取代邻溴苯乙炔的合成及其在取代吲哚啉合成中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文在广泛查阅国内外文献资料的基础上,对取代邻溴苯乙炔的应用合成以及吲哚啉类化合物的应用和合成进行了综合评述,成功地发展了一种以取代邻溴苯乙烯为原料经过两步反应合成相应的取代邻溴苯乙炔的新方法,并发展了一种以取代邻溴苯乙炔为原料在碘化亚铜催化下一锅法合成取代吲哚啉的多组分反应。
     以取代的邻溴苯乙烯为原料,在室温下以四氯化碳为反应溶剂与单质溴反应定量地得到加成产物,该加成产物在室温下以无水四氢呋喃为溶剂与三当量的叔丁醇钾反应,高产率地得到相应的邻溴苯乙炔。该方法具有原料易得、条件温和、操作简便和产率较高等优点。
     以碘化亚铜为催化剂,邻溴苯乙炔、磺酰叠氮和伯胺在室温下发生三组分反应,所生成的中间体继而加入催化量的碘化亚铜和脯氨酸及两当量的碳酸钾,加热至60℃反应两小时后,即得目标产物取代的吲哚啉。该方法具有适用性好,反应条件温和及分子收敛性好等优点。
The thesis has made collective reviews on the application and synthetic methods of substituted o-bromophenylacetylenes,as well as the application and synthetic methods of indolines, which were based on the comprehensive study of related domestic and abroad articles. A novel two-step synthesis of substituted o-bromophenylacetylenes from o-bromostyrenes has been successfully developed. Catalyzed by iodide copper, substituted indolines could be abtained from o-bromophenyl- acetylenes participated one-pot multicomponent reactions.
     Used as raw materials, substituted o-bromostyrenes treated with bromine could quantitively afford corresponding addition products in CCl4 solvent at room temperature. Substituted o-bromophenyl- acteylenes could be abtained in high yields when the addition products were treated with three equivalents of potassium tert-butoxide in dry THF at room temperature. Our procedure has some advantages, such as readily available raw materials, mild reaction condition, ease of operation, and high yields.
     Catalyzed by iodide copper, the three-component reactions of o-bromophenylacteylenes, sulfonyl azides, and primary amines readily occurred. To the reaction solution were then added iodide copper, L-proline, and two equivalents of potassium carbonate. The substituted indoline products could be abtained after the mixtures were stired under 60℃under N2 for 2 h. Our procedure has some advantages, such as reaction generality, mild reaction condition, and high convergency.
引文
[1] Gerwick W H, Hall J A, Learmonth A R, et al. 2-chloro-1,6(S*),8-tribromo- 3-(8)(Z)-ochtodene: a metabolite of the tropical red seaweed ochtodes second- iramea [J]. Phytochemistry, 1984, 23(6), 1323-1324.
    [2] Masakaza N, Kenzo H, Teruo U, et al. Synthesis and polymerization of 2,5-disubstituted phenylacetylenes containing trifluoromethyl groups [J]. J. Fluorine Chem. 1989, 43(1), 35-51.
    [3] Shin’ichi N, Matsuda K, Uesugi Y, et al. Synthesis and absorption/emission spectroscopic properties of bis(phenylethynyl)benzenes and 9,10-bis-(phenyl- ethynyl)anthracenes [J]. J. Chem. Soc., Perkin Trans.1, 1992, 7, 755-758.
    [4] Kinder J D, Tessier C A, Youngs W J. Synthesis of a para-Methoxy Substituted Tribenzocyclotriyne [J]. Synlett. 1993, 2, 149-150.
    [5] Guo L, John D, David B. Planar Silicon and Germanium Heterocyclotriynes and Their Isomorphous Nickel(0) Complexes [J]. Organometallics 1997, 16, 1685-1692.
    [6] Youngs W J, Tessier C A, Bradshaw J D. ortho-Arene Cyclynes, Related Heterocyclynes, and Their Metal Chemistry [J]. Chem.Rev. 1999, 99, 3153-3180.
    [7] Toshihiro O, Kenichi K, Atsushi W, et al. General synthesis of thiophene and selenophene-based heteroacenes [J]. Org. Lett. 2005, 7, 5301-5304.
    [8] Ramana-Reddy M V, Mallireddigari M R, Pallela V R. Design, synthesis, and biological evaluation of (E)-and (Z)-styryl-2-acetoxyphenyl sulfides and sulfones as cyclooxy- genase-2 inhibitors [J]. Bioorg. Med. Chem. 2005, 13, 1715–1723.
    [9] Jana U, Biswas S, Maiti S. Iron(III)-catalyzed addition of benzylic alcohols to aryl alkynes–A new synthesis of substituted arylketones [J]. Eur. J. Org. Chem. 2008, 34, 5798–5804.
    [10] Takahiron, Yosukew, Sakae U. Ruthenium/halide catalytic system for C-C bond forming reaction between alkynes and unsaturated carbonyl compounds [J]. Adv.Synth. Catal. 2007, 349, 25632571.
    [11] Hamze A, Veau D, Provot O, et al. Palladium-catalyzed Markovnikov terminalarylalkynes hydro- stannation: Application to the synthesis of 1,1-diarylethylenes [J]. J. Org. Chem. 2009, 74,1337–1340.
    [12] Iwadaten, Suginome M. Synthesis of B-protected styrylboronic acids via iridium catalyzed hydroboration of alkynes with 1,8-naphthalenediaminatoborane leading to iterative synthesis of oligo(phenyl- enevinylene)s [J]. Org. Lett. 2009, 11, 1899-1902.
    [13] Zhang Wen-xiong, Nishiura M, Hou Zhao-min. Synthesis of (Z)-1-aza-1,3- -enynes by the cross-coupling of terminal alkynes with isocyanides catalyzed by rare-earth metal complexes [J]. Angew. Chem. Int. Ed. 2008, 47, 9700–9703.
    [14] Niu Mingyu, Yin Zheng-ming, Fu Hua, et al. Copper-catalyzed coupling of tertiary aliphatic amines with terminalalkynes topropargylamines via C-H activation [J]. J. Org. Chem. 2008, 73, 3961– 3963.
    [15] Manolikakes G, Hernandez C M, Schade M A. Palladium and nickel catalyzed cross-couplings of unsaturated halides bearing relatively acidic protons with organozinc reagents [J]. J. Org. Chem. 2008, 73, 8422– 8436.
    [16] Sanji T, Shiraishi K, Kashiwabara T, et al. Base-mediated cyclization reaction of 2-alkynyl-phenylphosphine oxides: Synthesis and photophysical properties of benzo[b]phosphole oxides [J]. Org. Lett. 2008, 10, 2689-2692.
    [17] Kim J, Lee S Y, LEE J. et al. Synthetic utility of ammonium salts in a Cu-catalyzed three-component reaction as a facile coupling partner [J]. J. Org. Chem. 2008, 73, 9454–9457.
    [18] Mao G L , Orita A , Matsuo D, et al. Synthesis and spectroscopic study of silacyclyne-substituted phenyleneethynylenes [J]. Tetrahedron Lett. 2009. 50, 2860–2864.
    [19]刘林.苯乙炔衍生物的合成[J].四川化工. 1995, 4, 2-6.
    [20] Gavrilov L D, et al. J. Chem. Soc. 1979, 478-480; Masakatsu M, Keiko K. A convenient synthesis of 1-bromoolefins and acetylenes by a chain extension of aldehydes [J]. Tetrahedron Lett. 1980, 21, 4021-4024.
    [21] Jacabs T L. [J]. Organic Reaction. 1949, 5, 50-51; Mahabbat A, et al. [J]. Dhaka. Univ. Stud., Part B. 1991, 39(1), 77-80.
    [22] Shvartsberg M S, et al. [J]. Izverst Akad. Nauk SSSR., Serkhim. 1971, 6, 1306-1310; EI Gharbi R, Delmas M., Gaset A. Condensation of Substituted Styrenes with Aliphatic and Aromatic Aldehydes; An Extension of the Prins Reaction [J]. Synthesis. 1981, 361-365; JP. 01301638.
    [23] Kurihara T, Ebisawa F, Tabei H [P]. Jpn. Kokai Tokkyo Koho. JP 60217213 [85,217,213], 30 Oct 1985.
    [24] Masakazu N. Synthesis and polymerization of 2,5-disubstituted phenylacetylenes containing trifluoromethyl groups [J]. J. Fluorine Chem. 1989, 43(1), 35-51.
    [25] Kazuo Kodaira, Kunio Okuhara. Preparation of Fluorine-Containing Phenyl- acetylenes by the Method of Introduction of the Ethynyl Group Using 1,1-Dichloro-2,2-difluoroethene [J]. Bull. Chem. Soc. Jpn. 1988, 61(5), 1625-1631.
    [26] Alabugin I V, Gilmore K, Patil S, et al. Radical cascade transformations of tris(o-aryleneethynylenes) into substituted benzo[a]indeno[2,1-c]fluorenes [J]. J. Am. Chem. Soc. 2008, 130, 11535– 11545.
    [27] Ghaffarzadeh M, Bolourtchian M, Fard Z H. One-step synthesis of aromatic terminal alkynes from their corresponding ketones under microwave irradiation [J]. Synth. Commun. 2006, 36, 1973– 1981.
    [28] Quesada E, Raw S A, Reid M, et al. One-pot conversion of activated alcohols into 1,1-dibromoalkenes and terminal alkynes using tandem oxidation processes with manganese dioxide [J]. Tetrahedron 2006, 62, 6673–6680.
    [29] Chidester C G, Krueger W C, Mizsak S A. et al. The structure of CC-1065, a potent antitumor agent and its binding to DNA [J]. J. Am. Chem. Soc. 1981, 103, 7629-7635.
    [30] Li L H, Swenson D H, Schpok S L F, et al. CC-1065 (NSC 298223), a Novel Antitumor Agent That Interacts Strongly with Double-stranded DNA [J]. Cancer Res. 1982, 42, 999-1004.
    [31] Bhuyan B K, Newell K A, Crampton S L, Von Hoff D D. CC-1065 (NSC 298223), a Most Potent Antitumor Agent: Kinetics of Inhibition of Growth, DNA Synthesis, and Cell Survival [J]. Cancer Res. 1982, 42, 3532-3537.
    [32] Xiao Z, Hao Y, Liu B, et al. Indirubin and Meisoindigo in the Treatment of Chronic Myelogenous Leukemia in China [J]. Leuk Lymphoma, 2002, 43, 1763 -1768.
    [33]马新起,李明静等. 1,3,3-三甲基-2-亚甲基吲哚啉合成新工艺研究[J].化学通报. 1998, 6, 35-36.
    [34]孙宾宾,焦文锡,王明远.用三乙胺催化合成丙烯酰氧基吲哚啉螺萘并噁嗪染料[J].合成材料老化与应用. 2009, 38, 24-27.
    [35] Lanzilotti A E, Littell R, Fanshawe W J, et al. Stereoselective Reduction of Some Indoles with Triethylsilane-Trifluoroacetic Acid [J]. J. Org. Chem. 1979, 44, 4809-4813.
    [36] Coulton S, Gilchrist T L, Graham K. Catalytic Hydrogenation of N-t-Butoxycar- bonylindoles [J]. Tetrahedron 1997, 53, 791-798.
    [37] Kuwano R, Kaneda K, Takashi I, et al. Highly Enantioselective Synthesis of Chiral 3-Substituted Indolines by Catalytic Asymmetric Hydrogenation of Indoles [J]. Org. Lett. 2004, 6, 2213- 2215.
    [38] Zhang D W, Liebeskind L S. A Versatile Synthesis of 3-Substituted Indolines and Indoles [J]. J. Org. Chem. 1996, 61, 2594-2595.
    [39] Nakao J, Inoue R, Shinokubo H, et al. Trialkylmanganate-Induced Cyclization of Allyl 2-Iodophenyl Ether, N,N-Diallyl-2-iodoaniline, andα-Iodo Acetal [J]. J. Org. Chem. 1997, 62, 1910- 1911.
    [40] Uchiyama M, Kameda M, Mishima O. New Formulas for Organozincate Chemistry [J]. J. Am. Chem. Soc. 1998, 120, 4934-4946.
    [41] Bailey W F, Luderer M R, Mealy M J. Preparation of differentially 1,3-disub- stituted indolines by intramolecular carbolithiation [J]. Tetrahedron Lett. 2003, 44, 5303–5305.
    [42] Leroi C, Bertin D, Dufils P E, et al. Alkoxyamine- -Mediated Radical Synthesis of Indolinones and Indolines [J]. Org. Lett. 2003, 5, 4943-4945.
    [43] Tidwell J H, Buchwald S L. Synthesis of Polysubstituted Indoles and Indolines by Means of Zirconocene-Stabilized Benzyne Complexes [J]. J. Am. Chem. Soc. 1994, 116, 11797-11810.
    [44] Boger D L, Boyce C W, Garbaccio R M, et al. CC-1065 and the Duocarmycins: Synthetic Studies [J]. Chem. Rev. 1997, 97, 787-828.
    [45] Yip K T, Yang M, Law K L, et al. Pd(II)-Catalyzed Enantioselective Oxidative Tandem Cyclization Reactions. Synthesis of Indolines through C-N and C-C Bond Formation [J]. J. Am. Chem. Soc. 2006, 128, 3130-3131.
    [46] Hegedus L S, Allen G F, Olsen D J. [J]. J. Am. Chem. Soc. 1980, 102, 3583.
    [47] Padwa A, Brodney M A, Liu B, et al. A Cycloaddition Approach toward the Synthesis of Substituted Indolines and Tetrahydroquinolines [J]. J. Org. Chem. 1999, 64, 3595-3607.
    [48] Liu K G, Lo J R, Robichaud A J. One-pot synthesis of highly substituted indolines [J]. Tetrahedron 2010, 66, 573– 577.
    [1] Chauvelier, Janine. [J]. Ann. chim. 1948, 12(3), 393-444; Ruasse M F, Lefebvre E. Nucleophilic Contribution of the Solvent in Olefin Bromination. ReactivityDependence of the Nucleophilic Solvation in Bromination viaβ-Bromo Carbocations [J]. J. Org. Chem. 1984, 49, 3210-3212.
    [2] Cherkasova V A, Gurevich O I. [J]. Zh. Org. Khim., 6, 1169(1970); Pearson D E, Calvin A Buehler. Potassium tert-butoxide in synthesis [J]. Chem. Rev. 1974, 74(1),45-86.
    [3] Nicolai D, Stevens C V. Domino Ring-Closing Enyne-Metathesis- Cross- Metathesis Approach to 1-Phosphonylated Benzazepines [J]. Synlett, 2006, 17, 2771-2776.
    [4] (a) Bianchi D A, Cipulli M A, Kaufman T S. Model Studies Towards Stepha- oxocanes: Construction of the 2-Oxa-4-azaphenalene Core of Stepha- oxocanidine and Eletefine [J]. Eur. J. Org. Chem. 2003, 24, 4731-4736; (b) Effenberger F. How Attractive is Bromine as a Protecting Group in Aromatic Chemistry? [J]. Angew. Chem. Int. Ed. 2002, 41, 1699-1700; Angew. Chem. 2002, 114, 1775-1776; (c) Fleming I, Woolias M. A new synthesis of indoles particularly suitable for the synthesis of tryptamines and tryptamine itself [J]. J. Chem. Soc., Perkin Trans. 1, 1979, 829-837.
    [1]吴毓林,麻生明,戴立信.现代有机合成化学进展[M].北京:化学工业出版社,2005.
    [2]祝介平, H.别内梅.多组分反应[M].北京:化学工业出版社,2008.
    [3] Posner G H. Multicomponent one-pot annulations forming 3 to 6 bonds [J]. Chem. Rev. 1986, 86, 831-844.
    [4] Tietze L F. Domino reactions in organic synthesis [J]. Chem. Rev. 1996, 96, 115-136.
    [5] Dómling A. Recent developments in isocyanide based multicomponent reactions in applied chemistry [J]. Chem. Rev. 2006, 106, 17-89.
    [6] Fayol A, Zhu J P. Three-component synthesis of polysubstituted 6-azaindolines and its tricyclic derivatives [J]. Org. Lett. 2005, 7, 230-242.
    [7] Maclean D, Baldwin J J, Ivanov V T, et al. Glossary of terms used in combina- torial chemistry [J]. J. Comb. Chem. 2000, 2, 562-578.
    [8] Forstmeyer D, Bauer J, Ugi I, et al. Reaction of tropone with a homopyrrole. Theresult of a computer-assisted search for unique chemical reactions [J]. Angew. Chem. Int. Ed. 1988, 27, 1558-1559.
    [9] Yoo E J, Ahlquist M, Fokin V V, et al. Mechanistic studies on the Cu-catalyzed three-component reactions of sulfonyl azides, 1-alkynes and amines, alcohols, or water: Dichotomy via a common pathway [J]. J. Org. Chem. 2008, 73, 5520- 5528.
    [10] Bae I, Han H, Chang S. Highly efficient one-pot synthesis of N-sulfonylamidines by Cu-catalyzed three-component coupling of sulfonyl azide, alkyne, and amine [J]. J. Am. Chem. Soc. 2005, 127, 2038-2039.
    [11] Cui S L, Wang J, Wang Y G. Copper-catalyzed multicomponent reaction: Facile access to functionalized 5-arylidene-2-imino-3-pyrrolines [J]. Org. Lett. 2007, 9, 5023-5025.
    [12] Jin H W, Xu X L, Gao J R, et al. Copper-catalyzed one-Pot synthesis of substituted benzimidazoles [J]. Adv. Synth. Catal. 2010, 352(2), 347-350.
    [13] Whitels L M, Dougherty D A. Concerning the viability of 1,4,6,9-spiro- [4.4]nonatetrayl as a reactive intermediate. New biradical-to- -biradical rearrangements [J]. J. Am. Chem. Soc. 1984, 106, 3466-3474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700