反求工程中自由形状模型的美化技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为现代设计方法学之一,反求工程已经成为产品创新设计和快速开发的重要技术手段。本文在基于特征的反求工程建模策略下,深入研究了以自由曲线和曲面模型的形状优化为核心的美化理论和方法。
     针对包含异常数据的点云的切片结果,提出通过基于直接几何修改的自动光顺方法来恢复原始曲线的特征结构与形状信息,并利用新的节点矢量配置方法以达到自由曲线形状的优化拟合。
     利用可微流形的无穷小变形技术,实现紧公差约束下对点云逼近的多张B-样条曲面的全局美化。首先,根据微分流形上的Beltrami-Laplace算子定义反映曲面整体形状变化的变形能量泛函,并得到泛函的唯一极小解.然后,给出了两张单节点B-样条曲面间G~1连续的充要条件以及公共边界曲线控制顶点的本征方程,并利用局部格式构造整体收敛的G~1光滑拼接的边界表示模型获得变形映射族的特解。特解的构造不可避免地导致模型在缝合区域的形状产生局部瑕疵,影响了反求模型的保形性。最后,通过特解来构造能量泛函的极小解,使得这类似应力集中的效应被逐步松弛到曲面的内部,从而改善了模型的整体形状。
     针对反求工程中由多张B-样条曲面构成的边界表示模型不可避免地在局部区域会出现的形状不规则性,提出利用局部美化技术来消除这种外形的不规则性的方法。首先根据边界表示模型的拓扑给出局部美化的模式,并阐述曲面光顺与模型局部美化之间的区别和联系。然后,通过分析可接受的形状优化准则及其局部微分几何特性,给出局部美化的数学模型。最后,在利用形状分析方法构造局部形状不规则性区域的方法后,借鉴离散的非线性优化方法来保证形状修改的局部性和保持模型的拓扑。
     提出综合利用CAGD中的曲线曲面理论和方法,通过构造合理的局部区域来裁剪N边汇交曲面,并利用汇交曲面的原始信息解决局部NURBS曲面的协调设计。在新生成曲面与裁剪汇交曲面之间保证处处G~1连续,同时光滑地逼近于局部区域的特征走向。局部协调设计能够较好地解决模型的整体连续性和保形性。
     与自由形状模型的美化相关的主要算法已经嵌入到基于特征的反求建模系统—RE-SOFT中。给出的应用实例揭示了模型美化在反求工程中的意义。在总结全文工作的基础上,对未来的研究工作进行展望。
As a modern design methodology, reverse engineering has become an essential tool for industrial product development and innovation. Feature based reverse modeling strategy can be used to capture the original design intention accurately and to guide the reverse modeling process conveniently. The beautification theories and methods, focusing on the freeform models, are intensively explored to improve the shape of the final reverse B-rep model in this dissertation.
     The sectional profile converted by slicing technique from unorganized point cloud may contain unpleasant points wandering away too far from the real-life object and may deteriorate the quality of the final curve/curves. Therefore, an automatic fairing method based on directly geometric modification is proposed to recover the feature structure and shape information of the original curve. Relying on the faired results, a novel knot placement algorithm is presented to improve the shape in the freeform curve fitting process.
     The multiple surfaces approximated to point cloud subject to tight error are beautified globally by using the infinitesimal deformation technique of differentiable manifold. The deformation energy functional reflecting the overall shape of a surface is defined by using the Beltrami-Laplace operator on the manifold. Also the unique solution of the minimum of the energy functional is formulated according to the property of harmonic function. Then, the necessary and sufficient conditions of G~1 continuity between two B-spline surfaces with single knots are given and simplified, as well as the intrinsic equations of control points of the common boundary curve. Based on the local scheme of convergent G~1 smooth surfaces, a special solution of the family of deformation maps is constructed. The special solution is represented by the smoothly stitched B-rep model. The inevitable local imperfection at the stitching regions caused by constructing the special solution greatly influences on the shape preservation of reverse engineered model. Finally, the final solution is constructed such that the deformation energy clustering round the stitching regions is released gradually to the surface interior. Consequently, the shape of the model is improved.
     Boundary representation model composed of multiple B-spline surfaces reconstructed from point cloud suffers from various local shape imperfections inevitably caused by noise in the point data and the reverse modeling strategies. A beautification technique is proposed to remove the local shape irregularities of such a model. Based on the topologies of the B-rep model, the basic patterns of local beautification are classified firstly. The shape beautification is compared with the traditional surface fairing according to the pattern classification. Then, the mathematical model of the beautification is given after analyzing acceptable shape optimization criteria and their intrinsic characteristics of differential geometry. Finally, the local irregularities on the model regions are identified by using shape interrogation methods. As the beautifying variables, each control point associated with the regions is modified solely subject to the tolerance constraints and/or G~0 continuity constraints. Simultaneously, an optimization method is used to preserve an approximated G~1 continuity in the local regions. Consequently, the shape is improved without destroying the model topologies.
     A new local consistent fitting method is presented for dealing with the confluence region, where multiple surfaces meet, to reach global smoothness and keep local feature of normal vector trends. Based on the basic theories of curve and surface in CAGD such as geometric continuity, intersection, bridge, discretization and fitting etc., a reasonable local region definition and feature sensitive surface fitting technique subject to complex boundary constraints are discussed in detail. The final consistent surface, which keeps the fitting precision and reflects the feature trend of the original surfaces, satisfies G~1 continuity with the whole surface model.
     The algorithms about beautification is embedded in the feature-based reverse modeler—RE-SOFT. Typical industrial examples are used to illustrate the validation of the proposed beautification schemes and to reveal the practical value in reverse engineering. Finally, some topics for future work are discussed briefly.
引文
[1].唐荣锡.CAD/CAM技术[M].北京:北京航空航天大学出版社,1994.
    [2].孙家广.计算机辅助设计技术基础[M].北京:清华大学出版社,2000.
    [3].殷国富,陈永华.计算机辅助设计技术与应用[M].北京:科学出版社,2000.
    [4]. Shah J J, Mantyla M. Parametric and feature-based CAD/CAM [M].New York: Wiley, 1995.
    [5]. Vergeest J. CAD surface data exchange using STEP [J]. Computer-Aided Design, 1991,23: 269-281.
    [6].柯映林.反求工程CAD建模理论、方法和系统[M].北京:机械工业出版社,2005.
    [7]. Bajaj C L, Bernardini F, Xu G Automatic reconstruction of surfaces and scalar fields form 3D scans [C]. In: ACM Computer Graphics, 1995, 109-118.
    [8]. Leonardis A, Jaklic A, Solina F. Superquadrics for segrnentating and modeling range data [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19: 1289-1295.
    [9]. Muraki S. Volumetric shape description of range data using "blobby model" [C]. In: ACM Computer Graphics, 1992, 227-235.
    [10]. Hoppe H, DeRose T, Duchamp T, et al. Surface reconstruction from unorganized points [C]. In: ACM Computer Graphics, 1992, 71-78.
    [11]. Eck M, Hoppe H. Automatic reconstruction of B-spline surfaces of arbitrary topology type [C]. In: ACM Computer Graphics, 1996, 325-334.
    [12]. Varady T, Martin R R, Cox J. Special Issue: Reverse engineering of geometric models [J]. Computer-Aided Design, 1997, 29: 253-254.
    [13]. Varady T, Martin R R, Cox J. Reverse engineering of geometric models—an introduction [J]. Computer-Aided Design, 1997, 29: 255-268.
    [14]. Ke Y L, Fan S Q, Zhu W D, et al. Feature-based reverse modeling strategies [J]. Computer-Aided Design, 2006, 38: 485-506.
    [15]. Au C K, Yuen M M F. Feature-based reverse, engineering of mannequin for garment design [J]. Computer-Aided Design, 1999, 31: 751-759.
    [16]. Thompson W B, Owen J C, Germain H J. Feature-based reverse engineering of mechanical parts [J]. IEEE Transactions on Robotics and Automation, 1999, 15: 57-66.
    [17]. Benko P, Kos G, Varady T, et al. Constrained fitting in reverse engineering [J]. Computer Aided Geometric Design, 2002, 19: 173-205.
    [18]. Huang J, Menq C H. Automatic CAD model reconstruction from multiple point clouds for reverse, engineering [J]. Journal of Computing and Science in Engineering (Transactions of the ASME), 2002, 2:160-170.
    [19]. Razdan A, Bae M. A hybrid approach to feature segmentation of triangle meshes [J]. Computer-Aided Design, 2003, 35: 783-789.
    [20].张丽艳,刘胜兰,周儒荣,et al.三角网格模型的特征线提取[J].计算机辅助设计与图 形学学报,2003,15:444-448.
    [21]. Langbein F C. Beautification of reverse engineered geometric models [D]. Cardiff: Cardiff University, 2003.
    [22]. Benko P, Varady T. Segmentation methods for smooth point regions of conventional engineering objects [J]. Computer-Aided Design, 2004, 36:511-523.
    [23]. Fisher R R. Applying knowledge to reverse engineering problems [J]. Computer-Aided Design, 2004, 36: 501-510.
    [24]. Meyer A, Marin P. Segmentation of 3D triangulated data points using edges constructed with a C1 discontinuous surface fitting [J]. Computer-Aided Design, 2004, 36:1327-1136.
    [25]. Werghi N, Fisher R R, Robertson C, et al. Object reconstruction by incorporating geometric constraints in reverse engineering [J]. Computer-Aided Design, 1999, 31: 363-399.
    [26]. Vieira M, Shimada K. Surface mesh segmentation and smooth surface extraction through region growing [J]. Computer Aided Geometric Design, 2005, 22: 771-802.
    [27].李岸.参数化反求工程中一类规则曲面特征提取关键技术及应用研究[D].杭州:浙江大学,2005.
    [28]. Milroy M J, Bradley C, Vickers G W, et al. G~1 continuity of B-spline surface patches in reverse engineering [J]. Computer-Aided Design, 1995, 27: 471-478.
    [29]. Kruth J P, Kerstens A. Reverse engineering modeling of free-form surfaces from point clouds subject to boundary conditions [J]. Journal of Materials Processing Technology, 1998, 76: 120-127.
    [30]. Ma W, He P. B-spline surface local updating with unorganized points [J]. Computer-Aided Design, 1998, 30: 853-862.
    [31]. Pottmann H, Randrup T. Rotational and helical surface approximation for reverse engineering [J]. Computing, 1998, 60: 307-322.
    [32]. Randrup T. Approximation of surfaces by cylinders [J]. Computer-Aided Design, 1998, 30: 807-812.
    [33]. Ueng W-D, Lai J-Y. A sweep-surface fitting algorithm for reverse engineering [J]. Computers in Industry, 1998, 35: 261-273.
    [34]. Ueng W-D, Lai J-Y, Doong J-L. Sweep-surface reconstruction from three-dimensional measured data [J]. Computer-Aided Design, 1998, 30: 791-805.
    [35]. Chen H Y, Pottmann H. Approximation by ruled surfaces [J]. Journal of Computational and Applied Mathematics, 1999, 102: 143-156.
    [36]. Pottmann H, Wallner J. Approximation surfaces for developable surfaces [J]. Computer Aided Geometric Design, 1999, 16: 539-556.
    [37]. Weiss V, Renner G, Varady T. Reconstruction of swept free-form features from measured data points [C]. In: 32nd CIRP International Seminar on Manufacturing Systems, 1999, 33-41.
    [38]. Lai J-Y, Ueng W-D. Reconstruction of surfaces of revolution from measured points [J]. Computers in Industry, 2000, 41: 147-161.
    [39]. Piegl L A, Tiller W. Surface approximation to scanned data [J]. The Visual Computer, 2000, 16: 386-395.
    [40]. Lai J-Y, Ueng W-D. G2 continuity for multiple surfaces fitting [J]. International Journal of Advanced Manufacturing Technology, 2001, 17: 575-585.
    [41]. Piegl L A, Tiller W. Parametrization for surface fitting in reverse engineering [J]. Computer-Aided Design, 2001, 33: 593-603.
    [42]. Weiss V, Andor L, Renner G, et al. Advanced surface fitting techniques [J]. Computer Aided Geometric Design, 2002, 19: 9-42.
    [43]. Azariadis P N. Parameterization of clouds of unorganized points using dynamic base surfaces [J]. Computer-Aided Design, 2004, 36: 607-623.
    [44]. Shi X, Wang T, Wu P, et al. Reconstruction of convergent G~1 smooth B-spline surfaces [J]. Computer Aided Geometric Design, 2004, 21:893-913.
    [45].施法中.计算机辅助几何设计与非均匀有理B-样条[M].北京:高等教育出版社,2001.
    [46]. Piegl L A, Tiller W. The NURBS book [M]. New York: Springer-Verlag, 1997.
    [47]. Sabin M A. The use of piecewise form for the numerical representation of shape [D]. Budapest: Hungarian Academy of Sciences, 1976.
    [48].朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000.
    [49]. Farin G. Triangular Bernstein-Bezier patches [J]. Computer Aided Geometric Design, 1986, 3: 83-127.
    [50]. Farin G. Smooth interpolation to scattered data [M]. In: Barnhill R E and Boehm W, editors. Surface in CAGD, Amsterdam: North-Holland, 1983, 43-63.
    [51]. Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes [J]. Computer-Aided Design, 1978, 10: 350-355.
    [52]. Doo D, Sabin M A. Behaviour of recursive division surfaces near extraordinary points [J]. Computer-Aided Design, 1978, 10: 356-360.
    [53]. Loop C T. Smooth subdivision surfaces based on triangles [D]. University of Utah, 1987.
    [54]. Dyn N, Levin D, Gregory J A. A butterfly subdivision scheme for surface interpolation with tension control [J]. ACM Transactions on Graphics, 1990, 9: 160-169.
    [55]. Kobbelt L. Interpolatory subdivision on open quadrilateral nets with arbitrary topology [J]. Computer Graphics Forum, 1996, 15: 409-420.
    [56]. Hoppe H, DeRose T, Duchamp T, et al. Piecewise smooth surface construction [C]. In: ACM Computer Graphics, 1994, 295-302.
    [57]. Nasri A. Curve interpolation in recursively generated B-spline over arbitrary topology [J]. Computer Aided Geometric Design, 1997, 14:13-30.
    [58]. Reif U. A unified approach to subdivision algorithms near extraordinary vertices, Computer Aided Geometric Design [J]. Computer Aided Geometric Design, 1995, 12:153-174.
    [59]. DeRose T, Kass M, Truong T. Subdivision surface in character animation [C]. In: ACM Computer Graphics, 1998, 85-94.
    [60].彭群生.基于点的造型与绘制[C].In:计算机图形学学科研讨会,2005,
    [61]. Zwicker M, Pfister H, vanBaar J, et al. Surface splatting [C]. In: ACM Computer Graphics, 2001, 371-378.
    [62]. Alexa M, Behr J, Cohen-Or D, et al. Point set surfaces [C]. In: Proceeding of the conference on IEEE Visualization, 2001, 21-28.
    [63].李江雄.复杂曲面反求工程CAD建模系统和技术研究[D].杭州:浙江大学,1998.
    [64]. Huang J. Geometric feature extraction and model reconstruction from unorganized points for reverse engineering of mechanical objects with arbitrary topology [D]. The Ohio State University, 2001.
    [65].胡国飞.三维数字表面去噪光顺技术研究[D].杭州:浙江大学,2005.
    [66].陈曦.反求工程中基于点云的特征挖掘技术研究[D].杭州:浙江大学,2005.
    [67].柯映林.离散数据几何造型技术及其应用研究[D].南京:南京航空航天大学,1992.
    [68]. Park H, Kim K. An adaptive method for smooth surface approximation to scattered 3D points [J]. Computer-Aided Design, 1995, 27: 929-939.
    [69]. Bamhill R E. Surfaces in computer aided geometric design: a survey with new results [J]. Computer Aided Geometric Design, 1985, 2: 1-17.
    [70]. Ma L, Peng Q, He Z. Conditions of Gn continuity between surfaces [J]. Science in China: Series A, 1994, 37: 365-377.
    [71]. Ma L, Peng Q. Smoothing of free-form surfaces with Bezier patches [J]. Computer Aided Geometric Design, 1995, 12: 231-249.
    [72]. Ye X, Liang Y, Nowacki H. Geometric continuity between adjacent Bezier patches and their construction [J]. Computer Aided Geometric Design, 1996, 13:521-548.
    [73]. Barsky B A. The β-spline: a local representation based on shape parameters and fundamental geometric measures [D]. University of Utah, 1981.
    [74].王国瑾,汪国昭,郑建民.计算机辅助几何设计[M].北京:高等教育出版社,2001.
    [75]. Che X, Liang X, Liu Q. G~1 continuity conditions of adjacent NURBS surfaces [J]. Computer Aided Geometric Design, 2005, 22: 285-298.
    [76].车翔玖,梁学章.两邻接B-样条曲面的G~1连续条件[J].应用数学,2004,17:410-416.
    [77].施锡泉,赵岩.双三次B-样条曲面的G~1连续条件[J].计算机辅助设计与图形学学报,2002.14:676-682.
    [78]. Hahn J M. Geometric continuous patch complexes [J]. Computer Aided Geometric Design, 1989, 6: 55-67.
    [79]. Du W-H, Schmitt F J M. On G~1 continuity of piecewise Bezier surface: a review with new results [J]. Computer-Aided Design, 1990, 22: 556-573.
    [80]. deBoor C. A practical guide to splines [M]. New York: Springer-Verlag, 1978.
    [81]. Boehm W. Inserting new knots into B-splines [J]. Computer-Aided Design, 1980, 16: 345-352.
    [82]. Cohen E, Lyche T, Riesenfeld R. Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics [J]. Computer Graphics and Image processing, 1980,14: 87-111.
    [83]. Tiller W. Knot-removal algorithms for NURBS curves and surfaces [J]. Computer-Aided Design, 1992,24:445-453.
    [84]. Prautzsch H. Degree evaluation of B-spline curves [J]. Computer Aided Geometric Design, 1984,1:193-198.
    [85]. Prautzsch H, Piper B. A fast algorithms to raise the degree of spline curves [J]. Computer Aided Geometric Design, 1991, 8: 253-265.
    [86]. Terzopoulos D, Platt J, Barr A, et al. Elastically deformable models [C]. In: ACM Computer Graphics, 1987,205-214.
    [87]. Celniker G, Gossard D. Deformable curve and surface finite-elements for free-form shape design [C]. In: ACM Computer Graphics, 1991,257-266.
    [88]. Leon J C, Trompette J C. A new approach towards freeform surfaces control [J]. Computer Aided Geometric Design, 1995,12: 395-416.
    [89]. Greiner G. Variational design and fairing of spline surfaces [J]. Computer Graphics Forum, 1994,13: 143-154.
    [90]. Sarraga R F. Recent methods for surface shape optimization [J]. Computer Aided Geometric Design, 1998,15:417-436.
    [91]. Reuter M, Wolter F-E, Peinecke N. Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids [J]. Computer-Aided Design, 2006, 38: 342-366.
    [92]. Hagen H, Schulze G Automatic smoothing with geometric surface patches [J]. Computer Aided Geometric Design, 1987, 4: 231-236.
    [93]. Lott N J, Pullin D I. Method for fairing B-spline Surfaces [J]. Computer-Aided Design, 1988,20:597-604.
    [94]. Kallay S, Ravani B. Optimal twist vectors as a tool for interpolating a network of curves with a minimum energy surface [J]. Computer Aided Geometric Design, 1990, 7: 465-473.
    [95]. Moreton H, Sequin C H. Functional optimization for fair surface design [C]. In: ACM Computer Graphics, 1992,167-176.
    [96]. Sequin C H. CAD tools for aesthetic engineering [J]. Computer-Aided Design, 2005, 37: 737-750.
    [97]. Pottmann H, Farin G. Developable rational Bezier and B-spline surfaces [J]. Computer Aided Geometric Design, 1995,12: 513-531.
    [98]. Terzopoulos D, Qin H. Dynamic NURBS with geometric constraints for interactive sculpting [J]. ACM Transactions on Graphics, 1994,13: 103-136.
    [99]. Guan Z, Jin L, Ling T, et al. Study and application of physics-based deformable curves and surfaces [J]. Computer & Graphics, 1997, 21: 305-313.
    [100].经玲.用有限元法整体构造B-样条曲面的理论与应用研究[D].北京:北京航空航天大学博士论文,1997.
    [101]. Welch W,Witkin A.Variational surface modeling[C].In:ACM Computer Graphics,1992, 157-166.
    [102].宋德军.基于能量优化的曲线曲面造型理论及应用研究[D].北京:北京航空航天大学博士论文,1998.
    [103]. Fausshauer G E, Schumaker L L. Minimal energy surfaces using parametric splines [J]. Computer Aided Geometric Design, 1996, 13: 45-79.
    [104]. Wang X, Cheng F, Barsky B A. Energy and B-spline interproximation [J]. Computer-Aided Design, 1997, 29: 485-496.
    [105]. Schneider R, Kobbelt L. Geometric fairing of irregular meshes for free-form surface design [J]. Computer Aided Geometric Design, 2001, 18: 359-379.
    [106].童伟华,陈发来,冯玉瑜.基于偏微分方程的隐式曲面光顺算法[J].计算机学报,2004.27:1264-1271.
    [107]. Choi I, K L. Efficient generation of reflection lines to evaluate car body surfaces [J]. Mathematical Engineering in Industry, 1998, 7: 233-250.
    [108]. Patrikalakis N M, Maekawa T. Shape interrogation for computer aided design and manufacturing [M]. Berlin: Springer-Verlag, 2002.
    [109]. Lennings A F, Peters J C, Vergeest J. An efficient integration to evaluate the quality of free form surfaces [J]. Computer & Graphics, 1995, 19: 861-872.
    [110]. Sherbrooke E C, Patrikalakis N M. Computation of the solutions of nonlinear polynomial systems [J]. Computer Aided Geometric Design, 1993, 10: 379-405.
    [111]. Maekawa T, Patrikalakis N M. Computation of singularities and intersections of offsets of planar curves [J]. Computer Aided Geometric Design, 1993, 10: 407-429.
    [112]. Maekawa T, Patrikalakis N M. Interrogation of differential geometry properties for design and manufacture [J]. The Visual Computer, 1994, 10:216-237.
    [113].彭群生,鲍虎军,金小刚.计算机真实感图形的算法基础[M].北京:科学出版社,1999.
    [114]. Poeschl T. Detecting surface irregularities using isophotes [J]. Computer Aided Geometric Design, 1984, 1: 163-168.
    [115]. Klass R. Correction of local surface irregularities using reflection lines [J]. Computer-Aided Design, 1980, 12: 73-76.
    [116]. Beier K-P, Chert Y. Highlight-line algorithm for real-time surface-quality assessment [J]. Computer-Aided Design, 1994, 26: 268-277.
    [117]. Kaufmann E, Klass R. Smoothing surface using reflection lines for families of splines [J]. Computer-Aided Design, 1988, 20:312-316.
    [118]. Chen Y, Beier K-P, Papageorgiou D. Direct highlight line modification on NURBS surfaces [J]. Computer Aided Geometric Design, 1997, 14: 583-601.
    [119]. Bousquet J, Daniel M. Flaw removal on surfaces [M]. In: Mehaute A L, Rabut C and Shumaker L L, editors. Curves and Surfaces with Application in CAGD, Nashville: Vanderbilt University Press, 1997, 43-52.
    [120]. Zhang C, Cheng F.Removing local irregularities of NURBS surfaces by modifying highlight lines [J]. Computer-Aided Design, 1998, 30: 923-930.
    [121]. Koras D D, Kaklis P D. On the local shape effect of a moving control point [J]. Computer Aided Geometric Design, 2003, 20: 549-562.
    [122].董光昌.船体数学放样[M].北京:科学出版社,1975.
    [123]. Rogers D F, Satterfield S G. B-spline surfaces for ship hull design [C]. In: ACM Computer Graphics, 1980, 211-217.
    [124].苏步青,刘鼎元.计算几何[M].上海:上海科学技术出版社,1981.
    [125]. Kjellander J A. Smoothing of bicubic parametric surfaces [J]. Computer-Aided Design, 1983, 15: 289-293.
    [126]. Kjellander J A. Smoothing of cubic parametric splines [J]. Computer-Aided Design, 1983, 15: 175-179.
    [127]. Fog G. Creative definition and fairing of shiphulls using a B-spline surface [J]. Computer-Aided Design, 1984, 16: 225-229.
    [128]. Sapidis N, Farin G. Automatic fairing algorithm for B-splines [J]. Computer-Aided Design, 1990, 22: 121-129.
    [129]. Stollnitz E J, DeRose T D, Salesin D H. Wavelets for computer graphics: a primer, part 2 [J]. IEEE Computer Graphics and Applications, 1995, 15: 75-84.
    [130]. Poliakoff J. An improved algorithm for automatic fairing of non-uniform parametric cubic spline [J]. Computer-Aided Design, 1996, 28: 59-66.
    [131]. Hahmann S. Shape improvement of surfaces [J]. Computing, 1998, Suppl: 135-152.
    [132]. Hahmann S, Knoz S. Knot-removal surface fairing using search strategies [J]. Computer-Aided Design, 1998, 30: 131-138.
    [133].孙延奎,朱心雄.B样条曲线的小波光顺法[J].工程图学学报,1998,4:51-58.
    [134]. Sun Y, Zhu X. Wavelet-based fairing of B-spline surfaces [J]. Chinese Journal of Aeronautics, 1999, 12: 176-182.
    [135]. Zhang C, Zhang P, Cheng F. Fairing spline curves and surfaces by minimizing energy [J]. Computer-Aided Design, 2001, 33: 913-923.
    [136]. Benko P, Martin R R, Varady T. Algorithms for reverse engineering boundary representation models [J]. Computer-Aided Design, 2001, 33:839-851.
    [137]. Milroy M J, Bradley C, Vicker G W. Segmentaion of a wrap-around model using an active contour [J]. Computer-Aided Design, 1997, 29: 299-320.
    [138].李江雄,柯映林.基于特征的复杂曲面反求建模技术研究[J].机械工程学报,2000,36:18-22.
    [139].贾明,吕震,柯映林.基于多分辨率模型的三角曲面特征线识别技术[J].中国图象图 形学报(A辑),2002,7:1043-1047.
    [140].柯映林,范树迁.基于点云的边界特征直接提取技术[J].机械工程学报,2004,40:116-120.
    [141]. Krishnamurthy V, Levoy M. Fitting smooth surfaces to dense polygon meshes [C]. In: ACM Computer Graphics, 1996, 313-324.
    [142]. Zhang L, Liu S, Wu X, et al. Segmentation and parametrization of arbitrary polygon meshes [C]. In: Proceeding of the Geometric Modeling and Processing, 2004, 144-152.
    [143]. Besi P J, Jain R C. Segmentation through variable-order surface fitting [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10: 167-192.
    [144]. Varady T, Benko P, Kos G. Reverse engineering regular objects: simple segmentation and surface fitting procedures [J]. International Journal of Shape Modeling, 1998, 4:127-141.
    [145]. Adams R, Bischof L. Seeded region growing [J]. IEEE Transactions on Pattem Analysis and Machine Intelligence, 1994, 16:641-647.
    [146].单东日.反求工程CAD建模中的特征与约束技术研究[D].杭州:浙江大学,2003.
    [147]. Kon J. A multilayer self-organizing feature map for range image segmentation [J]. Neural Networks, 1995, 8: 67-86.
    [148].史桂蓉,邢渊,张永清.用神经网络进行散乱点的区域分割[J].上海交通大学学报,2001,35:1093-1096.
    [149]. Chen Y H, Liu C Y. Quadric surface extraction using genetic algorithms [J]. Computer-Aided Design, 1999, 31:101-110.
    [150]. Ou Yang D, Feng H-Y. On the normal vector estimation for point cloud data from smooth surfaces [J]. Computer-Aided Design, 2005, 37:1071-1079.
    [151]. Yang M, Lee E. Segmentation of measured point data using a parametric quadric surface approximation [J]. Computer-Aided Design, 1999, 31: 449-457.
    [152]. Marin P, Meyer A, Guigue V. Partition along characteristic edges of a digitized point cloud [J]. IEEE Transactions on Pattern analysis and Machine Intelligence, 2001, 23: 326-334.
    [153]. Marin P, Meyer A. Identification of natural sub-domain borders of a digitized part [J]. International Journal of Shape Modeling, 2001, 7:163-177.
    [154].柯映林,朱伟东.基于局部特征匹配的对称面提取算法[J].计算机辅助设计与图形学学报,2005,17:1191—1195.
    [155].柯映林,王青.反求工程中的点云切片算法研究[J].计算机辅助设计与图形学学报,2005.17:1798-1802.
    [156]. Floater M S, Hormann K. Surface parameterization: a tutorial and survey [C]. In: Advances on Multiresolution in Geometric Modeling, 2005, 157-186.
    [157].彭群生,胡国飞.三角网格的参数化[J].计算机辅助设计与图形学学报,2004,16:731-739.
    [158]. Floater M S, Reimers M. Meshless parameterization and surface reconstruction [J]. Computer Aided Geometric Design, 2001, 18: 77-92.
    [159].缪永伟,王章野,肖春霞,et al.点模型曲面的调和映射参数化[J].计算机辅助设计与图形学学报,2004,16:1371-1376.
    [160]. Ma W, Kruth J P. Parametefization of randomly measured points for least squares fitting of B-spline curves and surfaces [J]. Computer-Aided Design, 1995, 27: 663-675.
    [161]. Pottmann H, Leopoidseder S. A concept for parametric surface fitting which avoids the parametrization problem [J]. Computer Aided Geometric Design, 2003, 20: 343-362.
    [162]. Mortermson M E. Geometric modeling [M]. New York: Wiley, 1985.
    [163]. Ma Y L, Hewitt W T. Point inversion and projection for NURBS curve and surface: Control polygon approach [J]. Computer Aided Geometric Design, 2003, 20: 79-99.
    [164]. Selimovic I. Improved.algorithms for the projection of points on NURBS curves and surfaces [J]. Computer Aided Geometric Design, 2006, 23: 439-445.
    [165].刘云峰.基于截面特征的反求工程CAD建模关键技术研究[D].杭州:浙江大学,2004.
    [166]. Levin D. The approximation power of moving least-squares [J]. Mathematics of Computation, 1998, 67:1517-1531.
    [167]. Lee I K. Curve reconstruction from unorganized points [J]. Computer Aided Geometric Design, 2000, 17: 161-177.
    [168]. Fang L, Gossard D. Multidimensional curve fitting to unorganized data points by nonlinear minimization [J]. Computer-Aided Design, 1995, 27: 48-58.
    [169]. Taubin G, Ronfard R. Implicit simplicial models for adaptive curve reconstruction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18: 321-325.
    [170]. Alhanaty M, Bercovier M. Curve and surface fitting and design by optimal control methods [J]. Computer-Aided Design, 2001, 33:167-182.
    [171]. Ahuja N, Chuang J H. Shape representation using a generalized potential field model [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19:169-176.
    [172]. Amenta N, Bern M. Eppstein D. The crust and the β-skeleton: combinatorial curve reconstruction [J]. Graphical Models and Image Processing, 1998, 60:125-135.
    [173]. Goshtasby A A. Grouping and parameterizing irregularly spaced points for curve fitting [J]. ACM Transactions on Graphics, 2000, 19:185-203.
    [174].钟纲.曲线曲面重建方法研究[D].杭州:浙江大学,2002.
    [175]. Ke Y L, Zhu W D, Liu F S, et al. Constrained fitting for 2D profile-based reverse modeling [J]. Computer-Aided Design, 2006, 38:101-114.
    [176]. Langbein F C, Marshall A D, Martin R R. Choosing consistent constraints for beautification of reverse engineered geometric models [J]. Computer-Aided Design, 2004, 36: 261-278.
    [177].黄小平.逆向工程中数据云处理关键技术研究[D].武汉:华中科技大学,2002.
    [178].崔汉锋.散乱数据曲面重构技术的研究[D].武汉:华中科技大学,2000.
    [179].扬铁牛.面向逆向工程的原始参数还原的研究和实践[D].西安:西安交通大学,2000.
    [180].张舜德.面向快速原型制造的反求工程若干关键技术研究[D].西安:西安交通大学, 2001.
    [181].李彬.基于特征的三维CAD系统及关键技术研究[D].西安:西安交通大学,2002.
    [182].郑康平.基于点云数据的曲面重构关键技术研究[D].西安:西安交通大学,2002.
    [183].王英惠.面向创新设计的逆向工程系统的研究[D].西安:西安交通大学,2003.
    [184].孙玉文.面向快速原型制造的反求工程关键技术研究[D].大连:大连理工大学,2000.
    [185]. Au C K, Yuen M M F.A semantic feature language for sculptured object modeling [J]. Computer-Aided Design, 2000, 32: 63-74.
    [186]. Wang C C L, Smith S S F, Yuen M M F. Surface flattening based on energy model [J]. Computer-Aided Design, 2002, 2002: 823-833.
    [187]. Wang C C L, Chang T K K, Yuen M M F. From laser-scanned data to feature human model: a system based fuzzy logic concept [J]. Computer-Aided Design, 2003, 35: 241-253.
    [188].田晓东.反求工程系统中散乱数据与三边域造型的关键技术研究[D].上海:上海交通大学,2002.
    [189].史桂蓉.反向工程几何建模关键技术[D].上海:上海交通大学,2000.
    [190].孙福辉.逆向工程中重建CAD模型的若干关键技术研究[D].北京:北京航空航天大学,2001.
    [191].穆国旺.逆向工程中NURBS曲面的重构[D].北京:北京航空航天大学,2001.
    [192].蔡炜斌.逆向工程中基于轮廓数据的曲面重构[D].南京:南京航空航天大学,2000.
    [193].唐杰.逆向工程中三角网格模型的数据处理技术研究[D].南京:南京航空航天大学,2000.
    [194].神会存.高质量工程曲面的重建与曲面品质检查分析[D].南京:南京航空航天大学,2005.
    [195].肖双久.反求工程中三角网格划分及其应用的关键算法研究[D].西安:西北工业大学,2001.
    [196].邱泽阳.基于散乱数据的曲面重构及相关技术研究[D].西安:西北工业大学,2002.
    [197].白仲栋.复杂曲面反求技术研究[D].西安:西北工业大学,2000.
    [198]. Liu S, Ma W. Seed-growing segmentation of 3-D surfaces from CT-contour data [J]. Computer-Aided Design, 1999, 31 : 517-536.
    [199]. Liu S, Ma W. Motif analysis for automatic segmentation of CT surface contours into individual surface features [J]. Computer-Aided Design, 2001, 33: 1091-1109.
    [200]. Liu G H, Wong Y S, Zhang Y F, et al. Adaptive fairing of digitized point data with discrete curvature [J]. Computer-Aided Design, 2002, 34: 309-320.
    [201]. Yang X, Wang G. Planar point set fair and fitting by arc splines [J]. Computer-Aided Design, 2001, 33: 35-43.
    [202]. Yang X. Curve fitting and fairing using conic splines [J]. Computer-Aided Design, 2004, 36: 461-472.
    [203]. Farin G. Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide [M]. San Diego: Academic Press, 1997.
    [204]. Razdan A. Knot placement for B-spline curve approximation [OL]. http://3dk.asu.edu/archives/publication/publication.html
    [205]. Li W, Xu S, Zhao G, et al. Adaptive knot placement in B-spline curve approximation [J]. Computer-Aided Design, 2005, 37: 791-797.
    [206]. doCarmo M P. Differential geometry of curves and surfaces [M]. Englewood Cliffs: Prentice-Hall, 1976.
    [207].张永春.三维曲面的采样与重构[D].南京:东南大学,2004.
    [208].李维诗.基于医学断层轮廓数据的反求CAD建模理论与方法研究[D].杭州:浙江大学,2001.
    [209]. Hamann B, Chen J L. Data point selection for piecewise linear curve approximation [J]. Computer Aided Geometric Design, 1994, 11: 289-301.
    [210]. Choi B K. Surface modeling for CAD/CAM [M]. New York: Elsevier Science Publishers, 1991.
    [211]. Marciniak K, Putz B. Approximation of spirals by piecewise curves of fewest circular arc segments [J]. Computer-Aided Design, 1984, 16: 87-90.
    [212]. Shpitalni M, Koren Y, Lo C C. Real time interpolators [J]. Computer-Aided Design, 1994, 26: 832-838.
    [213]. Qiu H, Cheng K, Li Y. Optimal circular arc interpolation for NC tool path generation in curve contour manufacturing [J]. Computer-Aided Design, 1997, 29: 751-760.
    [214]. Ahlberg J H, Nilson E N, Walsh J L. The theory of splines and their applications [M]. New York: Academic Press, 1967.
    [215]. Grandine T A, Klein F W. A new approach to the surface intersection problem [J]. Computer Aided Geometric Design, 1997, 14:111-134.
    [216]. Zhu W, Ke Y. Reconstruction of symmetric freeform curves and surfaces Computer Aided Geometric Design: Submitted.
    [217].陈维恒.微分流形初步[M].北京:高等教育出版社,2001.
    [218]. Kimura M, Saito T, Shinya M. Surface deformation with differential geometric structures [J]. Computer Aided Geometric Design, 1996, 13: 243-256.
    [219]. Boehm W, Prautzsch H. The insertion algorithm [J]. Computer-Aided Design, 1985, 17: 58-59.
    [220]. Piegl L A, Tiller W. Surface skinning revisited [J]. The Visual Computer, 2002, 18: 273-283.
    [221].贾明,吕震,李永青,et al.基于B-样条曲面裁剪计算的局部协调设计技术[J].机械工程学报,2003,39:74-78.
    [222].柯映林,范树迁.复杂曲面局部协调设计技术[J].计算机辅助设计与图形学学报,2005.17:418-424.
    [223]. Lukacs G, Martin R R, Marshall A D. Faithful least-squares fitting of spheres, cylinders, cones, and tori for reliable segmentation [C]. In: Fifth European Conference on Computer Vision, 1998, 671-686.
    [224].Pegna J, Wolter F E. Surface curve design by orthogonal projection of space curves onto free-form surfaces [J]. Journal of Mechanical Design (Transactions of the ASME), 1996, 118:45-52.
    [225]. Press W H, Teukolsky S A, Vettering W T, et al. Numerical recipes in C, the art of scientific computing, 2~(nd) edition [M]. Cambridge: Cambridge University Press, 1992.
    [226].O'Rourke J. Computational geometry in C, 2~(nd) edition [M]. Cambridge: Cambridge University Press, 1998.
    [227]. Park J C, Chung Y C. A tolerant approach to reconstruct topology from unorganized trimmed surfaces [J]. Computer-Aided Design, 2003, 35: 807-812.
    [228]. Hamann B, Jean B A. Interactive surface correction based on a local approximation scheme [J]. Computer Aided Geometric Design, 1996,13: 351-368.
    [229]. Piegl L A, Tiller W. Filling n-sided regions with NURBS patches [J]. The Visual Computer, 1999,15: 77-89.
    [230]. Wang L, Zhu X, Tang Z. Coons type blended B-spline and its conversion to NURBS surface [J]. Computer & Graphics, 1997, 21: 297-303.
    [231]. Peng Q. An algorithm for finding the intersection lines between two B-spline surfaces [J]. Computer-Aided Design, 1984, 14: 191-196.
    [232]. Filip D, Magedson R, Markot R. Surface algorithms using bounds on derivatives. Computer Aided Geometric Design [J]. Computer Aided Geometric Design, 1986,3: 295-311.
    [233].Barnhill R E, Farin G, Jordan M, et al. Surface/surface intersection [J]. Computer Aided Geometric Design, 1987,4: 3-16.
    [234]. Sederberg T W, Meyers R J. Loop detection in surface intersections [J]. Computer Aided Geometric Design, 1988, 5: 161-171.
    [235]. Sederberg T W, Christiansen H N, Katz S. Improved test for closed loops in surface intersections [J]. Computer-Aided Design, 1989, 21: 505-508.
    [236]. Sturzlinger B W. Efficient ray tracing for Bezier and B-spline surfaces [J]. Computer & Graphics, 1993,17:423-430.
    
    [237]. Renner G, Weiβ V. Exact and approximate computation of B-spline curves on Surfaces [J]. Computer-Aided Design, 2004, 36: 351-362.
    [238]. Park H, Kim K, Lee S-C. A method for approximate NURBS curve compatibility based on multiple curve refitting [J]. Computer-Aided Design, 2000, 32: 237-252.
    [239]. Sheng X, Hirsch B E. Triangulation of trimmed surfaces in parametric space [J]. Computer-Aided Design, 1992, 24: 437-444.
    [240]. Piegl L A, Richard A M. Tessellating trimmed NURBS surfaces [J]. Computer-Aided Design, 1995,27: 16-26.
    [241]. Lin F, Hewitt W T. Expressing Coons-Gordon surfaces as NURBS [J]. Computer-Aided Design, 1994,26: 145-155.
    
    [242].Hollig K, Reif U. Nonuniform web-splines [J]. Computer Aided Geometric Design, 2003, 20: 277-294.
    [243]. Lu Z, Ke Y, Sun Q. Extraction of blend surface feature in reverse engineering [J]. Chinese Journal of Mechanical Engineering, 2003, 16: 248-251.
    [244].柯映林,李岸,王军文.过渡特征提取中的概率统计理论和方法[J].机械工程学报,2003,39:140-144.
    [245]. Fan S, Ke Y. Reverse modeling for conic blending feature [J]. Chinese Journal of Mechanical Engineering, 2005, 18: 482-489.
    [246]. Zhu W,. Ke Y. Reconstruction of symmetric models composed of analytic curves and surfaces. [J]. Journal of computing and information science engineering (Transactions of the ASME), Submitted.
    [247].朱伟东,柯映林.解析曲面与自由曲面混合模型的重建方法[J].浙江大学学报:工学版,2006,已投稿.
    [248].吕震.反求工程CAD建模中的特征技术研究[D].杭州:浙江大学,2002.
    [249]. Ke Y, Sun Q, Lu Z. Least-squares methods based feature fitting and extraction in reverse engineering [J]. Chinese Journal of Mechanical Engineering, 2003, 16: 163-166.
    [250].柯映林,刘云峰,范树迁,et al.基于特征的反求工程建模系统RE-SOFT[J].计算机辅助设计与图形学学报,2004,16:799-811.
    [251]. Chen X, Ke Y, Li A. Efficient method for geometric attribute estimation [C]. In: Proceedings of Computer Graphics, Imaging and Visualization, 2004, 209-214.
    [252]. Flynn P J, Jain A K. On reliable curvature estimation [C]. In: IEEE Conference on Pattern recognition; 1989, 110-116.
    [253]. Shirman L A, Sequin C H. Local surface interpolation with Bezier patches [J]. Computer Aided Geometric Design, 1987, 4: 279-295.
    [254]. Sacchi R. Curvature estimation for segmentation of triangulated surfaces [C]. In: Proceedings of 3-D Digital Imaging and Modeling, 1999, 536-543.
    [255]. Meek D, Walton D. On surface normal and Gaussian curvature approximations given data sampled from a smooth surface [J]. Computer Aided Geometric Design, 2000, 17:521-543.
    [256]. Krsek P, Lukacs G, Martin R R. Algorithms for computing curvatures from range data [J]. The Mathematics of Surfaces Ⅷ, 1998, 1-16.
    [257]. Brown J L. Vertex based data dependent triangulations [J]. Computer Aided Geometric Design, 1991, 8: 239-251.
    [258]. Ernest M. Surface parametrization and curvature measurement of arbitrary 3-D objects: five practical methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14: 833-839.
    [259].柯映林,王青,范树迁,et al.RE-SOFT系统架构及关键技术[J].浙江大学学报:工学版,2006,40:1327-1332.
    [260].王青.反求工程中基于变形的自由形状特征重建[D].杭州:浙江大学,2006.
    [261]. Baumgart B G. Winged edge polyhedron representation [R]. Stanford University: 1972
    [262]. Weiler K. Edge based data structures for solid modeling in curved-surface enviroments [J]. IEEE Computer Graphics and Applications, 1985, 5: 21-40.
    [263].贾明.反求工程中CAD混合建模理论和方法研究[D].杭州:浙江大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700