醌类化合物催化氧化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
醌类化合物广泛存在于自然界中,是生物体内重要的电子转移和递氢体,广泛参与脱氢氧化反应,研究其催化氧化性能具有重要的理论价值和应用前景。本论文旨在通过对醌类化合物催化性能的研究,开发温和条件下,以分子氧为氧化剂的催化氧化有机催化体系。
     论文首先研究了醌类化合物和N-羟基邻苯二甲酰亚胺(NHPI)组成的催化体系催化烃类化合物加氧化反应的性能。结果表明,具有缺电子取代基的2,3-二氯-5,6-二氰基对苯醌(DDQ)和NHPI组成的催化体系,在乙苯氧化反应中表现出了较好的催化活性。在80℃和0.3 MPa氧气压力下,反应10小时后,乙苯转化率达到72.2%,苯乙酮选择性达92.3%。采用紫外可见光谱技术,证实了醌类化合物和NHPI之间确实存在一定的作用力,DDQ促进了NHPI向PINO的转化,从而促进了反应的进行。并将该催化体系用于烯烃、芳烃侧链等化合物的氧化,同样表现出较好的活性,表明该催化体系具有较好的底物普适性。
     通过考察取代基位阻效应的影响,发现醌环上引入位阻大的取代基之后,可以阻止自由基与醌环上C=C双键的反应,有利于其催化性能的发挥。然而,数目过多、体积过大的取代基又阻碍了醌环上反应中心与底物的接触,降低了其催化性能。
     本论文还研究了醌催化分子氧氧化醛生成羧酸、维生素C生成脱氢抗坏血酸的反应,证明了醌类化合物也可以高效催化这些过程。
Quinones are ubiquitous in nature, which play an important role in transfer of electron and hydrogen atom in biochemical dehydrogenation redox process. Therefore, study of the catalytic performance of quinones is very necessary from the views of academic and application. This thesis is dedicated to develop a new organocatalyst system for hydrocarbon oxidation using molecular oxygen as oxidant under mild conditions through the study of the catalytic properties of quinones.
     Firstly, the catalytic property of quinones was investigated in the oxidation of hydrocarbons using quinones combined with N-hydroxyphthalimide (NHPI) as catalyst.72.2% conversion with 92.3% selectivity for acetophenone was obtained in ethylbenzene oxygenation catalyzed by NHPI and 2,3-dichloro-5,6-dicyano-benzoquinone (DDQ) under 0.3 MPa of molecular oxygen at 80℃for 10 h. UV/Vis spectroscopy of the catalytic system indicated that there was interaction between quinones and NHPI, and DDQ accelerated the generation of free radical phthalimido-N-oxyl (PINO) by abstracting a hydrogen atom from NHPI. In addition, the catalytic system DDQ/NHPI also exhibited excellent catalytic activity in the selective oxidation of alkene and the alkyl of aromatic hydrocarbon.
     The study on the steric effects of substituents of quinones showed that sterically-hindered substituents reduced the chance of elimination of radicals by C=C double bonds in the quinone ring, which is related to the catalytic performance of quinones. On the other hand, too many substituents hindered the contact between the reaction center of quinone (C=O) and the reactant, which led to the decrease of the catalytic activity.
     In addition, the oxidation of aldehyde to carboxylic acid and of ascorbate to dehydroascorbic acid catalyzed by quinone also was researched. Quinone showed high efficiency in these oxidation reactions.
引文
[1]Crabtree R H. Alkane C-H activation and functionalization with homogeneous transition metal catalysts:a century of progress-a new millennium in prospect [J]. J. Chem. Soc., Dalton Trans.,2001,2437-2450.
    [2]Labinger J A, Bercaw J E. Understanding and exploiting C-H bond activation [J]. Nature, 2002,417:507-514.
    [3]Coperet C. C-H bond activation and organometallic intermediates on isolated metal centers on oxide surfaces [J]. Chem. Rev.,2010,110:656-680.
    [4]Parshall G W, Ittel S D. Homogeneous catalysis,2nd ed [M]. New York:John Wiley and Sons,1992, p.246.
    [5]Fokin A A, Schreinerb P R. Metal-free, selective alkane functionalizations [J].Adv. Synth. Catal.,2003,345:1035-1052.
    [6]Dalko P I, Moisan L.. In the golden age of organocatalysis [J]. Angew. Chem. Int. Ed., 2004,43:5138-5175.
    [7]Juhl K, Jorgensen K A. The first organocatalytic enantioselective inverse-electron-demand hetero-Diels-Alder reaction [J]. Angew. Chem. Int. Ed.,2003,42:1498-1501.
    [8]Thayumanavan R, Dhevalapally B, Sakthivel K, Tanaka F, Barbas C F. Amine-catalyzed direct Diels-Alder reactions of α,β-unsaturated ketones with nitro olefins [J]. Tetrahedron Lett.,2002,43:3817-3820.
    [9]Trost B M, Mino T. Desymmetrization of meso 1,3-and 1,4-diols with a dinuclear zinc asymmetric catalyst [J]. J. Am. Chem. Soc.,2003,125:2410-2411.
    [10]Northrup A B, MacMillan D W C. The first general enantioselective catalytic Diels-Alder reaction with simple α,β-unsaturated ketones [J]. J. Am. Chem. Soc.,2002,124: 2458-2460.
    [11]Benaglia M, Celentano G, Cinquini M, Puglisi A, Cozzi F. Poly (ethylene glycol)-supported chiral imidazolidin-4-one:an efficient organic catalyst for the enantioselective Diels-Alder cycloaddition [J]. Adv. Synth. Catal.,2002,344:149-152.
    [12]Selkala S A, Tois J, Pihko P M, Koskinen A M P. Asymmetric organocatalytic Diels-Alder reactions on solid support [J]. Adv. Synth. Catal.,2002,344:941-945.
    [13]Shu L H, Shi Y. Asymmetric epoxidation using hydrogen peroxide (H2O2) as primary oxidant [J]. Tetrahedron Lett.,1999,40:8721-8724.
    [14]Shu L H, Shi Y. An efficient ketone-catalyzed epoxidation using hydrogen peroxide as oxidant [J]. J. Org. Chem.,2000,65:8807-8810.
    [15]Lu X H, Xu G, Tang Z R, Xia Q H, Zhan H J, Zhang Q, Pang T. Non-metallic ketone compounds catalyzed selective epoxidation of styrene with dry air [J]. Catal. Lett.,2009, 132:487-491.
    [16]Usui Y, Sato K, Tanaka M. Catalytic dihydroxylation of olefins with hydrogen peroxide: an organic-solvent-and metal-free system [J]. Angew. Chem. Int. Ed.,2003,42: 5623-5625.
    [17]Itoh A, Hashimoto S, Kuwabara K, Kodama T Masaki Y. Facile solar oxidation of alcohols with molecular oxygen [J]. Green Chem.,2005,7:830-832.
    [18]Chrobok A, Baj S, Pudlo W, Jarze A. Supported hydrogensulfate ionic liquid catalysis in Baeyer-Villiger reaction [J]. Appl. Catal. A:Gen.,2009,366:22-28.
    [19]Cecchetto A, Fontana F, Miniscia F, Recupero F. Efficient Mn-Cu and Mn-Co-TEMPO-catalysed oxidation of alcohols into aldehydes and ketones by oxygen under mild conditions [J]. Tetrahedron Lett.,2001,42:6651-6653.
    [20]Coseri S, Mendenhall G D, Ingold K U. Mechanisms of reaction of aminoxyl (nitroxide), iminoxyl, and imidoxyl radicals with alkenes and evidence that in the presence of lead tetraacetate,N-hydroxyphthalimide reacts with alkenes by both radical and nonradical mechanisms [J]. J. Org. Chem.,2005,70:4629-4636.
    [21]Nagasawa T, Allakhverdiev S I, Kimura Y, Nagata T. Photooxidation of alcohols by a porphyrin/quinone/TEMPO system [J]. Photochem. Photobiol. Sci.,2009,8:174-180.
    [22]Liu R H, Liang X M, Dong C Y, Hu X Q. Transition-metal-free:a highly efficient catalytic aerobic alcohol oxidation process [J]. J. Am. Chem. Soc.,2004,126:4112-4113.
    [23]Liu R H, Dong C Y, Liang X M, Wang X J, Hu X Q. Highly efficient catalytic aerobic oxidations of benzylic alcohols in water [J]. J. Org. Chem.,2005,70:729-731.
    [24]Toribio P P, Gimeno G A, Capel S M C, Frutos M P, Campos M J M, Fierro J L G. Ethylbenzene oxidation to its hydroperoxide in the presence of N-hydroxyimides and minute amounts of sodium hydroxide [J]. Appl. Catal. A:Gen.,2009,363:32-39.
    [25]Sakaguchi S, Nishiwaki Y, Kitamura T, Ishii Y. Efficient catalytic alkane nitration with NO2 under air assisted by. N-hydroxyphthalimide [J]. Angew. Chem. Int. Ed.,2001,40: 222-224.
    [26]Tsujimoto S, Sakaguchi S, Ishii Y. Addition of aldehydes and their equivalents to electron-deficient alkenes using N-hydroxyphthalimide (NHPI) as a polarity-reversal catalyst [J]. Tetrahedron Lett.,2003,44:5601-5604.
    [27]Minisci F, Recupero F, Punta C, Gambarotti C, Antonietti F, Fontanab F, Pedullic G F. A novel, selective free-radical carbamoylation of heteroaromatic bases by Ce (IV) oxidation of formamide, catalysed by N-hydroxyphthalimide [J]. Chem. Commun.,2002, 2496-2497.
    [28]Ishii Y, Sakaguchi S, Iwahama T. Innovation of hydrocarbon oxidation with molecular oxygen and related reactions [J]. Adv. Synth. Catal.,2001,343:393-427.
    [29]Matsunaka K, Iwahama T, Sakaguchi S, Ishii Y. A remarkable effect of quaternary ammonium bromide for the N-hydroxyphthalimide-catalyzed aerobic oxidation of hydrocarbons [J]. Tetrahedron Lett.,1999,40:2165-2168.
    [30]Sheldon R A, Arends I W C E. Organocatalytic oxidations mediated by nitroxyl radicals [J]. Adv. Synth. Catal.,2004,46:1051-1071.
    [31]Zheng G X, Liu C H, Wang Q F, Wang M Y, Yang G Y. Metal-free:an efficient and selective catalytic aerobic oxidation of hydrocarbons with oxime and N-hydroxyphthalimide [J]. Adv. Synth. Catal.,2009,351:2638-2642.
    [32]Yang X M, Zhou L P, Chen Y, Chen C, Su Y L, Miao H, Xu J. A promotion effect of alkaline-earth chloride on N-hydroxyphthalimide-catalyzed aerobic oxidation of hydrocarbons [J]. Catal. Commun.,2009,11:171-174.
    [33]Piera J, Backvall J-E. Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer-A biomimetic approach [J]. Angew. Chem. Int. Ed.,2008,47:3506-3523.
    [34]Swanson M A, Usselman R J, Frerman F E, Eaton G R, Eaton S S. The iron-sulfur cluster of electron transfer flavoprotein-ubiquinone oxidoreductase is the electron acceptor for electron transfer flavoprotein [J]. Biochemistry,1998,37:7351-7362.
    [35]Yuasa J, Yamada S, Fukuzumi S. Detection of a radical cation of an NADH analogue in two-electron reduction of a protonated p-quinone derivative by an NADH analogue [J]. Angew. Chem. Int. Ed.,2008,47:1068-1071.
    [36]Tao M, Casutt M S, Fritz G, Steuber J. Oxidant-induced formation of a neutral flavosemiquinone in the Na+-translocating NADH:Quinone oxidoreductase (Na+-NQR) from vibrio cholerae [J]. Biochim. Biophys. Acta.,2008,1777:696-702.
    [37]Lenaz G, Genova M L. Mobility and function of coenzyme Q (ubiquinone) in the mitochondrial respiratory chain [J]. Biochim. Biophys. Acta, Bioenerg.,2009,1787: 563-573.
    [38], Lu J M, Rosokha S V, Neretin I S, Kochi J K. Quinones as electron acceptors. X-ray structures, spectral (EPR, UV-vis) characteristics and electron-transfer reactivities of their reduced anion radicals as separated vs contact ion pairs [J]. J. Am. Chem. Soc.,2006,128: 16708-16719.
    [39]Kern M, Simon J. Electron transport chains and bioenergetics of respiratory nitrogen metabolism in wolinella succinogenes and other epsilonproteobacteria [J]. Biochim. Biophys. Acta.,2009,1787:646-656.
    [40]Lee C, Guo H, Chen L, Mandal B K. Novel zinc phthalocyanine-benzoquinone rigid dyad and its photoinduced electron transfer properties [J]. J. Org. Chem.,2008,73:8219-8227.
    [41]Pigamoa A, Bessona M, Blanca B, Gallezota P, Blackburn A, Kozynchenko O, Tennison S, Crezee E. Effect of oxygen functional groups on synthetic carbons on liquid phase oxidation of cyclohexanone [J]. Carbon,2002,40:1267-1278.
    [42]Aguilar C, Garcia R, Soto G G, Arraigada R. Catalytic oxidation of aqueous methyl and dimethylamines by activated carbon [J]. Top. Catal.,2005,33:201-206.
    [43]Pereira M F R, Qrfao J J M, Figueiredo J L. Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. I. Influence of surface chemical groups [J]. Appl. Catal. A: Gen.,1999,184:153-160.
    [44]Kumar V, Sharma A, Sharma M, Sharma U K, Sinha A K. DDQ catalyzed benzylic acetoxylation of arylalkanes:a case of exquisitely controlled oxidation under sonochemical activation [J]. Tetrahedron,2007,63:9718-9723.
    [45]Takeya T, Kondo H, Otsuka T, Doi H, Okamoto I, Kotani E. Reactions of 1-naphthols with p-acceptor p-benzoquinones:oxidative aryl coupling vs. non-oxidative electrophilic arylation [J]. Chem. Pharm. Bull.,2005,53:199-206.
    [46]Zhu Z B, Shi M. Palladium (Ⅱ) acetate catalyzed tandem cycloisomerization and oxidation of arylvinylcyclopropenes using p-benzoquinone as oxidant and pro-nucleophile [J]. Org. Lett.,2009,11:5278-5281.
    [47]Yokota T, Fujibayashi S, Nishiyama Y, Sakaguchi S, Ishii Y. Molybdovanadophosphate (NPMoV)/hydroquinone/O2 system as an efficient reoxidation system in palladium-catalyzed oxidation of alkenes [J]. J. Mol. Catal. A:Chem.,1996,114:113-122.
    [48]Csjernyik G, Ell A H, Fadini L, Pugin B, Backvall J E. Efficient ruthenium-catalyzed aerobic oxidation of alcohols using a biomimetic coupled catalytic system [J]. J. Org. Chem.,2002,67:1657-1662.
    [49]Backvall J-E, Hopkins R B. Multi-step catalysis for the oxidation of oleftns to ketones by molecular oxygen in chloride free media [J]. Tetrahedron Lett.,1988,29:2885-2888.
    [50]Backvall J-E, Hopkins R B, Grennberg H, Mader M, Awasthi A K. Multistep electron transfer in palladium-catalyzed aerobic oxidations via a metal macrocycle quinone system [J]. J. Am. Chem. Soc.,1990,112:5160-5166.
    [51]Karlsson U, Wang G Z, Backvall J-E. Ruthenium-catalyzed oxidation of nonactivated alcohols by MnO2 [J]. J. Org. Chem.,1994,59:1196-1198.
    [52]An Z J, Pan X L, Liu X M, Han X W, Bao X H. Combined redox couples for catalytic oxidation of methane by dioxygen at low temperatures [J]. J. Am. Chem. Soc.,2006,128: 16028-16029.
    [53]Fan Y F, An Z J, Pan X L, Liu X M, Bao X H. Quinone tailored selective oxidation of methane over palladium catalyst with molecular oxygen as an oxidant [J]. Chem. Commun.,2009,1-3.
    [54]Yang G, Ma H, Xu J. Biomimetic catalytic system driven by electron transfer for selective oxygenation of hydrocarbon [J]. J. Am. Chem. Soc.,2004,126:10542-10543.
    [55]Yang G, Zhang Q, Miao H, Tong X, Xu J. Selective organocatalytic oxygenation hydrocarbons by dioxygen using anthraquinones and N-hydroxyphthalimide [J]. Org. Lett., 2005,7:263-266.
    [56]Zhou L P, Chen Y, Yang X M, Su Y L, Zhang W, Xu J. Electronic effect of substituent of quinones on their catalytic performance in hydrocarbons oxidation [J]. Catal. Lett.,2008, 125:154-159.
    [57]Zhang Q H, Chen C, Ma H, Miao H, Zhang W, Sun Z Q, Xu J. Efficient metal-free aerobic oxidation of aromatic hydrocarbons utilizing aryl-tetrahalogenated N-hydroxyphthalimides and 1,4-diamino-2,3-dichloroanthraquinone [J]. J. Chem. Technol. Biotechnol.,2008,83: 1364-1369.
    [58]Zhang W, Ma H, Zhou L P, Sun Z Q, Miao H, Xu J. Organocatalytic oxidative dehydrogenation of dihydroarenes by dioxygen using 2,3-dichloro-5,6-dicyano-benzoquinone (DDQ) and NaNO2 [J]. Molecules,2008,13: 3236-3245.
    [59]Bueno A C, Brandao B, Gusevskaya E V. Aromatization of para-menthenic terpenes by aerobic oxidative dehydrogenation catalyzed by p-benzoquinone [J]. Appl. Catal. A:Gen., 2008,351:226-230.
    [60]Alegria A E, Cruz P S, Rivas L. Alkaline-earth cations enhance ortho-quinone-catalyzed ascorbate oxidation [J]. Free Radic. Biol. Med.,2004,37:1631-1639.
    [61]杨贯羽.用于烃类选择加氧化反应的仿生催化体系研究[D].[博士学位论文],大连:中国科学院大连化学物理研究所,2005,76-77.
    [62]Evans S, Smith J R L. The oxidation of ethylbenzene by dioxygen catalysed by supported iron porphyrins derived from iron (Ⅲ) tetrakis (pentafluorophenyl) porphyrin [J]. J. Chem. Soc., Perkin Trans.,2001,2:174-180.
    [63]Sladic D, Gasic M J. Reactivity and biological activity of the marine sesquiterpene hydroquinone avarol and related compounds from sponges of the order dictyoceratida [J]. Molecules,2006,11:1-33.
    [64]DuBois L, Klinman J P. The nature of O2 reactivity leading to topa quinone in the copper amine oxidase from hansenula polymorpha and its relationship to catalytic turnover [J]. Biochemistry,2005,44:11381-11388.
    [65]Song Y, Wagner B A, Lehmler H J, Buettner G R. Semiquinone radicals from oxygenated polychlorinated biphenyls:electron paramagnetic resonance studies [J]. Chem. Res. Toxicol.,2008,21:1359-1367.
    [66]Cao J, Lu H Y, Chen C F. Synthesis, structures, and properties of peripheral o-dimethoxy-substituted pentiptycene quinones and their o-quinone derivatives [J]. Tetrahedron,2009,65:8104-8112.
    [67]Matsushita K, Kobayashi Y, Mizuguchi M, Toyama H, Adachi O, Sakamoto K, Miyoshi H. A tightly bound quinone functions in the ubiquinone reaction sites of quinoprotein alcohol dehydrogenase of an acetic acid bacterium, gluconobacter suboxydans [J]. Biosci. Biotechnol. Biochem.,2008,72:2723-2731.
    [68]Recupero F, Punta C. Free radical functionalization of organic compounds catalyzed by N-hydroxyphthalimide [J]. Chem. Rev.,2007,107:3800-3842.
    [69]Nechab M, Einhorn C, Einhorn J. New aerobic oxidation of benzylic compounds:efficient catalysis by N-hydroxy-3,4,5,6-tetraphenylphthalimide (NHTPPI)/CuCl under mild conditions and low catalyst loading [J]. Chem. Commun.,2004,1500-1501.
    [70]Briere J J, Schlemmer D, Chretien D, Rustin P. Quinone analogues regulate mitochondrial substrate competitive oxidation [J]. Biochem. Biophys. Res. Commun.,2004,316: 1138-1142.
    [71]Walker D, Hiebert J D.2,3-Dichloro-5,6-dicyanobenzoquinone and its reactions [J]. Chem. Rev.,1967,67:153-195.
    [72]Joshi B P, Sharma A, Sinha A K. Efficient one-pot, two-tep synthesis of (E)-cinnmaldehydes by dehydrogenation-oxidation of arylpropanes using DDQ under ultrasonic irradiation [J]. Tetrahedron,2006,62:2590-2593.
    [73]Zhang Y, Li C. DDQ-mediated direct cross-dehydrogenative-coupling (CDC) between benzyl ethers and simple ketones [J]. J. Am. Chem. Soc.,2006,128:4242-4243.
    [74]Li Y, Bao W. A highly efficient, metal-free and convenient diarylallyl ether thioether formation via oxidative C-H activation [J]. Adv. Synth. Catal.,2009,35:865-868.
    [75]Denisov E. Reactivity of quinones as alkyl radical acceptors [J]. Kinet. Catal.,2006,47: 662-671.
    [76]Marco L, Flammetta F, Gian F P. Metal free in situ formation of phthalimide N-oxyl radicals by light-induced homolysis of N-alkoxyphthalimides [J]. Tetrahedron Lett.,2007, 48:5331-5334.
    [77]Verrax F, Delvaux M, Beghein N, Taper H, Gallez B, Calderon P B. Enhancement of quinone redox cycling by ascorbate induces a caspase-3 independent cell death in human leukaemia cells. An in vitro comparative study [J]. Free Radical Res.,2005,39:649-657.
    [78]Figiel P J, Sobczak J M. Mechanistic investigation of the catalytic system based on N-hydroxy-phthalimide with vanadium co-catalysts for aerobic oxidation of alcohols with dioxygen [J]. J. Catal.,2009,263:167-172.
    [79]Ohno A, Oda S, Ishikawa Y, Yamazaki N. NAD(P)+-NAD(P)H models.90. stereoselection controlled by electronic effect of a carbonyl group in oxidation of NAD(P)H analog [J]. J. Org. Chem.,2000,65:6381-6387.
    [80]Takemoto T, Yasuda K, Ley S V. Solid-supported reagents for the oxidation of aldehydes to carboxylic acids [J]. Syn. Lett.,2001,10:1555-1556.
    [81]Jursic B. Surfactant-assisted permanganate oxidation of aromatic compounds [J]. Can. J. Chem.,1989,67:1381-1383.
    [82]Gupta K K S, Dey S, Gupta S S, Adhikari M, Banerjee A. Evidence of esterification during the oxidation of some aromatic aldehydes by chromium (Ⅵ) in acid medium and the mechanism of the oxidation process [J]. Tetrahedron,1990,46:2431-2444.
    [83]Hurd C D, Garrett J W, Osborne E N. Furan reactions. Ⅳ. Furoic acid from furfural [J]. J. Am. Chem. Soc.,1933,55:1082-1084.
    [84]Babu B R, Balasubramaniam K K. Simple and facile oxidation of aldehydes to carboxylic acids [J]. Org. Prep. Proced. Int.,1994,26:123-125.
    [85]Bayle J P, Perez F, Courtieu J. Oxidation of aldehydes by sodium chlorite [J]. Bull. Soc. Chim. Fr.,1990,4:565-567.
    [86]Joseph J K, Jain S L, Sain B. Novel transition metal free oxidation of aromatic aldehydes to carboxylic acids using N-methylpyrrolidin-2-one hydrotribromide (MPHT) as catalyst and hydrogen peroxide as oxidant [J]. Catal. Commun.,2007,8:83-87.
    [87]Sato K, Hyodo M, Takagi J, Aoki M, Noyori R. Hydrogen peroxide oxidation of aldehydes to carboxylic acids:an organic solvent-, halide-and metal-free procedure [J]. Tetrahedron Lett.,2000,41:1439-1442.
    [88]Mannam S, Sekar G. CuCl catalyzed oxidation of aldehydes to carboxylic acids with aqueous tert-butyl hydroperoxide under mild conditions [J]. Tetrahedron Lett.,2008,49: 1083-1086.
    [89]Hu X Q, Wang J W, Zhou N, Zhao C X. Oxidation of 1-methoxy-2-propanol to methoxyacetone catalyzed by Na2WO4-H2O2 acid system [J]. J. Mol. Catal.,2001,15: 481-483.
    [90]Tian Q Y, Shi D X, Sha Y W. CuO and Ag2O/CuO catalyzed oxidation of aldehydes to the corresponding carboxylic acids by molecular oxygen [J]. Molecules,2008,13:948-957.
    [91]李存法,韩恩远.金属卟啉配合物对苯甲醛氧化的催化性能[J].化学研究,2004,15(3):39-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700