用边界结点法求解非齐次双调和方程的Cauchy问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在科学和工程技术中,许多实际问题归结为求解偏微分方程的反问题。本文考虑对于椭圆型偏微分方程的定解问题而言,给出的边界条件不足的Cauchy型反问题。
     用边界元法来求解椭圆方程型方程的边值问题,需要已知足够的边界条件,否则问题就是不适定的,会产生很大误差,若采用边界结点法则可以克服这种不适定性[46]。这里的边界结点法是指除了在所研究的区域的边界上分布结点外,还要通过在区域之外分布若干虚拟源点,在所研究的区域之内选取若干内点,以此来求解未给出边界条件的那部分边界上结点的未知函数值。这种方法要通过选取合适的径向基函数的线性组合来表示特解,再利用微分算子(Laplace算子、重调和算子等)的基本解形成满足已知边界条件的线性组合来表示问题的通解,这样的解适合整个边界以及区域内部。
     本文主要针对二维的非齐次双调和方程的Cauchy反问题用边界结点法求解,利用部分已知的边界条件来推导解的线性组合的待定系数,从而得出适用于全部求解域的解的表达式。求待定系数时,由于所选取的虚拟源点和边界结点数目不匹配,因此我们将该问题转化为一个最小二乘问题;对于Cauchy问题的不适定性,本文使用常用的正则化方法即奇异值分解法,来求解该最小二乘问题所对应的病态线性方程组。
     本文的数值试验考察了边界光滑和分片光滑的不同区域的情况,并对给出的准确数据以及有噪声的数据所得到得结果进行了分析,分析了几个影响结果准确度的参数。数值试验的结果表明了使用边界结点法求解非齐次双调和方程Cauchy问题的有效性,计算效率高、结果精确度高,还观察到计算结果的误差随着数据中的噪声的减小而收敛。
Many practical problems in engineering and science can be classified as inverse problems of partial differential equations. In this thesis, we consider the inverse problem of the Cauchy kind that to the problem for determining solution of elliptic partial differential equations, the boundary conditions are not sufficient.
     When using boundary element method to solve the boundary value problem of elliptic equations, we need to know sufficient boundary conditions, otherwise, the problem is ill-posed, and the solution is not proper. This ill-posed problem can be avoided by using the Boundary Knot Method[46]. By the Boundary knot method, besides the boundary knots, we place some virtual source points outside the domain, and select some inter points inside the domain in order to help us get the unknown values on the boundary; we should choose the linear combination of some proper radial basis functions to express the particular solution, and using the fundamental solution of partial differential operators such as Laplace operator and biharmonic operator etc. to produce a linear combination to represent the general solution, which satisfies the known boundary condition.
     In this thesis, we use the Boundary Knot Method to solve the 2-D Cauchy inverse problem of non-homogeneous biharmonic equation. We obtain the coefficients in the combination expression depending on the known boundary data to form the representation of the solution. If the number of the virtual source points cannot match the number of boundary knots, we need to use the least square method. Meanwhile, since the Cauchy problem is ill-posed, we choose the singular value decomposition method to solve the linear equations corresponding to the least square problem.
     Numerical examples were performed to demonstrate the efficiency and efficacy of the boundary knot method. The examples with both smooth and piecewise smooth boundary and with both exact and noisy known data are tested. Several parameters were checked to find out the influence to the numerical results. Numerical tests show that the method is computationally efficient, accurate, stable and convergent with respect to the decrease of the noise in the data.
引文
[1]冯康著.数值计算方法[M].北京:国防工业出版社,1978.
    [2]余德浩,汤华中著.微分方程数值解法[M].北京:科学出版社,2003.
    [3]吕同富,康兆敏,方秀男著.数值计算方法[M].北京:清华大学出版社,2008.
    [4] J. William Helton, A numerical method for computing the structured singular value[J], Systems & Control Letters,1988,10:21-26.
    [5]夏志皋著.弹性力学及其数值方法[M].上海:同济大学出版社,1997.
    [6] D. Holnapy, M. Sz?ts, A. Botár. A generalization of the method of finite differences[J], Information Processing Letters,1973,2:55-59.
    [7] Avron Douglis. A finite-difference method for generalized radial transport equations[J], Journal of Differential Equations.1967,3:451-481.
    [8] N. N. Kuznetsov. A finite difference method for solving the cauchy problem for a quasi-linear first-order equation[J], USSR Computational Mathematics and Mathematical Physics. 1977, 17:114-127.
    [9]姜礼尚,庞之垣著.有限元方法及其理论基础[M].北京:人民教育出版社,1979.
    [10]张鸿庆,王鸣著.有限元的数学理论[M].北京:科学出版社,1991.
    [11]屈钧利著.工程结构的有限元方法[M].西安:西北工业大学出版社,2004.
    [12]陈传淼著.有限元超收敛构造理论[M].长沙:湖南科学技术出版社,2001.
    [13] N.C. Knowles. Finite element analysis[J], Computer-Aided Design, 1985,16:134-160.
    [14] Dan Givoli, Joseph B. Keller, A finite element method for large domains[J], Computer Methods in Applied Mechanics and Engineering.1989,76:41-66.
    [15]祝家麟,袁政强著.边界元分析[M].北京:科学出版社,2009.
    [16]祝家麟著.椭圆边值问题的边界元分析[M].北京:科学出版社,1991.
    [17]孙焕纯,张立洲,许强,张耀明著.无奇异边界元法[M].大连:大连理工大学出版社, 1999.
    [18]申光宪著.边界元法[M].北京:机械工业出版社,1998
    [19] Djuro M. Misljenovic. Boundary element method and wave equation[J], Applied Mathematical Modelling. 1982,6:205-208.
    [20] Masataka Tanaka, Kouji Yamagiwa. A boundary element method for some inverse problems in elastodynamics[J], Applied Mathematical Modelling. 1989,13:307-312.
    [21] G. Gospodinov, D. Ljutskanov. The boundary element method applied to plates[J], Applied Mathematical Modelling. 1982,6:237-244.
    [22] Atluri SN, Shen S. The Meshless Local Petrov-Galerkin (MLPG) Method [M]. California: Tech.Science Press, 2002.
    [23] Liu GR. Meshfree Methods: Moving Beyond The Finite Method [M]. Singapore: CRC Press, 2002.
    [24] Liu GR, Liu MB. Smoothed Particle Hydrodynamics: A Meshfree Particle Method [M]. Singapore: World Scientific, 2003.
    [25] Li SF, Liu WK. Meshfree Particle Methods [M]. Berlin: Springer, 2004.
    [26] Atluri SN. The Meshless Method (MLPG) for Domain & BIE Discretizations [M]. California: Tech. Science Press, 2004.
    [27]刘更,刘天祥,谢琴.无网格方法及其应用[M].西安:西北工业大学出版社, 2005.
    [28] C.A.Brebbia.J.C.F.Telles.L.C.Wrobel,Boudary Element techniques–Theory and Applications in Engineering[M].Springer-Verlag,Berlin Heidelberg New York Tokyo,1984.
    [29]杜庆华著.边界积分方程方法-边界元法[M].北京:高等教育出版社, 1989.
    [30]冯康,石钟慈著.弹性结构的数学理论[M].北京:科学出版社, 1989.
    [31]余德浩著.自然边界元方法的数学理论[M].北京:科学出版社,1993.
    [32]翟景春,Laplace方程边值问题的一种数值解法[J],山东科学,1995(3):21-29.
    [33]陈浩,二维Laplace方程解的性质[J],工程数学,1995(12)2:95-99.
    [34]祝家麟,边界元方法中的奇异性[J].重庆建筑工程学院学报1985(13)2:90—102.
    [35]谷超豪等,数学物理方程[M].北京:人民教育出版社,1979.
    [36]胡建伟,汤怀民著.微分数值方法[M].北京:科学出版社.1999.1.
    [37]吴宗敏.散乱数据拟合的模型、方法和理论[M].北京:科学出版社, 2006.
    [38] Liu GR, Gu YT. A point interpolation method for two-dimensional solids [J]. Int. J. Numer. Meth. Eng., 2001, 50: 937-951.
    [39] Liu WK, Jun S, Zhang YF. Reproducing kernel particle methods [J]. Int. J. Numer. Meth. Fluid., 1995, 20: 1081-1106.
    [40] Michael A. Golberg. The method of fundamental solutions for Poisson’s equation[J]. Engineering Analysis with Boundary Elements. 1995,16:205-213.
    [41] Babu?ka I, Melenk JM. The partition of unity methods [J]. Int. J. Numer. Meth. Eng., 1997, 40: 727-758.
    [42]张雄,刘岩,无网格法[M].北京:清华大学出版社,2004.
    [43] Kress. R. Linear Integral Equations[M]. Springer-Verlag: Berlin, Heidelberg, NewYork, 1989.
    [44] Alkiviadis. G. Akritas, Gennadi. I. Malaschonok. Applications of singular value decomposition (SVD) [J]. Mathematics and Computers in Simulation. 2004,67:15-31.
    [45] A. N. Tikhonov, V. B. Glasko. Use of the regularization method in non-linear problems [J],USSR Computational Mathematics and Mathematical Physics. 1965,5:93-107.
    [46] A. N. Tikhonov, V. Y. Arsenin. Solutions of ill-posed problems[M],Washington. DC, New York: V. H. Winston, Wiley; 1977. Translated from the Russian, Preface by translation editor Fritz J, Scripta Serics in Mathematics.
    [47] Engl HW, Hanke M, Neubauer A. Regularization of inverse problems[J]. Mathematics and its applications. 1996,375. Dordrecht: Kluwer Academic publisher.
    [48] W.Chen and M.Tanaka, New Insights in Boundary-only and Domain-type RBF Methods[J], Int J Nonlinear Sci Numer Simul 2000; 1(3):145-52.
    [49] W. Chen, L.J. Shen, Z.J. Shen, G.W. Yuan. Boundary knot method for Poisson equations[J], Engineering Analysis with Boundary Elements. 2005,25:756-760.
    [50] W. Chen, Y. C. Hon. Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection–diffusion problems[J], Computer Methods in Applied Mechanics and Engineering. 2003,192:1859-1875.
    [51] Ramachandran PA, Balakrishnan K. Radial basis functions as approximate particular solutions:review of recent progress. Eng Anal Bound Elem 2000; 24:575-582.
    [52] D. L. Young, S. J. Jane. The method of fundamental solutions for 2D and 3D Stokes problems[J], Journal of Computational Physics. 2006,211:1-8.
    [53] C. C. Tsai, D. L. Young. The method of fundamental solutions for eigen problems in domains with and without interior holes[J], Proc. R. Soc. A. 2006,462: 1443-1466.
    [54] Xiaolin Li, Jialin Zhu. The method of fundamental solutions for nonlinear elliptic problems[J], Engineering Analysis with Boundary Elements. 2008, doi:10.1016.
    [55] S. Yu. Reutskiy. The method of fundamental solutions for problems of free vibrations of plates[J], Engineering Analysis with Boundary Elements. 2007,31:10-21.
    [56]许永林,唐锦春.域外奇点法及格林公式法解薄板弯曲问题[J].计算结构力学及其应用,1986.3(2):49-55.
    [57]卢西林,杜庆华无奇异边界元法薄板弯曲问题[J].清华大学学报,1989,6(3): 32-37.
    [58]王有成等,边界元技术中的全特解场法[J].力学学报,1995,27(4):33-37.
    [59]王有成.边界元技术新探--边界点方法[J].力学与实践,1997,19(4):42-46.
    [55]孙焕纯,张立洲,许强,张耀明著,无奇异边界元法.[M]大连:大连理工大学出版社.1999:1-25.
    [60] Cheng AHD. Particular solutions of Laplacian, Helmholtz-type, and poly-harmonic operators involving higher order radial basis functions[J]. Eng Anal Bound Elem. 2000,24:531-8.
    [61] Franke C, Schaback R. Solving partial differential equations by collocation using radial basis functions[J]. Appl. Math. Comput.1998(93):73~82.
    [62] Coleman C J.On the use of radial basis functions in the solution of elliptic boundary value problems[J].Comput.Mech.,1996,(17):418~422.
    [63] Wu Z M. Solving PDE with radial basis function and the error estimation[C]. In:Chen Z,Li Y,Micchelli CA et al.(eds.). Advances in Computational Mathematics, Lecture Notes on Pure and Applied Mathematics.Guangzhou,1998.202.
    [64] Wu Z M.Schaback R. Local error estimates for radial basis function interpolation of scattered data[J].IMA Journal of Numerical Analysis,1993(13):13~27.
    [65] Chen W. Symmetric boundary knot method[J]. Engng. Anal. Bound. Elem.,2002(6):489~494.
    [66] Chen W. Meshfree boundary particle method applied to Helmholtz problems[J].Engng.Anal. Bound.Elem.,2002,26(7):577~581.
    [67] Chen W,Tanaka M. A meshless,integration-free and boundary–only RBF technique[J]. Comput Math Appl 2002(43):379-91.
    [68] W. Chen, M. Tanaka. New Insights in Boundary-only and Domain-type RBF Methods[J], J. Nonlinear Sci. & Numer. Simulation. 2000,1:145-151.
    [69] Angelika Bunse-Gerstner, William B. Gragg. Singular value decompositions of complex symmetric matrices[J], Journal of Computational and Applied Mathematics. 1988,21:41-54.
    [70] Victor Isakov. Completeness of products of solutions and some inverse problems for PDE[J], Journal of Differential Equations. 1991,92:305-312.
    [71] M. Eller, V. Isakov, G. Nakamura, D. Tataru. Uniqueness and stability in the cauchy problem for maxwell and elasticity systems[J], Studies in Mathematics and Its Applications. 2002,31:329-349.
    [72] A. N. Tikhonov. The stability of algorithms for the solution of degenerate systems of linear algebraic equations[J], USSR Computational Mathematics and Mathematical Physics. 1967, 7:267-273.
    [73] Ming-Chih Lai, His-Chi Liu. Fast direct solver for the biharmonic equation on a disk and its application to incompressible flows[J], Applied Mathematics and Computation. 2005, 164:679-695.
    [74]李小林,林鑫,祝家麟,张永兴.双调和方程的无网格解法,重庆大学学报. 2007,30:80-83.
    [75] Ting Wei, Y. C. Hon, Leevan Ling. Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators[J], Engineering Analysis with Boundary Elements. 2007,31:373-385.
    [76] Cheng AHD. Particular solutions of Laplacian, Helmholtz-type, and poly-harmonic operators involving higher order radial basis functions[J]. Eng Anal Bound Elem, 2000;24:531-538.
    [78] Girault V, Raviart P A. Finite element Approximation of the Navier-Stokes Equation[M]. Berlin: Springer-Verlag, 1979.
    [79] Teman R. Navier-Stokes Equations[M]. North-Holland, 1977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700