盐浓度和温度对DNA结构和特性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA(deoxyribonucleic acid)是遗传信息的载体,遗传信息由DNA转录给mRNA(message ribonucleotide),然后以之为模板翻译成特定的蛋白质序列,通过蛋白质的加工、修饰形成一定的空间构象(conformation),以执行各种生物功能。DNA及其合成材料的优良弹性使其成为制作刚性的分子手柄、操纵其他分子的理想材料,可以作为纳米器件的基本单元而引起广泛的研究兴趣。DNA的独特结构和优良性能在生物、医学、材料等学科有着巨大的应用潜力。DNA的分子结构和特性与环境因素(例如温度、湿度、pH值、溶液的盐浓度等)密切相关, 当环境条件改变时,碱基的堆积、氢键相互作用以及磷酸基团之间的斥力都将随之改变。为了深入研究DNA的特性,本论文研究了盐浓度和温度对DNA结构和特性的影响,得到了一系列有价值的研究成果。
    1) 首先简单描述了DNA的结构特点以及环境因素对其结构转变的影响,然后介绍了单分子操纵技术在DNA特性研究中的最新进展。
    2) 分析了DNA分子受到外力作用时氢键的变化以及盐浓度对氢键和堆积作用能的影响,通过阳离子和DNA磷酸根之间的静电相互作用,对描述氢键的Morse势和堆积作用的范德瓦尔斯势进行了相应的修正,导出了盐浓度对氢键和堆积作用影响的表达式,给出了与盐浓度有关的DNA的弹性模型,得到了力-延伸曲线随盐浓度的变化规律:随着盐浓度的增加,延伸相变力非线性增加。同时还得到了折叠角分布随盐浓度的变化规律:对特定的相变延伸力,盐浓度较高时,分布曲线主要集中在左右,分子处于B状态;随着盐浓度的降低,B状态的几率减小,S状态的几率增大;盐浓度减小到一定程度时,分布曲线主要集中在左右,分子处于S状态;盐浓度的降低使B-S的转变更加容易。
    3) 创新性地给出了与盐浓度有关的非线性哈密顿模型并研究了熔解(melting)相变特性,得到DNA的比热、熵以及变性(denaturation)温度与盐浓度的关系。通过进一步考虑主链格点振动的相互作用能,给出DNA的非线性动力学模型,讨论了盐浓度对DNA变性相变产生的影响,得到了描述界面运动的扭结孤波和相变力随盐浓度的变化规律。结果表明:相变与盐浓度、温度密切相关,溶剂离子改变了DNA的热动力学特性,变性温度随盐浓度的增加而增
    
    
    加;扭结孤波的宽度随盐浓度的增加而减小;DNA变性所需要的能量随盐浓度的增加而增加,相变力随之增加,盐浓度越高越不容易变性。
    4) 利用拉曼光谱测量了DNA、胶原蛋白的温度效应。对DNA的拉曼光谱测量发现,几乎所有谱线强度随温度的变化都具有相同的规律,并从中得到了位于38℃、82℃的两个峰,其中82℃的相变峰与DSC(differential scanning calorimetry)的测量结果一致,38℃的峰与DNA的功能活跃区有关,在低温区没有发现相变点。当温度变化时,碱基、磷酸根等特征振动不同程度的受到影响,谱线强度和频率随温度呈非线性变化。在所有振动模式中,碱基的特征振动受到温度的影响最大,说明碱基的堆积程度与温度的变化密切相关。除了磷酸根的谱线1101cm-1以外,其余出现频率变化的谱线均随温度的升高向低波数移动,温度变化导致多数特征谱线的移动主要集中在变性的起始点70℃左右。
    胶原蛋白在不同温度的拉曼光谱表明:当温度升高时,多数谱线向低波数移动,谱线1003 cm-1的波数基本保持不变,波数为1302 cm-1的谱线明显向高波数移动。通过拉曼谱线强度的温度依赖性得到了位于0℃、42℃、68℃和90℃的4个峰,其中42℃、68℃分别与DSC和SHG(second harmonic generation)的测量结果一致;0℃的峰与冰冻密切相关,90℃的峰与胶原的二级结构被破坏有关,这两个峰在其他文献中未见报道。
    5) 测量了不同激发光源下红细胞的拉曼光谱,发现红细胞的拉曼谱具有明显的共振特性。通过结肠癌、乳腺癌细胞与对应的正常细胞拉曼光谱的对比,发现癌细胞的拉曼谱线强度和频率与癌细胞的状态有着明显的关系;由于细胞癌变,DNA的两个磷酸骨架峰782cm-1和1084cm-1明显减弱,说明DNA的磷酸骨架有一定的断裂,导致癌细胞的分裂繁殖失去有效的控制。癌细胞的拉曼谱线特征为癌症诊断和治疗提供了有力的实验依据。
DNA (deoxyribonucleic acid) is the carrier of genetic information. Firstly, DNA transports genetic information into mRNA (message ribonucleotide) which is taken as a template of protein and translated into special protein sequences. By procession and modification of proteins, they come into being defined space configuration in order to perform all kinds of biological functions. The excellent elasticity of DNA and its complex make it as a kind of wonderful materials to make rigid molecule handle and manipulate other molecules. As DNA is regarded as a number of DNA-based units of nano-devise, more and more scientists pay attention to this research field. The particular structure and wonderful properties of DNA have tremendous application potential in biology, medicine, material science and so on. The structure and properties of DNA are related to environment (for example temperature, humidity, pH, salt concentration, et al.). The base-stacking and hydrogen-bond interactions change as environment condition varies. In order to further investigate the properties of DNA, we study the effects of salt and temperature on the structure and properties of DNA, and obtain some important results in this dissertation.
    1) Firstly, the structure characteristics and the effects of environment condition on the structure transition of DNA are described. Then the recent progresses of single molecule manipulation techniques that study the properties of DNA are introduced.
    2) We analyze the change of hydrogen-bond and the effects of salt concentration on hydrogen-bond and stacking interactions when DNA molecule is under external force. On the basis of ZZO model, we give a DNA model considering the hydrogen-bond and base-stacking interactions which are related to the salt ion concentration, and then discuss the force extension curves at various salt concentrations. With the salt concentration increasing, the stretching transition force increases nonlinearly. In addition, the folding angle distributions are obtained at different salt concentrations. When salt concentration is high, the distribution curve concentrates on the B-form configuration under given overstretching forces. With the decrease of salt concentration, the probability of S state increases rapidly, while the
    
    
    probability of B state decreases. When salt concentration decreases to some extent, the probability is very small for B state marking that this transition is easier to reach at low salt concentration than that at the high.
    3) The novel nonlinear dynamic model concerned with salt concentration is given and the melting transition of DNA is studied. The specific heat, entropy and melting temperature of system versus salt concentration are obtained. The nonlinear dynamic model of DNA is further studied on account of the effect of phosphate backbone. The effects of salt on denaturation transition are analyzed. By studying the nonlinear dynamic equation, we obtain the kink soliton solution of equation and discuss the influences of salt on phase transition force of DNA denaturation. The results show that melting phase transition is related to salt concentration and temperature. Solvent ion changes the structure and thermodynamic properties of DNA, and the melting temperature and phase transition force increase with the rise of the salt concentration. The width of kink soliton decreases and the energy needed for denaturation increases as salt concentration rises.
    4) We measure Raman spectra of collagen and DNA at different temperatures. Raman spectra of DNA denote that all of the Raman peaks nearly have the same temperature dependence, two peaks are obtained at 38℃ and 82℃. These results are consistent with experimental data obtained by DSC (differential scanning calorimetry) at 82℃. The peak at 38℃ is concerned with the biological activity region of DNA function. No phase transition point is found at low temperature region. These spectra reveal that the vibrations of bases and phosphate groups are influenced by the change of the temperature. Base is the most sen
引文
Bouchiat C and Mezard M. Elasticity model of a supercoiled DNA molecule. Phys. Rev. Lett. 1998, 80: 1556-1559
    Premilat S and Albiser G. A new D-DNA form of poly(dA-dT).poly(dA-dT): an A-DNA type structure with reversed Hoogsteen pairing. Eur. Biophys. J. 2001, 30: 404-410
    Otokiti E O and Sheardy R D. Sequence effects on the relative thermodynamic stabilities of B-Z junction-forming DNA oligomeric duplexes. Biophys. J. 1997, 73: 3135-3141
    Chen Y Z and Prohofsky E W. Calculation of the dynamics of drug binding in a netropsin-DNA complex. Phys. Rev. E, 1995, 51: 5048-5057
    Chen Y Z and Prohofsky E W. Theoretical study of the effect of salt and the role of strained hydrogen bonds on the thermal stability of DNA polymers. Phys. Rev. E, 1993, 48: 3099-3106
    Gueron M, Demaret J and Filoche M. A unified theory of the B-Z transition of DNA in high and low concentrations of multivalent ions. Biophys. J. 2000, 78: 1070-1083
    Sottas P E, Larquet E, Stasiak A, et al. Brownian dynamics simulation of DNA condensation. Biophys. J. 1999, 77: 1858-1870
    Dwyer J D and Bloomfield V A. Brownian dynamics simulations of probe and self-diffusion in concentrated protein and DNA solutions. Biophys. J. 1993, 65: 1810-1816
    Kwak K J, Kudo H and Fujihira M. Imaging stretched single DNA molecules by pulsed force mode atomic force microscopy. Ultramicroscopy. 2003, 97: 249-255
    Vaillant C, Audit B, Thermes C, et al. Influence of the sequence on elastic properties of long DNA chains. Phys. Rev. E. 2003, 67: 032901
    Vakhnenko O O and Velgakis M J. Transverse and longitudinal dynamics of nonlinear intramolecular excitations on multileg ladder lattices. Phys. Rev. E, 2000, 61: 7110-7120
    Baumann C G, Smith S B, Bloomfield V A, et al. Ionic effects on the elasticity of single DNA molecules. Proc. Natl. Acad. Sci. USA. 1997, 94: 6185-6190
    Amblard F, Yurke B, Pargellis A, et al. A magnetic manipulator for studying local rheology and micromechanical properties of biological system. Rev. Sci. Instrum. 1996, 67: 1-10
    Ishijima A, Doi T, Sakruada K, et al. Sub-piconewtown force fluctuations of actomyosin in vitro. Nature, 1991, 352: 301-306
    
    Cluzel P, Lebrun A, Heller C et al. DNA: an extensible molecule. Science 1996, 271: 792-794
    Strick T, Allemand J F, Croquette V, et al. Twisting and stretching single DNA molecules. Prog. Biophys. Mol. Biol. 2000, 74: 115-140
    Bustamante C, Bryant Z and?Smith S B. Ten years of tension: single-molecule DNA mechanics. Nature 2003, 421: 423-427
    Simmons R M, Finer J T, Chu S, et al. Quantitative measurements of force and displacement using an optical trap. Biophys. J. 1996, 70: 1813-1822
    Rief M, Gautel M, Oesterhelt F, et al. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 1997, 276: 1109-1112
    Kellermayer M S Z, Smith S B, Granzier H L, et al. Folding–unfolding transition in single titin molecules characterized with laser tweezers. Science 1997, 276: 1112-1116
    Yanagida T, Harada Y and Ishijima A. Nano-manipulation of actomyosin molecular motors in vitro: a new working principle. Trends. Biochem. Sci. 1993, 18: 319-324
    Smith S B,?Cui Y and?Bustamante C. Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules. Science 1996, 271: 795-799
    Strick T R, Allemand J F, Bensimon D, et al. The Elasticity of a Single Supercoiled DNA Molecule. Science 1996, 271: 1835-1837
    Perkins T T, Smith D E and Chu S. Single Polymer Dynamics in an Elongational Flow. Science, 1997, 276: 2016-2021
    Leger J F, Rrbert J, Bourdieu L, et al. RecA binding to a single double-stranded DNA molecule: A possible role of DNA conformational fluctuations. Proc. Natl. Acad. Sci. USA. 1998, 95: 12295–12299
    Leger J F, Romano G, Sarkar A, et al. Structural Transitions of a Twisted and Stretched DNA Molecule. Phys. Rev. Lett. 1999, 83: 1066-1069
    Williams M C, Wenner J R, Rouzina I, et al. Entropy and Heat Capacity of DNA Melting from Temperature Dependence of Single Molecule Stretching. Biophys. J. 2001, 80: 1932-1939
    Wenner J R, Williams M C, Rouzina I, et al. Salt Dependence of the Elasticity and Overstretching Transition of Single DNA Molecules. Biophys. J 2002, 82: 3160–3169
    李辉. 原子力显微镜观测并切断在Si表面拉直的DNA分子.?科学通报, 2003, 48(7): 682-685
    
    张益,陈圣福,欧阳振乾等. 单个DNA分子的拉直操纵和成像. 科学通报, 2000, 45(5): 490-494
    Alberts B. DNA replication and recombination. Nature, 2003, 421: 431-435
    Alberti P and Mergny J L. DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc. Natl. Acad. Sci. USA. 2003, 100: 1569-1573
    Bowater R, Aboul-ela F and Lilley D M. Large-scale stable opening of supercoiled DNA in response to temperature and supercoiling in (A-T)-rich regions that promote low-salt cruciform extrusion. Biochemistry. 1991, 30: 11495-11506
    Tesi M C, Janse van Rensburg E J, Orlandini E, et al. Knotting and supercoiling in circular DNA: A model incorporating the effect of added salt. Phys. Rev. E, 1994, 49: 868-872
    Baumann C G, Bloomfield V A, Smith S B, et al. Stretching of single collapsed DNA molecules. Biophys. J. 2000, 78: 1965-1978
    Samuel J and Sinha S. Molecular elasticity and the geometric phase. Phys. Rev. Lett. 2003, 90: 098305
    Cantor C R and, Schimmel P R. Part III: The Behaviour of Biological Macromolecules. Biophysical Chemistry, San Francisco (W.H. Freemann), 1980
    Doi M and Edwards S F. The Theory of Polymer Dynamics, (Clarendon Press, Oxford, 1986)
    Bouchiat C, Wang M D, Allemand J F, et al. Estimating the Persistence Length of a Worm Like Chain Molecule from Force-Extension Measurements. Biophys. J. 1999, 76: 409–413
    Storm C and Nelson P C, Theory of high-force DNA stretching and overstretching. Phys. Rev. E, 2003, 67: 051906
    Cocco S, Monasson R, and Marko J F. Force and kinetic barriers to unzipping of the DNA double helix. Proc. Natl. Acad. Sci. USA 2001, 98: 8608-8613
    Marko J F. DNA under high tension: Overstretching, undertwisting, and relaxation dynamics. Phys. Rev. E 1998, 57: 2134-2149
    Zhou H J and Ou-Yang Zhong-can. Bending and twisting elasticity: A revised Marko-siggia model on DNA chirality. Phys. Rev. E, 1998, 58: 4816-4819
    Zhou H J and Ou-Yang Zhong-can. Can pulling cause right- to left-handed structural transitions in negatively supercoiled DNA double-helix? Mol. Phys. Lett. 1999, B13: 999-1003
    Zhou H J, Zhang Y and Ou-Yang Zhong-can. Bending and base-stacking interactions in double-stranded DNA. Phys. Rev. Lett. 1999, 82: 4560-4563
    
    Zhou H J, Zhang Y and Ou-Yang Zhong-can. Elastic property of single double-stranded DNA molecules: theoretical study and comparison with experiments. Phys. Rev. E. 2000, 62: 1045-1058
    Zhou H J, Zhang Y and Ou-Yang Zhong-can. Elastic theories of single DNA molecules. Physica A, 2002, 306: 359-367
    Zhou H J, Zhang Y and Ou-Yang Zhong-can. Stretching single-stranded DNA: interplay of electrostatic, base-pairing, and base-pair stacking interactions. Biophys. J. 2001, 81: 1133-1143
    Lai P Y and Zhou Z. B- to S- form transition in double-stranded DNA with basepair interactions. Physica A, 2003, 321: 170-180
    Leung M, Choo F C and Tong B Y. Application of modified Ising model to the helix-coil transition of DNA molecules. Biopolymers. 1977, 16: 1233-1244
    Selinger J V and Schnur J M. Cooperative chiral order in the B-Z transition in random sequences of DNA. Biophys. J. 1997, 73: 966-971
    Ahsan A, Rudnick J and Bruinsma R. Elasticity theory of the B-DNA to S-DNA transition. Biophys. J. 1998, 74: 132-137
    Ritort F, Bustamante C and Tinoco J I. A two-state kinetic model for the unfolding of single molecules by mechanical force. Proc. Natl. Acad. Sci. USA 2002, 99: 13544-13548
    庞小峰, 非线性量子力学理论,重庆出版社,1994
    Mandal C, Kallenbach N R and Englander S W. Base-pair opening and closing reactions in the double helix. A stopped-flow hydrogen exchange study in poly(rA).poly(rU). J. Mol. Biol. 1979, 135: 391-411
    Englander S W, Kallenbach N R, Heeger A J, et al. Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proc. Natl. Acad. Sci. USA. 1980, 77: 7222-7226
    Yomosa S. Soliton excitations in deoxyribonucleic acid (DNA) double helices. Phys. Rev. A 1983, 27: 2120-2125
    Zhang C T. Soliton excitations in deoxyribonucleic acid (DNA) double helices. Phys. Rev. A, 1987, 35: 886-891
    Prohofsky E W. Solitons hiding in DNA and their possible significance in RNA transcription. Phys. Rev. A, 1988, 38: 1538-1541
    Van Zandt L L. DNA solitons with realistic parameter values. Phys. Rev. A, 1989, 40: 6134-6137
    
    Cuevas J, Palmero F, J Archilla F R, et al. Moving breathers in a bent DNA model. Phys. Lett. A, 2003, 299: 221-225
    Peyrard M and Bishop A R. Statistical mechanics of a monlinear model for DNA denaturation. Phys. Rev. Lett, 1989, 62: 2755-2758
    Dauxois T, Peyrard M and Bishop A R. Dynamics and thermodynamics of a nonlinear model for DNA denaturation. Phys. Rev. E 1993, 47: 684-695
    Peyrard M, Dauxois T and Hoyet H et al. Bimolecular dynamics of DNA: statistical mechanics and dynamical models. Physica D, 1993, 68: 104-115
    Sclavi B, Peticolas W L and Powell J W. Fractal-like patterns in DNA films, B form at 0% relative humidity, and antiheteronomous DNA: an IR study. Biopolymers. 1994, 34: 1105-1113
    Hud N V, Milanovich F P and Balhorn R. Evidence of novel secondary structure in DNA-bound protamine is revealed by Raman spectroscopy. Biochemistry, 1994, 33: 7528-7535
    Das S, Kumar G S, Ray A, et al. Spectroscopic and thermodynamic studies on the binding of sanguinarine and berberine to triple and double helical DNA and RNA structures. J. Biomol. Struct. Dyn. 2003, 20: 703-714
    Patil S D and Rhodes D G. Influence of divalent cations on the conformation of phosphorothioate oligodeoxynucleotides: a circular dichroism study. Nucleic Acids Research, 2000, 28: 2439-2445
    孙雪光,曹恩华,何裕建等. 双链、三链、四链DNA与溴乙锭相互作用的荧光研究. 中国科学(B), 1998, 28: 554-560
    Van Dam L and Levitt M H. BII nucleotides in the B and C forms of natural-sequence polymeric DNA: A new model for the C-form of DNA. J. Mol. Biol. 2000, 304: 541-561
    Greenall R J, Nave C and Fuller W. X-ray diffraction from DNA fibres under tension. J. Mol. Biol. 2001, 305: 669-672
    Hawi S R, Campbell W B, Kajdacsy-Balla A, et al. Characterization of normal and malignant human hepatocytes by Raman microspectroscopy. Cancer Lett. 1996, 110: 35-40
    Feofanov A V, Grichine A I, Shitova L A, et al. Confocal raman microspectroscopy and imaging study of theraphthal in living cancer cells. Biophys. J, 2000, 78: 499-512
    Huang Z, McWilliams A, Lui H, et al. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int. J. Cancer. 2003, 107: 1047-1052
    Clarke R H, Hanon E B and Brody H. Laser Raman spectroscopy of calcified atherosclerotic lesions in cardiovascular tissue. Appl. Opt. 1987, 26: 3175-3177
    
    Alfano R R, Lui C H, Sha W L, et al. Human breast tissues studied by IR Fourier transform Raman spectroscopy. Lasers Life Sci. 1991, 4: 23-28
    Ruiz-Chica J, Medina M A, Sánchez-Jiménez F et al. Fourier Transform Raman Study of the Structural Specificities on the Interaction between DNA and Biogenic Polyamines. Biophys. J. 2001, 80: 443-454
    Kornilova S V, Miskovsky P, Tomkova A, et al. Vibrational spectroscopic studies of the divalent metal ion effect on DNA structural transitions, J. Mol. Struc. 1997, 408/409: 219-223
    Lee S A, Ruppecht A, and Chen Y Z. Drug Binding to DNA: Observation of the Drug-DNA Hydrogen-bond-stretching Modes of Netropsin Bound to DNA via Raman Spectroscopy. Phys. Rev. Lett. 1998, 80: 2241-2244
    Chen Y Z, Szabó A, Schroeter D F, et al. Effect of Drug-binding-induced Deformation on the Vibrational Spectrum of a DNA(daunomycin Complex. Phys. Rev. E 1997, 55: 7414-7423
    Lee S A, Li J, Anderson A, et al. Temperature-dependent Raman and infrared spectra of nucleosides: II. Cytidine. J. Raman Spectrosc. 2001, 32: 795-802
    Martin K C, Pinnick D A, Lee S A, et al. Raman and Infrared Studies of Nucleosides at High Pressures: I. Adenosine. J. Biomolec. Struc. Dyn. 1999, 16: 1159-1167
    Lee S A, Anderson A, Smith W, et al. Temperature-dependent Raman and infrared spectra of nucleosides: I. adenosine. J. Raman Spectrosc. 2000, 31: 891-896
    Mrevlishvili G M, Metrevili N O, Razmadze G Z et al. Partial heat capacity change – Fundamental characteristic of the process of thermal denaturation of biological macromolecules. Thermoch. Acta 1998, 308: 41-48
    计亮年, 张黔玲. 生物医学中DNA的结构、构象、作用机制及其生物功能的研究进展. 中国科学B, 2001, 31(3): 193-204
    Pohl F M and Jovin T M. Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC). J. Mol. Biol. 1972, 67: 375-396
    Hanlon S, Chan A and Berman S. Specific cation effects on conformational transitions of DNA in aqueous solutions. Biochim. Biophys. Acta. 1978, 519: 526-536
    Bond J P, Anderson C F and Record M T. Conformational transitions of duplex and triplex nucleic acid helices: thermodynamic analysis of effects of salt concentration on stability using preferential interaction coefficients. Biophys. J. 1994, 67: 825-836
    Sorokin V A, Gladchenko G O, Valeev V A, et al. Effect of salt and organic solvents on DNA thermal stability and structure. J. Mole. Struc. 1997, 408/409: 237-240
    
    
    Volker J, Klump H H, Manning G S, et al. Counterion Association with Native and Denatured Nucleic Acids: An Experimental Approach. J. Mol. Biol. 2001, 310: 1011-1025
    Jian H, Schlick T and Vologodskii A. Internal motion of supercoiled DNA: brownian dynamics simulations of site juxtaposition. J. Mol. Biol. 1998, 284: 287-296
    Manning G S. Counterion condensation theory constructed from different models. Physica A, 1996, 231: 236-253
    Lamm G, Wong L and Pack G R. Monte Carlo and Poisson-Boltzmann calculations of the fraction of counterions bound to DNA. Biopolymers. 1994, 34: 227-237
    Vologodskii A and Cozzarelli N. Modeling of long-range electrostatic interactions in DNA. Biopolymers. 1995, 35: 289-296
    Chiu T K, Kaczor-Grzeskowiak M and Dickerson R E. Absence of minor groove monovalent cations in the crosslinked dodecamer C-G-C-G-A-A-T-T-C-G-C-G. J. Mol. Biol. 1999, 292: 589-608
    Denisov V P and Halle B. Sequence-specific binding of counterions to B-DNA, Proc. Natl. Acad. Sci. USA, 2000, 97: 629-633
    Lyubartsev A P and Laaksonen A. Molecular dynamics simulations of DNA in solutions with different counter-ions. J. Biomol. Struct. Dyn. 1998, 16: 579-592
    Klenin K V, Vologodskii A V, Anshelevich V V, et al. Computer simulation of DNA supercoiling. J Mol Biol. 1991, 217: 413-419
    Korolev N, Lyubartsev A P and Nordenskiold L. Application of the Poisson Boltzmann polyelectrolyte model for analysis of thermal denaturation of DNA in the presence of Na+ and polyamine cations. Biophys. Chem. 2003, 104: 55-66
    Pinak M. Electrostatic energy analysis of 8-oxoguanine DNA lesion molecular dynamics study. Comput. Biol. Chem. 2003, 27: 431-441
    Golestanian R and Liverpool T B. Conformational instability of rodlike polyelectrolytes due to counterion fluctuations. Phys. Rev. E 2002, 66: 051802
    Simmel F C, Yurke B and Sanyal R J. Operation kinetics of a DNA-based molecular switch. J. Nanosci. Nanotechnol. 2002, 2: 383-90
    沈同, 王镜岩. 生物化学. 北京: 高等教育出版社, 2001
    刘次全, 白春礼, 张静等. 结构分子生物学. 北京: 高等教育出版社, 1997
    张今, 张红缨, 李青山等. 核酸结构与动力学导论. 北京: 科学出版社, 1995
    Dickerson R E. Base sequence and helix structure variation in B and A DNA. J. Mol. Biol., 1983, 166: 419-441
    
    Oh D B, Kim Y G and Rich A. Z-DNA-binding proteins can act as potent effectors of gene expression in vivo. Proc Natl Acad Sci U S A. 2002, 99: 16666-16671
    Allemand J F, Bensimon D, Lavery R, et al. Stretched and overwound DNA form a Pauling-like structure with exposed bases. Proc. Natl. Acad. Sci. USA, 1998, 95: 14152-14157
    Young M A, Ravishanker G, Beveridge D L, et al. Analysis of local helix bending in crystal structures of DNA oligonucleotides and DNA-protein complexes. Biophys J. 1995, 68: 2454-2468
    杨频, 高飞. 生物无机化学原理. 北京: 科学出版社, 2002
    Zakharova S S, Jesse W, Backendorf C, et al. Dimensions of plectonemically supercoiled DNA. Biophys J. 2002, 83: 1106-1118
    Cherny D I and Jovin T M. Electron and scanning force microscopy studies of alterations in supercoiled DNA tertiary structure. J Mol Biol. 2001, 313: 295-307
    Ohishi H, Suzuki K, Grzeskowiak K, et al. The X-ray crystallographic study of long chain left handed Z-DNA and polyamine complex and structural chemistry study of effection by polyamine for the Z-DNA. Nucleic Acids Res. Suppl. 2002, 2: 53-54
    Mazur A K. Titration in silico of reversible B <=> A transitions in DNA. J Am Chem Soc. 2003, 125: 7849-7859
    Gosse C, Croquette V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys J. 2002, 82: 3314-3329
    白春礼, 来自微观世界的新感念: 单分子科学与技术, 北京:清华大学出版社, 2000
    Ishii Y and Yanagida T. Single molecule detection in life science. Single Molecules, 2000, 1: 5-13
    Chen R J, Bangsaruntip S, Drouvalakis K A, et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci USA. 2003, 100(9): 4984-4989
    Bao X R, Lee H J, Quake S R. Behavior of Complex Knots in Single DNA Molecules. Phys. Rev. Lett. 2003, 91: 265506
    Hummer G and Szabo A. Kinetics from nonequilibrium single-molecule pulling experiments. Biophys J. 2003, 85: 5-15
    Podgornik R Hansen P L and Parsegian V A, Elastic moduli renormalization in self-interacting stretchable polyelectrolytes. J. Chem. Phys. 2000, 113: 9343-9350
    Odijk T. Stiff chains and filaments under tension. Macromolecules. 1995, 28: 7016-7018
    
    Williams M C, Wenner J R, Rouzina I et al. Effect of pH on the Overstretching Transition of Double-Stranded DNA: Evidence of Force-Induced DNA Melting. Biophys J, 2001, 80: 874-881
    Clausen-Schaumann C, Rief H M, Tolksdorf C, et al. Mechanical stability of single DNA molecules. Biophys. J. 2000, 78: 1997-2007
    Maier B, Bensimon D and Croquette V. Replication by a single DNA polymerase of a stretched single-stranded DNA. Proc. Natl. Acad. Sci. USA 2000, 97: 12002-12007
    Strick T R, Allemand J F, Croquette V, et al. Physical approaches to the study of DNA. J. Stat. Phys. 1998, 93: 647-672
    Strick T R, Allemand J F, Bensimon D, et al. Stress-induced structural transitions in DNA and proteins. Annu Rev Biophys Biomol Struct. 2000, 29: 523-43
    Strick T R, Allemand J F, Bensimon D, et al. Behavior of Supercoiled DNA. Biophys. J. 1998, 74: 2016-2028
    Florin E L, Moy V T and Gaub H E, Adhesion force between individual ligand receptor pairs, Science 1994, 264: 415-417
    Medalia O, Englander J, Guckenberger R, et al. AFM imaging in solution of protein-DNA complexes formed on DNA anchored to a gold surface. Ultramicroscopy. 2001, 90: 103-12
    Williams M C and Rouzina I. Force spectroscopy of single DNA and RNA molecules. Curr. Opin. Struct. Biol. 2002, 12: 330–336
    Yoshimura S H, Hizume K, Murakami A, et al. Condensin architecture and interaction with DNA: regulatory non-SMC subunits bind to the head of SMC heterodimer. Curr Biol. 2002 12(6): 508-13
    Seong G H, Niimi T, Yanagida Y, et al. Single-molecular AFM probing of specific DNA sequencing using RecA-promoted homologous pairing and strand exchange. Anal Chem. 2000, 72: 1288-1293
    Hegner M, Smith S B and Bustamante C. Polymerization and mechanical properties of single RecA-DNA filaments. Proc. Natl. Acad. Sci. USA, 1999, 96: 10109
    Wang M D, Schnitzer M J, Yin H, et al. Force and velocity measured for single molecules of RNA polymerase. Science 1998, 282: 902-907
    Mehta A D, Rief M, Spudich J A, et al. Single-molecule biomechanics with optical methods. Science 1999, 283: 1689-1695
    吴世英, 张益, 雷晓玲等. 用液流操纵单个DNA分子形成纳米悬链线图形.?物理学报, 2002, 51: 1887-1891
    
    董瑞新, 闫循领, 刘盛纲等. 盐对DNA相变影响的非线性特性研究. 物理学报, 2003, 52(12): 257-262
    Cocco S, Marko J F and Monasson R. Theoretical model for single-molecule DNA and RNA experiments: from elasticity to unzipping. C. R. Physique 2002, 3: 1–16
    Zhang Y, Zhou H J and Ou-Yang Zhong-can. Monte Carlo Implementation of Supercoiled Double-Stranded DNA. Biophys. J. 2000, 78: 1979-1987
    Zhang Y. New approach to Monte Carlo calculation of buckling of supercoiled DNA loops. 2000 Phys.Rev. E 62 5923-5926
    Bustamante C, Marko J F and Siggia E D. Entropic elasticity of lambda-phage DNA. Science 1994, 265: 1599-1600
    Bouchiat C, Wang M D, Allemand J F, et al. Estimating the persistence length of a worm like chain molecule from force-extension measurements. Biophys. J. 1999, 76: 409-413
    Lebrun A and Lavery R. Modelling extreme stretching of DNA. Nucleic Acids Research, 1996, 24: 2260-2267
    杨玉良. 胡汉杰. 高分子物理. 北京: 化学工业出版社, 2001
    Ramreddy T, Sen S, Rao B J, et al. DNA dynamics in RecA-DNA filaments: ATP hydrolysis-related flexibility in DNA. Biochemistry. 2003, 42: 12085-12094
    Xiao J and Singleton S F. Elucidating a key intermediate in homologous DNA strand exchange: structural characterization of the RecA-triple-stranded DNA complex using fluorescence resonance energy transfer. J. Mol. Biol. 2002, 320: 529-558
    Essevaz-Roulet B, Bockelmann U and Heslot F. Mechanical separation of the complementary strands of DNA. Proc Natl Acad Sci U S A. 1997, 94: 11935-11940
    Dekker N H, Rybenkov V V and Duguet M. The mechanism of type IA topoisomerases. Proc. Natl. Acad. Sci. USA 2002, 99: 12126-12131
    Kuznetsov S V, Shen Y, Benight A S, et al. A semiflexible polymer model applied to loop formation in DNA hairpins. Biophys. J. 2001, 81: 2864-2875
    Dadarlat V M and Saxena V K. Stability of triple-helical poly(dT)-poly(dA)-poly(dT) DNA with counterions. Biophys. J. 1998, 75: 70-91
    Grandbois M, Beyer M, Rief M, et al. How strong is a covalent bond? Science 1999, 283: 1727-1730
    Dauxois T and Peyrard M. Entropy-driven transition in a one-dimensional system. Phys. Rev. E 1995, 51: 4027-4040
    
    
    Xiao J X, Lin J T and Tian B G. Denaturation temperature of DNA. Phys. Rev. E 1994, 50: 5039-5042
    费曼R P, 希布斯 A R. 量子力学与路径积分, 张帮固, 韦秀清译. 北京: 科学出版社, 1986
    北京大学物理系《量子统计物理学》编写. 量子统计物理. 北京: 北京大学出版社, 1987
    张春霆. 脱氧核糖核酸(DNA)双螺旋中孤立子的研究与探索. 物理. 1989, 18(7): 399-402
    庞小峰. DNA生物大分子的动力学特性与生物功能(I). 黄淮学刊, 1996, 12(1): 21-30
    Scott A C. Soliton oscillations in DNA. Phys. Rev. A 1985, 31: 3518-3519
    Zhang F and Collins M A. Model simulations of DNA dynamics. Phys. Rev. E 1995, 52: 4217-4224
    Prabhu V V, Young L and Prohofsky E W. Hydrogen-bond melting in B-DNA copolymers in a mean-field self-consistent phonon approach. Phys. Rev. B 1989, 39: 5436-5443
    Tsironis G P and Aubry S. Slow relaxation phenomena induced by breathers in nonlinear lattices. Phys. Rev. Lett. 1996, 77: 5225-5228
    Cule D and Hwa T. Denaturation of heterogeneous DNA. Phys. Rev. Lett. 1997, 79: 2375-2378
    Ng H L, Kopka M L and Dickerson R E. The structure of a stable intermediate in the A-B DNA helix transition. Proc. Natl. Acad. Sci. USA 2000, 97: 2035-2039
    Harreis H M, Kornyshev A A, Likos C N, et al. Phase Behavior of Columnar DNA Assemblies. Phys. Rev. Lett. 2002, 89: 018303
    Techera M and Prohofsky E W. Nonlinear model of the DNA molecule. Phys. Rev. A 1989, 40: 6636-6642
    Techera M and Prohofsky E W. Analysis of a nonlinear model for the DNA double helix: Energy transfer in an inhomogeneous chain. Phys. Rev. A 1990, 42: 1008-1011
    Techera M, Daemen L L and Prohofsky E W. Analysis of the breakdown of continuum and semidiscrete approximation of a nonlinear model for the DNA double helix. Phys. Rev. A 1990, 41: 4543-4546
    Toda M and Wadati M. A soliton and two solitons in an exponential lattice and related equations. J. Phys. Soc. Jpn. 1973, 34: 18-25
    Yomosa S. Solitary excitations in deoxyribonuclei acid (DNA) double helices. Phys. Rev. A 1984, 30: 474-480
    
    Lin J T and Zhang L Y. Soliton statistics for critical temperature of superconductivity in organic quasi-one-dimensional crystals. Phys. Rev. B 1990, 41: 8762-8764
    Volkov S N. Conformational transition: Dynamics and mechanism of long-range effects in DNA. J. Theor. Biol. 1990, 143: 485-496
    Volkov S N. Propagation of local conformational transitions in molecular chains. Phys. Lett. A 1989, 136: 41-44
    Cardellini E, Cinelli S, Gianfranceschi G.L, et al. Differential scanning calorimetry of chromatin at different levels of condensation.?Molecular Biology Reports 2000, 27: 175-180
    Belopolskaya T V, Tsereteli G I, et al. DSC Study of the Postdenaturated Structures in Biopolymer-water Systems. J.Thermal Analysis and Cal. 2000, 62: 75-88
    Chalikian T V, Breslauer K J. A more unified picture for the thermodynamics of nucleic acid duplex melting: A characterization by calorimetric and volumetric techniques. Proc. Natl. Acad. Sci. USA 96, 7853-7858
    Soto A M, Kankia B, Dande P, et al. Incorporation of a cationic aminopropyl chain in DNA hairpins: thermodynamics and hydration. Nucleic Acids Res. 2001, 29: 3638-3645
    Krumhansl J A and Schrieffer J R. Dynamics and statistical mechanics of a one-dimensional model Hamiltonian for structural phase transitions. Phys. Rev. B 1975, 11: 3535-3545
    Currie J F, Krumhansl J A, Bishop A R, et al. Statistical mechanics of one-dimensional solitary-wave-bearing scalar fields: Exact results and ideal-gas phenomenology. Phys. Rev. B 1980, 22: 477-496
    Morris J R and Gooding R J. Finite-size scaling study of a first-order temperature driven symmetry-breaking structural phase transition. J. Stat. Phys. 1992, 67: 471
    Zhou G P. Biological functions of soliton and extra electron motion in DNA structure. Physica Scripta. 1989, 40: 698-701
    Gueron M and Demaret J P. A simple explanation of the electrostatics of the B-to-Z transition of DNA. Proc. Natl. Acad. Sci. USA. 1992, 89: 5740-5743
    Lee R S and Bone S. Dielectric studies of chain melting and denaturation in native DNA. Biochimica et Biophysica Acta 1998, 1397: 316-324
    赵愉, 张骥华, 徐祖耀. 马氏体相变中的孤立子. 上海交通大学学报, 2000, 34(3): 334-337
    徐祖耀. 相变原理. 北京: 科学出版社, 1988
    
    庞小峰. 氢键分子系统的非线性激发和质子传递的理论. 物理学报 1997, 46: 625-637
    Yan X L, Dong R X and Pang X F. Dynamic properties of proton transfer in the anharmonic-interaction hydrogen bond systems. Commun. Theor. Phys. 2001, 35: 615-620
    Zhang L Y, Sun H and Lin J T. Stretching vibration influence of the hydrogen bond on a localized excitation and thermodynamic properties of DNA double helices. Phys. Lett. A 1999, 259: 71-79
    Peyrard M, Pnevmatikos S and Flytanis N. Dynamics of two-component solitary waves in hydrogen-bonded chains. Phys. Rev. A 1987, 36: 903-914
    孙传文, 徐怡庄, 孙开华等. 中红外光纤用于腮腺肿瘤诊断的研究. 光谱学与光谱分析, 1996, 16(5): 22-25
    Leikin S, Parsegian V A, Yang W H et al. Raman spectral evidence for hydration forces between collagen triple helices. Proc. Natl. Acad. Sci. USA, 1997, 94: 11312-11317
    Ke W Z, Yu D W, Wu J Z. Raman spectroscopic study of the influence on herring sperm DNA of heat treatment and ultraviolet radiation. Spectrochimica Acta Part A 1999, 55: 1081-1090
    Sijtsema N M, Tibbe A G?J and Segers-Nolten G?M?J, et al. Intracellular Reactions in Single Human Granulocytes upon Phorbol Myristate Acetate Activation using Confocal Raman Microspectroscopy. Biophys. J, 2000, 78: 2606-2613
    Cheng J X, Jia Y K, Zheng G F, et al. Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology. Biophys. J, 2002, 83: 502-509
    Barry B and Mathies R A. Raman microscope studies on the primary photochemistry of vertebrate visual pigments with absorption maxima from 430 to 502 nm. Biochemistry, 1987, 26: 59-64
    Peticolas W L, Strommen D P and Lakshminarayanan V. The use of resonant Raman intensities in refining molecular force fields for Wilson G-F calculations and obtaining excited state molecular geometries. J. Chem. Phys. 1980, 73: 4185-4191
    Thomas G A and Peticolas W L. Fluctuations in nucleic acid conformations. 2. Raman spectroscopic evidence of varying ring pucker in A-T polynucleotides. J. Am. Chem. Soc. 1983, 105: 993-996
    Rousseau D L, Proceedings of the 14th In. Conf. on Raman Spectroscopy, 1994, Hong Kong, 22-26
    Thamann T J, Lord R C, Wang A H et al. The high salt form of poly(dC-dG) .poly(dG-dC) is left-handed Z-DNA: Raman spectra of crystals and solutions. Nucleic Acids Research, 1981, 9(20): 5443-5457
    
    Benevides J M and Thomas J G J. Characterization of DNA structures by Raman spectroscopy: high-salt and low-salt forms of double helical poly(dG-dC) in H2O and D2O solutions and application to B、Z and A-DNA. Nucleic Acids Research, 1983, 11(16): 5747-5761
    Wu H and Behe M. Salt induced transitions between multiple conformations of poly(rG-m5dC).poly(rG-m5dC). Nucleic Acids Research, 1985, 13(11): 3931-3940
    Movileanu L, Benevides J M. and Thomas J G J. Temperature Dependence of the Raman Spectrum of DNA. Part I—Raman Signatures of Premelting and Melting Transitions of Poly(dA–dT)·Poly(dA–dT). J. Raman Spectrosc. 1999, 30: 637-649
    王杰芳, 王进, 杨柳等. 电离辐射质粒pUC18DNA结构变化的傅里叶变换拉曼光谱分析. 光谱学与光谱分析, 2002, 22(2): 245-247
    柯惟中, 余多慰, 陈婉蓉等. 热处理和紫外辐射对 DNA影响的拉曼光谱研究. 光学学报, 1997, 17(12): 1681-1686
    Morris M D. Resonance Raman spectra of the aminochromes of some biochemically important catecholamines. Anal. Chem. 1975, 47: 2453 -2454
    赵红霞,许以明,张志义. 竹红菌乙素及其溴代物对DNA结构光敏损伤的Raman光谱.科学通报, 1998, 43(9): 955-961
    Redd D C, Yue K T, Martin L G. Raman spectroscopy of human atherosclerotic plaque: implications for laser angioplasty J. Vasc. Interv. Radiol. 1991, 2: 247–252
    Baraga J J, Feld M S, Rava R P. In situ optical histochemistry of human artery using near infrared Fourier transform Raman spectroscopy. Proc. Natl. Acad. Sci. USA 1992, 89: 3473-3477
    Redd D C B, Feng Z C, Yue K T. Raman spectroscopic characterization of human breast tissues: implications for breast cancer diagnosis Appl. Spect. 1993, 47: 787-791
    Hoey S, Brown D H, McConnell A A. et al. Resonance Raman spectroscopy of hemoglobin in intact cells: a probe of oxygen uptake by erythrocytes in rheumatoid arthritis J. Inorg. Biochem. 1988, 34: 189-199
    Abraham J L, Etz E S, Molecular microanalysis of pathological specimens in situ with a laser Raman microprobe. Science 1979, 206: 716-718
    余多慰, 柯惟中, 陈宜峰. DNA构象研究中脱氧核糖拉曼信号的作用. 化学物理学报, 1995, 8(6): 509-514
    Theodossiou T, Rapti G S, Hovhannisyan V, et al. Thermally induced irreversible conformational changes in collagen probed by optical second harmonic generation and laser-induced fluorescence. Laser Med. Sci. 2002, 17: 34-41
    
    Miles C A, Burjanadez TV, Bailey A J. The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry. J Mol Biol 1995, 245: 437-446
    Tiktopulo E I, Kajava A V. Denaturation of type I collagen fibrils is an endothermic process accompanied by a noticeable change in the partial heat capacity. Biochemistry, 1998, 37: 8147-8152
    Sijtsema N M, Otto C, Segers-Nolten G M?J, et al. Resonance Raman Microspectroscopy of Myeloperoxidase and Cytochrome b558 in Human Neutrophilic Granulocytes. Biophys. J. 1998, 74: 3250-3255
    Regan D G and Kuchel P W. Simulations of Molecular Diffusion in Lattices of Cells: Insights for NMR of Red Blood Cells. Biophys. J. 2002, 83: 161-171
    许以明, 杨红英, 张志义等. 竹红菌乙素敏化的人红细胞膜结构光损伤的Raman光谱特征. 中国科学C, 1999, 29(2): 138-144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700