技大学出版社,1995. 57-136.
    [9]吴明英,毛秀华.《微波技术》[M].西安:西北电讯工程学院出版社,1987.
    [10]褚庆昕.《微波网络讲议》[M].西安:西安电子科技大学出版社,1999.
    [11]梁昌洪.《计算微波》[M].西安:西北电讯工程学院出版社,1985.
    [12] Il Kwon Kim, Nobutaka Kidera, Stephane PinelLinear. Tapered Cavity-Backed Slot Antenna for Millimeter-Wave LTCC Modules [J]. IEEE Antennas and Wireless Propagation Letters, Vol. 5, 2006. pp. 175-178.
    [13] Shi-Wei Qu, Jia-Lin Li, Chi Hou Chan. Cavity-Backed Circularly Polarized Dual-Loop Antenna With Wide Tunable Range [J]. IEEE Antennas and Wireless Propagation Letters, Vol. 7, 2008. pp. 761-763.
    [14] Shi-Wei Qu, Jia-Lin Li, Quan Xue. Wideband Cavity-Backed Bowtie Antenna With Pattern Improvement [J]. IEEE Transactions on Antennas and Propagation, Vol. 56, Dec. 2008. pp. 3850-3854.
    [15] J. L. Wong, Howard E. King. A Cavity-Backed Dipole Antenna with Wide-Bandwidth Characteristics [J]. IEEE Transactions on Antennas and Propagation, Sept. 1973. pp. 725-727.
    [16] RongLin Li, BoPan, Anya N. Traille, John Papapolymerou. Development of a Cavity-Backed Broadband Circularly Polarized Slot/Strip Loop Antenna with a Simple Feeding Structure [J]. IEEE Transactions on Antennas and Propagation, Vol. 56, Feb. 2008. pp. 312-317.
    [17] J. Galejs, T. W. Thompson. Admittance of a Cavity-Backed Annular Slot Antenna [J]. IRE Transactions on Antennas and Propagation, Nov. 1962. pp.671-678.
    [18] Jae H. Kim, Hyo J. Eom. Coaxially Fed Annular Slot Array Antenna [J]. IEEE Transactions on Antennas and Propagation, Vol. 56, Feb. 2008. pp. 590-592.
    [19] Zhuowen Sun, P. Fay. High-Gain, High-Efficiency Integrated Cavity-Backed Dipole Antenna at Ka-Band [J]. IEEE Antennas and Wireless Propagation Letters, Vol. 5, 2006. pp. 459-462.
    [20] Zvyagintsev A. A., Ivanov A. I., Katkov D. V.. Effects on Placing Wideband Omnidirectional Spiral Antenna on Aircraft [J]. Ultrawideband and Ultrashort Impulse Signals, Sep. 2006. pp. 148-150.
    [21] Andrew R. Weily, Trevor S. Bird, Y. Jay Guo. A Reconfigurable High-Gain Partially Reflecting Surface Antenna [J]. IEEE Transactions on Antennas and Propagation, Vol. 56, Nov. 2008. pp. 3382-3389.
    [22] Xie Wenchong, Wang Yongliang. STAP for Airborne Radar with Cylindrical Phased Array Antennas [J]. Signal Processing, Vol. 89, May 2009. pp. 883-893.
    [23] Hsu Shih-Hsun, Ren Yu-Jiun, Chang Kai. A Dual-polarized Planar-array Antenna for S-band and X-band Airborne Applications [J]. IEEE Antennas and Propagation Magazine, Vol. 51, Aug. 2009. pp. 70-78.
    [24] Vetharatnam G., Chung, B.K., Chuah, H.T.. Design of A Microstrip Patch Antenna Array for Airborne SAR Applications [J]. Journal of Electromagnetic Waves and Applications, Vol. 19, 2005. pp. 1687-1701.
    [25] Sharma S.B., Kulshrestha Sanjeev, Jyoti Rajeev. Dual-polarized Shaped-beam Printed Antenna for Airborne SAR Applications [J]. Microwave and Optical Technology Letters, Vol. 44, Feb. 2005. pp. 383-385.
    [26] Ren Yu-Jiun, Zhang Yan. Ultra-lightweight Dual-polarized X-band Array Antenna for Airborne Weather Radar Applications [J]. Microwave and Optical Technology Letters, Vol. 51, May 2005. pp. 1324-1326.
    [27] Bezvesilniy Oleksandr O., Dukhopelnykova Ievgeniia V., Vynogradov Volodymyr V.. Retrieving 3-D Topography by Using a Single-antenna Squint-mode Airborne SAR [J]. IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, Nov. 2007. pp. 3574-3582.
    [28] Zhao Wei-Jiang, Li Le-Wei, Gan Yeow-Beng. Efficient Analysis of Antenna Radiation in the Presence of Airborne Dielectric Radomes of Arbitrary Shape [J]. IEEE Transactions on Antennas and Propagation, Vol. 53, Jan. 2005. pp.442-449.
    [29] Jing Wei, Xing Mengdao, Qiu Cheng-Wei. Unambiguous Reconstruction and High-resolution Imaging for Multiple-channel SAR and Airborne Experiment Results [J]. IEEE Geoscience and Remote Sensing Letters, Vol. 6, Jan. 2009. pp. 102-106.
    [30] Bui Lam Anh, Mitchell Arnan, Ghorbani Kamran. Wide-band Photonically Phased Array Antenna Using Vector Sum Phase Shifting Approach [J]. IEEE Transactions on Antennas and Propagation, Vol. 53, Nov. 2005. pp. 3589-3596.
    [31] Frank Zavoslt, Janies T. Aberle. Improving the Performance of Microstrip-Patch Antennas [J]. IEEE Antenans and Propagation Magazine, Vol. 38, Aug. 1996. pp. 7-12.
    [32] Majid Manteghi, Yahya Rahmat-Samii. Multiport Characteristics of a Wide-Band Cavity Backed Annular Patch Antenna for Multipolarization Operations [J]. IEEE Transactions on Antennas and Propagation, Vol. 53, Jan. 2005. pp. 466-474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700