活性可控自由基聚合制备聚丙烯腈
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯腈(PAN)是一种重要的高分子材料前驱体,具有优异的物理和化学性能。窄分子量分布是合成高性能PAN的必然要求。活性可控自由基聚合能够实现聚合物分子结构的精确设计,并能对聚合物的分子量进行预测,合成窄分子量分布的聚合物,因此是制备窄分子量分布PAN的理想聚合技术。本论文分别采用电子转移产生催化剂引发原子转移自由基聚合(AGET ATRP)技术和单电子转移活性自由基聚合(SET-LRP)技术合成窄分子量分布的PAN,并通过重量法计算单体丙烯腈的转化率,采用凝胶渗透色谱(GPC)法测定分子量和分子量分布,采用核磁共振光谱(1H NMR)表征PAN的结构。
     采用AGET ATRP,以丙烯腈(AN)为单体,四氯化碳(CCl_4)为引发剂,溴化铜(CuBr_2)/亚氨基二乙酸(IDA)为催化剂前体,抗坏血酸(VC)为还原剂,N,N-二甲基甲酰胺(DMF)为溶剂,在均相体系中合成窄分子量分布的PAN。动力学实验表明该聚合反应为一级动力学反应,PAN的分子量随着单体转化率的增加而线性增大,并且分子量分布较窄,显示活性可控聚合特征。实验还考察了配体、催化剂、引发剂、还原剂浓度和聚合温度对聚合反应的影响。研究发现:当[AN]:[CCl_4]:[CuBr_2]:[IDA]:[VC] = 200:1:1:2:0.75时,聚合反应的可控性最好,分子量分布为1.25;聚合反应速率随着聚合温度的升高而加快,聚合反应的表观活化焓为35.9 kJ/mol。
     采用AGET ATRP,以AN为单体,CCl_4为引发剂,三氯化铁(FeCl_3)/乳酸(LA)为催化剂前体,VC为还原剂,DMF为溶剂,在均相体系中合成窄分子量分布的PAN。动力学实验表明该聚合反应为一级动力学,PAN的分子量随着单体转化率的增加而线性增大,并且分子量分布窄,显示活性可控聚合特征。实验还考察了配体用量、引发剂用量、聚合温度以及不同配体对聚合反应的影响。研究发现:当[AN]:[CCl_4]:[FeCl_3]:[LA]:[VC] = 200:1:1:2:0.75时,聚合反应的可控性最好,分子量分布为1.20;聚合反应速率随聚合温度的升高而加快,聚合反应的表观活化焓为32 kJ/mol。
     采用AGET ATRP,通过“两步加料”法,以AN为单体,CCl_4为引发剂,氯化铜(CuCl_2)为催化剂,六亚甲基四胺(HMTA)为催化剂,VC为还原剂,聚氧乙烯月桂醚(Brij35)为乳化剂,在水介质乳液相中合成窄分子量分布的PAN。动力学实验表明该聚合反应为一级动力学反应,PAN的分子量随着单体转化率的增加而线性增大,并且分子量分布较窄,显示活性可控聚合特征。实验还考察了配体用量、聚合温度和单体浓度对聚合反应的影响。研究发现:当原料配比为[AN]:[CCl_4]:[CuCl_2]:[HMTA]:[VC] = 200:2:1:2:1.5时,聚合反应的可控性较好;聚合反应速率随着聚合温度的升高而加快,聚合反应的表观活化焓为65 kJ/mol。
     采用SET-LRP,以AN为单体,铜粉(Cu(0))为催化剂,CCl_4为引发剂,HMTA为配体,DMF或DMF与水的混合溶液为溶剂,在25°C或65°C下在非均相体系中合成窄分子量分布的PAN。动力学实验表明,两种温度下的聚合反应均为一级动力学反应,PAN分子量随转化率的增加而线性增大,分子量分布窄,具有活性可控自由基聚合特征。实验还考察了配体用量、催化剂用量、引发剂用量以及溶剂对聚合反应的影响。研究发现,单体转化率随配体HMTA浓度的增大而增大,当不加HMTA时,由于Cu(I)的歧化能力较弱,聚合反应几乎不发生;增大催化体系Cu(0)/HMTA的浓度,聚合反应速率加快,加入减活剂CuCl_2,聚合反应的可控性提高;单体转化率随CCl_4浓度增大而增大;水能提高混合溶剂的极性,进而加快聚合反应速率。
Polyacrylonitrile (PAN) is an important polymer precursor that possesses outstanding chemical and physical properties. Narrow polydispersity is an essential requirement for synthesis of high-performance PAN. The living/controlled radical polymerization proves to be the desired polymerization technique for PAN with low polydispersity, since it provides a route to the facile synthesis of well-defined polymers with definite architecture, predetermined molecular weight and narrow molecular weight distribution. In this ariticle, narrow polydispersity PAN was synthesized via activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP) and single electron transfer living radical polymerization (SET-LRP), respectively. The conversion was determined gravimetrically. The molecular weight and polydispersity index (PDI) of polymers were measured by gel permeation chromatography (GPC). The end-group of PAN was investigated via 1HNMR.
     Narrow polydispersity PAN was prepared via AGET ATRP in homogeneous system. The polymerization was conducted with acrylonitrile (AN) as the monomer, carbon tetrachloride (CCl_4) as the initiator, copper bromide (CuBr_2)/iminodiacetic acid (IDA) as the catalyst precursor and ascorbic acid (VC) as the reducing agent in solvent N,N-dimethylformamide (DMF). The first order kinetic plot demonstrated the features of living/controlled polymerization as evidenced by a linear increase of molecular weight with respect to monomer conversion and narrow molecular weight distribution. The effects of the amount of ligand, catalyst, initiator as well as reducing agent and polymerization temperature on the polymerization were also investigated. The experiments results showed that the ratio of [AN]:[CCl_4]:[CuBr_2]:[IDA]:[VC]=200:1:1:2:0.75 gave the best control on the polymerization with PDI at 1.25. The polymerization rate increased with increasing the polymerization temperature. The apparent activation enthalpy was calculated to be 35.9 kJ/mol.
     Narrow polydispersity PAN was prepared via AGET ATRP in in homogeneous system. The polymerization was carried out with AN as the monomer, CCl_4 as the initiator, ferric trichloride (FeCl_3)/lactic acid (LA) as the catalyst precursor and VC as the reducing agent in solvent DMF. The first order kinetic plot demonstrated the features of living/controlled polymerization as evidenced by a linear increase of molecular weight with respect to monomer conversion and narrow molecular weight distribution. The effects of the amount of ligand and initiator, polymerization temperature and different ligands on the polymerization were also studied. When the ratio of [AN]:[CCl_4]:[FeCl_3]:[LA]:[VC]=200:1:1:2:0.75, the polymerization showed the best control over the molecular weight distribution and PDI=1.20. Increasing the polymerization temperature could enhance the polymerization rate. The apparent activation enthalpy was calculated to be 32 kJ/mol.
     Narrow polydispersity PAN was prepared via AGET ATRP in emulsion using the procedure of“two-step”. The polymerization was conducted with AN as the monomer, CCl_4 as the initator, copper chloride (CuCl_2)/hexamethylenetetramine (HMTA) as the catalyst, VC as the reducing agent and polyoxyethylene lauryl ether (Brij 35) as the surfactant. The first order kinetic plot demonstrated the features of living/controlled polymerization as evidenced by a linear increase of molecular weight with respect to monomer conversion and narrow molecular weight distribution. The effects of the amount of ligand and monomer as well as polymerization temperature on the polymerization were also discussed. The experiments results demonstrated that the suitable crude ratio of [AN]:[CCl_4]:[CuCl_2]:[HMTA]:[VC] was 200:2:1:2:1.5. The polymerization rate increased with the increase of polymerization temperature. The apparent activation enthalpy was calculated to be 65 kJ/mol.
     Narrow polydispersity PAN was prepared via SET-LRP in heterogeneous system. The polymerization was carried out with AN as the monomer, Cu(0) power as the catalyst, CCl_4 as the initiator and HMTA as the ligand in solvent DMF or mixture of DMF and H_2O at 25°C or 65°C. The first order kinetic plots at both temperatures demonstrated the features of living/controlled polymerization as evidenced by a linear increase of molecular weight with monomer conversion and narrow molecular weight distribution. The effects of the amount of ligand, catalyst, initiator and solvent on the polymerization were also probed. The experiments results demonstrated that monomer conversion increased with the increase of ligand. Almost no polymerization occured in the absence of ligand due to the poor disproportionation reaction of Cu(I). The polymerization rate exhibited an increase with the increase of the amount of catalyst Cu(0)/HMTA. Better control on the molecular weight distribution was produced with the addition of CuCl_2. The polymerization rate increased with increasing the amount of CCl_4. H_2O enhanced the polarity of mixted solvent, and further led to the increase of polymerization rate.
引文
[1]秦东奇,丘坤元,含有热引发剂转移终止剂的引发体系在反向原子转移自由基聚合中的应用[J].高分子学报, 2001(3):281-287.
    [2] M. Szwarc, M. Levy, R. Milkovich. Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers [J]. Journal of American Chemical Society, 1956, 78(11):2656-2657.
    [3] J. S. Wang, K. Matyjaszewski. Controlled/”living”radical polymerization: Atom transfer radical polymerization in the presence of transition-metal complexes [J]. Journal of American Chemical Society, 1995, 117(20):5614-5615.
    [4] M. Kamigaito, T. Ando, M. Sawamoto. Metal-catalyzed living radical polymerization [J]. Chemical Reviews, 2001, 101:3689–3746.
    [5] V. Percec, B. Barboiu.“Living”radical polymerization of styrene initiated by arenesulfonyl chlorides and CuI(bpy)nCl [J]. Macromolecules, 1995, 28(23):7970-7972.
    [6] J. S. Wang, K. Matyjaszewski.“Living”/Controlled radical polymerization. Transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator [J]. Macromolecules, 1995, 28(22):7572-7573.
    [7]华曼,陈明清,刘晓亚等,原子转移自由基聚合的近期研究进展[J].化学世界.2004, (2):103-108.
    [8] Y. P. Wang, X. W. Pei, X. Y. He, et al. Synthesis of well-defined polymer-grafted silica nanoparticles via reverse ARTP [J]. European Polymer Journal, 2005, 41(6):1326-1332.
    [9] Y. Z. Jin, C. Gao, H. W. Kroto, T. Maekawa. Polymer-Grafted Radical Polymerization [J]. Macromecular Rapid Communications, 2005, 26(14):1133-1139.
    [10] J. Z. Du, Y. N. Chen. Atom Transfer Radical Polymerization of a Reactive Monomer:3-(Trimethoxysilyl)propyl Methacrylate [J]. Macromecules, 2004, 37(17):6322-6328.
    [11] J. S. Wang, K. Matyjaszewski. Controlled/“living”radical polymerization Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process[J]. Macromolecules, 1995, 28(23):7901-7910.
    [12] Y. Kotani, M. Kamigaito, M. Sawamoto. Re(V)-mediated living radicalpolymerization of styrene: ReO_2I(PPh_3)_2/R-I initiating systems [J]. Macromolecules, 1999, 32(8):2420-2424.
    [13] Y. Kotani, M. Kamigaito, M. Sawamoto. Living radical polymerization of para-substituted styrenes and synthesis of styrene-based copolymers with rhenium and iron complex catalysts [J]. Macromolecules, 2000, 33(18):6746-6751.
    [14] K. Matyjaszewski, T. E. Patten, J. H. Xia. Controlled/“living”radical polymerization. Kinetics of the homogeneous atom transfer radical polymerization of styrene [J]. Journal of the American Chemical Society, 1997, 119(4):674-680.
    [15] K. Matyjaszewski, M. L. Wei, J. H. Xia, N. E. McDermott. Controlled/“living”radical polymerization of styrene and methyl methacrylate catalyzed by iron complexes [J]. Macromolecules, 1997, 30(26):8161-8164.
    [16] M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: Possibility of living radical polymerization [J]. Macromolecules, 1995, 28(5):1721-1723.
    [17] K. A. Davis, H. Paik, K. Matyjaszewski. Kinetic investigation of the atom transfer radical polymerization of methyl acrylate [J]. Macromolecules, 1999, 32(6):1767-1776.
    [18] F. Simal, A. Demonceau, A. F. Noels. Highly efficient ruthenium-based catalytic systems for the controlled free-radical polymerization of vinyl monomers [J]. Angewandte Chemie International Edition, 1999, 38(4):538-540.
    [19] M. Teodorescu, S. G. Gaynor, K. Matyjaszewski. Halide anions as ligands in iron-mediated atom transfer radical polymerization [J]. Macromolecules, 2000, 33(7):2335-2339.
    [20] T. Grimaud, K. Matyjaszewski. Controlled/“living”radical polymerization of methyl methacrylate by atom transfer radical polymerization [J]. Macromolecules, 1997, 30(7):2216-2218.
    [21] D. M. Haddleton, C. B. Jasieczek, M. J. Hannon, A. J. Shooter. Atom transfer radical polymerization of methyl methacrylate initiated by alkyl bromide and 2-pyridinecarbaldehyde imine copper(I) complexes [J]. Macromolecules, 1997,30(7):2190-2193.
    [22] C. Granel, P. Dubois, R. Jér?me, P.. Teyssié. Controlled radical polymerization of methacrylic monomers in the presence of a bis(ortho-chelated) arylnickel(II) complex and different activated alkyl halides [J]. Macromolecules, 1996, 29(27):8576-8582.
    [23] H. Uegaki, Y. Kotani, M. Kamigaito, M. Sawamoto. NiBr_2(Pn-Bu_3)_2-mediated living radical polymerization of methacrylates and acrylates and their block or random copolymerizations [J]. Macromolecules, 1998, 31(20):6756-6761.
    [24] G Moineau, M Minet, Ph Dubois, Ph Teyssié, T Senninger, R Jér(?)me. Controlled radical polymerization of (meth)acrylates by ATRP with NiBr2(PPh3)2 as catalyst [J]. Macromolecules, 1999, 32(1):27-35.
    [25] K. Matyjaszewski, S. M. Jo, H. Paik, D. A Shipp. An investigation into the CuX/2,2'-bipyridine (X=Br or Cl) mediated atom transfer radical polymerization of acrylonitrile [J]. Macromolecules, 1999, 32(20):6431-6438.
    [26] K. Matyjaszewski, S. M. Jo, H. Paik, S. G Gaynor. Synthesis of well-defined polyacrylonitrile by atom transfer radical polymerization [J]. Macromolecules, 1997, 30(20):6398-6400.
    [27] N. V Tsarevsky, K. V. Bernaerts, B. Dufour, F. E. D. Prez, K. Matyjaszewski. Well-defined (co)polymers with 5-vinyltetrazole units via combination of atom transfer radical (co)polymerization of acrylonitrile and“click chemistry”-type postpolymerization modification [J]. Macromolecules, 2004, 37(25):9308-9313.
    [28] A. S. Brar, T. Saini. Atom transfer radical copolymerization of acrylonitrile/n-butyl acrylate: Microstructure determination by two-dimensional nuclearmagnetic resonance spectroscopy [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43(13):2810-2825.
    [29] N. V. Tsarevsky, T. Sarbu, B. G?belt, K. Matyjaszewski. Synthesis of styrene-acrylonitrile copolymers and related block copolymers by atom transfer radical polymerization [J]. Macromolecules, 2002, 35(16):6142-6148.
    [30] C. B. Tang, T. Kowalewski, K. Matyjaszewski. Preparation of polyacrylonitrile-block-poly(n-butyl acrylate) copolymers using atom transfer radical polymerization and nitroxide mediated polymerization processes [J]. Macromolecules, 2003, 36(5):1465-1473.
    [31] B. Barboiu, V. Percec. Metal catalyzed living radical polymerization of acrylonitrile initiated with sulfonyl chlorides [J]. Macromolecules, 2001, 34(25):8626-8636.
    [32] H. N. Poinar, M. H(?)ss, J. L. Bada, S. P(?)(?)bo. Polymers with very low polydisperisities from atom transfer radical polymerization [J]. Science, 1996, 272(5263):864-866.
    [33] D. M. Haddleton, M. C. Crossman, B. H. Dana, D. J. Duncalf, A. M. Heming, D. Kukulj, A. J. Shooter. Atom transfer polymerization of methyl methacrylate mediated by alkylpyridylmethanimine type ligands, copper(I) bromide, and alkyl halides in hydrocarbon solution [J]. Macromolecules, 1999, 32(7):2110–2119.
    [34] K. Matyjaszewski, J. H. Xia. Atom Transfer Radical Polymerization [J]. Chemical Reviews, 2001, 101(9), 2921-2990.
    [35] Y. Q. Shen, S. P. Zhu, R. Pelton. Atom Transfer Radical Polymerization of Methyl Methacrylate by Silica Gel Supported Copper Bromide/Multidentate Amine [J]. Macromolecules, 2000, 33(15):5427-5431.
    [36] K. Matyjaszewski, D. A. Shipp, J.-L. Wang, T. Grimaud, T. E. Patten. Utilizing Halide Exchange To Improve Control of Atom Transfer Radical Polymerization [J]. Macromolecules, 1998, 31(20):6836-6840.
    [37] S. Pascual, B. Coutin, M. Tardi, A. Polton, J.-P. Vairon. Homogeneous Atom Transfer Radical Polymerization of Styrene Initiated by 1-Chloro-1-phenylethane/Copper(I) Chloride/Bipyridine in the Presence of Dimethylformamide [J]. Macromolecules, 1999, 32(5):1432-1437.
    [38] M. Li, K. Matyjaszewski. Further progress in atom transfer radical polymerizations conducted in a waterborne system [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41(22):3606-3614.
    [39] S. Coca, C. B. Jasieczek, K. L. Beers, K. Matyjaszewski. Polymerization of acrylates by atom transfer radical polymerization. Homopolymerization of 2-hydroxyethyl acrylate [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 1998, 36(9):1417-1424.
    [40] X. S. Wang, S. P. Armes. Facile Atom Transfer Radical Polymerization of Methoxy-Capped Oligo(ethylene glycol) Methacrylate in Aqueous Media at Ambient Temperature [J]. Macromolecules, 2000, 33(18):6640-6647.
    [41] M. Save, J. V. M. Weaver, S. P. Armes. Atom Transfer Radical Polymerization ofHydroxy-Functional Methacrylates at Ambient Temperature: Comparison of Glycerol Monomethacrylate with 2-Hydroxypropyl Methacrylate [J]. Macromolecules, 2002, 35(4):1152-1159.
    [42] F. Q. Zeng, Y. Q. Shen, S. P. Zhu, R. Pelton. Atom transfer radical polymerization of 2-(dimethylamino)ethyl methacrylate in aqueous media [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2000, 38(20):3821-3827.
    [43] E. J. Ashford, V. Naldi, R. O’Dell, N. C. Billingham, S. P. Armes. First example of the atom transfer radical polymerisation of an acidic monomer: direct synthesis of methacrylic acid copolymers in aqueous media [J]. Chemical Communications, 1999, (14):1285-1286.
    [44] Y. T. Li, S. P. Armes, X. P. Jin, S. P. Zhu. Direct Synthesis of Well-Defined Quaternized Homopolymers and Diblock Copolymers via ATRP in Protic Media [J]. Macromolecules, 2003, 36(22):8268-8275.
    [45] Y. Kotani, M. Kamigaito, M. Sawamoto. Living radical polymerization of styrene by half-metallocene iron carbonyl complexes [J]. Macromolecules, 2000, 33(10):3543-3549.
    [46] Y. Kotani, M. Kamigaito, M. Sawamoto. FeCp(Co)2I: A phosphine-free half-metallocene-type iron(П) catalyst for living radical polymerization of styrene [J]. Macromolecules, 1999, 32(20):6877-6880.
    [47] Q. M. Pan, S. Y. Liu, J. W. Xie, M. Jiang. Synthesis and characterization of block-graft copolymers composed of poly(styrene-b-ethylene-co-propylene) and poly(ethyl methylacrylate) by atom transfer radical polymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37(15):2699-2702.
    [48] J. Ueda, M. Matsuyama, M. Kamigaito, M. Sawamoto. Multifunctional Initiators for the Ruthenium-Mediated Living Radical Polymerization of Methyl Methacrylate: Di- and Trifunctional Dichloroacetates for Synthesis of Multiarmed Polymers [J]. Macromolecules, 1998, 31(3):557-562.
    [49] S. G. Gaynor, S. Edelman, K.Matyjaszewski. Synthesis of branched and hyperbranched polystyrene [J]. Macromolecules, 1996, 29(3):1079-1081.
    [50] S. C. Hong, K. Matyjaszewski. Fundamentals of Supported Catalysts for Atom Transfer Radical Polymerization (ATRP) and Application of an Immobilized/SolubleHybrid Catalyst System to ATRP [J]. Macromolecules, 2002, 35(20):7592-7605.
    [51] W. Jakubowski, K. Matyjaszewski. Activator generated by electron transfer for atom transfer radical polymerization [J]. Macromolecules, 2005, 38(10):4139-4146.
    [52]杨兴兵,张立武,刘静,沈进明,李圆圆,郑妍.电子活化再生原子转移自由基聚合的研究进展, 2010, 40(5):71-73.
    [53] L. F. Zhang, Z. P. Cheng, S. P. Shi, Q. H. Li, X. L. Zhu. AGET ATRP of methyl methacrylate catalyzed by FeCl3/iminodiacetic acid in the presence of air [J]. Polymer, 2008, 49(23):3054–3059.
    [54] Y. Tan, Q. B. Yang, D. K. Sheng, et al. AGET ATRP of acrylamide in aqueous media [J ]. e-Polymers, 2008,25:1-7.
    [55] R. Luo, A. Sen. Electron-Transfer-Induced Iron-Based Atom Transfer Radical Polymerization of Styrene Derivatives and Copolymerization of Styrene and Methyl Methacrylate [J]. Macromolecules, 2008, 41(12): 4514-4518.
    [56] L. F. Zhang, Z. P. Cheng, Y. T. Lu, X. L. Zhu, A Highly Active Iron-Based Catalyst System for the AGET ATRP of Styrene [J], Macromolecular Rapid Communications, 2009, 30(7):543–547.
    [57] Z. G. Xue, S. Y. Yoon, S. K. Noh, et al. Click thiolene reactions: Rapid and efficient chemistry for materials synthesis [J]. Polymer Preprints, 2008, 49:155-156.
    [58] Z. G. Xue, D. He, S. K. Noh, W. S. Lyoo. Iron (III)-Mediated Atom Transfer Radical Polymerization in the Absence of Any Additives [J]. Macromolecules, 2009, 42(8):2949-2957.
    [59] F. Stoffelbach, N. Griffete, C. Bui, B. Charleux. Use of a simple surface-active initiator in controlled/ living free radical miniemulsion polymerization under AGET and ARGET ATRP conditions [J]. Chemical Communications, 2008, 39(10):4807-4809.
    [60] J. K. Oh, F. Perineau, B. Charleux, K. Matyjaszewski. AGET ATRP in water and inverse m iniemulsion: a facile route for p reparation of highmolecular weight biocompatible brush like polymers [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(7):1771- 1781.
    [61] K.Min, H. F. Gao, K. Matyjaszewski. Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer(AGET) [J]. Journal of American Chemical Society, 2005, 127(11):3825–3830.
    [62] K. Min, H. F. Gao, K. Matyjaszewski, Development of an ab initio emulsion atom transfer radical polymerization: from microemulsion to emulsion. Journal of American Chemical Society, 2006, 128(32):10521–10526.
    [63] K. Min, K. Matyjaszewski. Atom transfer radical polymerization in microemulsion [J]. Macromolecules, 2005, 38(20):8131–8134.
    [64] J. K. Oh, F. Perineau, K. Matyjaszewski. Preparation of nanoparticles of well-controlled water-soluble homopolymers and block copolymers using an inverse miniemulsion ATRP [J]. Macromolecules, 2006, 39(23):8003–8010.
    [65] D. X. Wu, Y. fang Yang, X. H. Cheng, L. Liu, J. Tian, H. Y. Zhao. Mixed molecular bru.shes with PLLA and PS side chains prepared by AGET ATRP and ring-opening polymerization [J]. Macromolecules, 2006, 39(22):7513–7519.
    [66] P. Kwiatkowski, J. Jurczak, J. Pietrasik, W. Jakubowski, L. Mueller, K. Matyjaszewski. High molecular weight polymethacrylates by AGET ATRP under high pressure [J]. Macromolecules, 2008, 41(4):1067–1069.
    [67] F. Stoffelbach, B. Belardi, J. M. R. C. A. Santos, L. Tessier, K. Matyjaszewski, Bernadette Charleux. Use of an amphiphilic block copolymer as a stabilizer and a macroinitiator in miniemulsion polymerization under AGET ATRP conditions [J]. Macromolecules, 2007, 40(25):8813–8816.
    [68] J. K. Oh, H. C Dong, R. Zhang, K. Matyjaszewski, H. Schlaad. Preparation of nanoparticles of double-hydrophilic PEO-PHEMA block copolymers by AGET ATRP in inverse miniemulsion [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2007, 45(21):4764–4772.
    [69] K. Min, S. Yu, H.-.I Lee, L. Mueller, S. S. Sheiko, K. Matyjaszewski. High yield synthesis of molecular brushes via ATRP in miniemulsion [J]. Macromolecules, 2007, 40(18):6557–6563.
    [70] W. W. Li, K. Min, K. Matyjaszewski, Franois Stoffelbach Bernadette Charleux. PEO-based block copolymers and homopolymers as reactive surfactants for AGET ATRP of butyl acrylate in miniemulsion [J]. Macroromolecules, 2008, 41(17):6387–6392.
    [71] J. H. Xia, K. Matyjaszewski. Controlled/‘‘living’’radical polymerization: Atomtransfer radical polymerization using multidentate amine ligands [J]. Macromolecules, 1997, 30(25):7697–7700.
    [72] L. F. Zhang, Z. P. Cheng, F. Tang, Q. Li. X. L. Zhu. Iron(III)-mediated ATRP of methyl methacrylate using activators generated by electron transfer [J]. Macromolecular Chemistry and Physics, 2008, 209(16):1705–1713.
    [73] H. Uegaki, Y. Kotani, M. Kamigaito, M. Sawamoto. Nickel-mediated living radical polymerization of methyl methacrylate [J]. Macromolecules, 1997, 30(8):2249–2253.
    [74] C. Gao, S. Muthukrishnan, W. W. Li, J. Y. Yuan, Y. Y. Xu, A. H. E. Müller. Linear and hyperbranched glycopolymer-functionalized carbon nanotubes: synthesis, kinetics, and characterization [J]. Macromolecules, 2007, 40(6):1803–1815.
    [75] B. Q. Wang, Y. Zhuang, X. X. Luo, S. S. Xu, X. Z. Zhou. Controlled/‘‘living’’radical polymerization of MMA catalyzed by cobaltocene [J]. Macromolecules, 2003, 36(26):9684–9686.
    [76] Y. A. Kabachii, S. Y. Kochev, L. M. Bronstein, I. B. Blagodatskikh. P. M. Valetsky. Atom transfer radical polymerization with Ti(III) halides and alkoxides [J]. Polymer Bulletin, 2003, 50(4):271–278.
    [77] P. Lecomte, I. Drapier, P. Dubois, P. Teyssie, R. Jerome. Controlled radical polymerization of methyl methacrylate in the presence of palladium acetate, triphenylphosphine, and carbon tetrachloride [J]. Macromolecules, 1997, 30(24):7631–7633.
    [78] Krzysztof. Matyjaszewski, J. H. Xia. Atom Transfer Radical Polymerization [J]. Chemical Reviews, 2001, 101(9):2921-2990.
    [79] L. F. Zhang, Z. P. Cheng, Z. B. Zhang, D. Y. Xu, X. L. Zhu. Fe(III)-catalyzed AGET ATRP of styrene using triphenyl phosphine as ligand [J]. Polymer Bulletin, 2010, 64(3):233244.
    [80] L. J. Bai, L. F. Zhang, J. Zhu, Z. P. Cheng, X. L. Zhu. Iron (III)-mediated AGET ATRP of styrene using tris (3,6-Dioxaheptyl) amine as a ligand [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2009, 47(8):2002-2008.
    [81] J. K. Oh, K. Matyjaszewski. Synthesis of Poly(2-hydroxyethyl methacrylate) in Protic Media through Atom Transfer Radical Polymerization Using Activators Generated by Electron Transfer [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2006,44(12):3787–3796.
    [82] J. K. Oh, K. Min, K. Matyjaszewski. Preparation of Poly(oligo(ethylene glycol) monomethyl ether methacrylate) by Homogeneous Aqueous AGET ATRP [J]. Macromolecules, 2006, 39(9):3161-3167.
    [83] Y. Watanabe, T. Ando, M. Kamigaito, M. Sawamoto. Ru(Cp*)Cl(PPh3)2: A Versatile Catalyst for Living Radical Polymerization of Methacrylates, Acrylates, and Styrene1 [J]. Macromolecules, 2001, 34(13):4370-4374.
    [84] M. Kamigaito, Y. Watanabe, T. Ando, M. Sawamoto. A New Ruthenium Complex with an Electron-Donating Aminoindenyl Ligand for Fast Metal-Mediated Living Radical Polymerizations [J]. Journal of American Chemical Society, 2002, 124(34): 9994-9995.
    [85] J. Queffelec, S. G. Gaynor, K. Matyjaszewski. Optimization of atom transfer radical polymerization using Cu(I)/tris(2-(dimethylamino)ethyl)amine as a catalyst [J]. Macromolecules, 2000, 33(23):8629–8639.
    [86] K. Matyjaszewski, S. Coca, S. G. Gaynor, M. Wei, B. E. Woodworth. Zero valent metals in controlled/‘‘living’’radical polymerization [J]. Macromolecules, 1997, 30(24):7348–7350.
    [87] S. G. Gaynor, J. Qiu, K. Matyjaszewski. Controlled/“Living”Radical Polymerization Applied to Water-Borne Systems [J]. Macromolecules, 1998, 31(17):5951-5954.
    [88] K. Min, W. Jakubowski, K. Matyjaszewski. AGET ATRP in the Presence of Air in Miniemulsion and in Bulk [J]. Macromolecular Rapid Communications, 2006, 27(8):594–598.
    [89] V. Percec, T. Guliashvili, J. S. Ladislaw, A. Wistrand, A. Stjerndahl, M. J. Sienkowska, M. J. Monteiro, S. Sahoo. Ultrafast Synthesis of Ultrahigh Molar Mass Polymers by Metal-Catalyzed Living Radical Polymerization of Acrylates, Methacrylates, and Vinyl Chloride Mediated by SET at 25°C [J]. Journal of American Chemical Society, 2006, 128(43): 14156–14165.
    [90] V. Percec, E. R. Castillo, A. V. Popov, L. A. H. Falcon, T.Guliashvili. Ultrafast single-electron-transfer/degenerative-chain-transfer mediated living radical polymerization of acrylates initiated with iodoform in water at room temperature and catalyzed by sodium dithionite [J]. Journal of Polymer Science: Part A: PolymerChemistry, 2005, 43(10):2178-2184.
    [91] B. B. Wayland, G. Poszmik, S. L. Mukerjee, M. Fryd. Living Radical Polymerization of Acrylates by Organocobalt Porphyrin Complexes [J]. Journal of American Chemical Society, 1994, 116(17):7943-7944.
    [92] B. B. Wayland, L. Basickes, S. Mukerjee, M. L. Wei. Living Radical Polymerization of Acrylates Initiated and Controlled by Organocobalt Porphyrin Complexes [J]. Macromolecules, 1997, 30(26):8109-8112.
    [93] X. H. Liu, G. B. Zhang, B. X. Li, Y. G. Bai, Y. S. Li. Copper(0)-Mediated Living Radical Polymerization of Acrylonitrile: SET-LRP or AGET-ATRP [J], Journal of Polymer Science: Part A: Polymer Chemistry, 2010, 48(23):5439–5445.
    [94] V. Percec, A. V. Popov, E. R.-Castillo, O. Weichold. Living radical polymerization of vinyl chloride initiated with iodoform and catalyzed by nascent Cu0/tris(2-aminoethyl)amine or polyethyleneimine in water at 25°C proceeds by a new competing pathways mechanism [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2003, 41(21):32833299.
    [95] B. M. Rosen, V. Percec. Single-Electron Transfer and Single-Electron Transfer Degenerative Chain Transfer Living Radical Polymerization [J]. Chemical Reviews, 2009, 109(11):5069–5119.
    [96] B. M. Rosen, V. Percec. A comparative computational study of the homolytic and heterolytic bond dissociation energies involved in the activation step of ATRP and SET-LRP of vinyl monomer [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2008, 46(16):5663-5697.
    [97] T. Guliashvili, V. Percec. A comparative computational study of the homolytic and heterolytic bond dissociation energies involved in the activation step of ATRP and SET-LRP of vinyl monomers [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2007, 45(9):1607-1618.
    [98] V. Percec, A. V. Popov, E. R. Castillo, M. Monteiro, B. Barboiu, O. Weichold, A. D. Asandei, C. M. Mitchell. Aqueous Room Temperature Metal-Catalyzed Living Radical Polymerization of Vinyl Chloride [J]. Journal of American Chemical Society, 2002, 124(18):4940-4941.
    [99] G. Lligadas, B.M. Rosen, M. J. Monteiro, V. Percec. Solvent Choice DifferentiatesSET-LRP and Cu-Mediated Radical Polymerization with Non-First-Order Kinetics [J]. Macromolecules, 2008, 41(22):8360-8364.
    [100] G. Lligadas, B. M. Rosen, C. A. Bell, M. J. Monteiro, V. Percec. Effect of Cu(0) Particle Size on the Kinetics of SET-LRP in DMSO and Cu-Mediated Radical Polymerization in MeCN at 25°C [J]. Macromolecules, 2008, 41(22):8365-8371.
    [101] V. Percec, A. V. Popov, E. R. Castillo, O. Weichold. Living radical polymerization of vinyl chloride initiated with iodoform and catalyzed by nascent Cu0/tris(2-aminoethyl)amine or polyethyleneimine in water at 25°C proceeds by a new competing pathways mechanism [J]. Journal of American Chemical Society, 2003, 41(21):3283-3299.
    [102] M. Kamigaito, T. Ando, M. Sawamoto. Metal-catalyzed living radical polymerization [J]. Chemical Reviews. 2001, 101(12):3689-3746.
    [103] H. Taube, H. Myers. Evidence for a Bridged Activated Complex for Electron Transfer Reactions [J]. Journal of American Chemical Society, 1954, 76(8):2103-2111.
    [104] V. Percec, B. Barboiu, H.-J. Kim. A. Halides: A Universal Class of Functional Initiators for Metal-Catalyzed“Living”Radical Polymerization of Styrene(s), Methacrylates, and Acrylates [J]. Journal of American Chemical Society, 1998, 120(2):305-316.
    [105] C. Grigoras, V. Percec. Arenesulfonyl bromides: The second universal class of functional initiators for the metal-catalyzed living radical polymerization of methacrylates, acrylates, and styrenes [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2005, 43(2):319-330.
    [106] V. Percec, C. Grigoras. Arenesulfonyl iodides: The third universal class of functional initiators for the metal-catalyzed living radical polymerization of methacrylates and styrenes [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2005, 43(17):3920-3931.
    [107] V. Percec, C. Grigoras. N-chloro amides, lactams, carbamates, and imides. New classes of initiators for the metal-catalyzed living radical polymerization of methacrylates [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2005, 43(21):5283-5299.
    [108] G. Lligadas, V. Percec. Synthesis of Perfectly Bifunctional Polyacrylates bySingle-Electron-Transfer Living Radical Polymerization [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2007, 45(20):4684–4695.
    [109] G. Lligadas, V. Percec. Alkyl Chloride Initiators for SET-LRP of Methyl Acrylate [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2008, 46(14):4917–4926.
    [110] B. M. Rosen, V. Percec. A density functional theory computational study of the role of ligand on the stability of CuI and CuII species associated with ATRP and SET-LRP [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2007, 45(21):4950-4964.
    [111] N. H. Nguyen, X. Jiang, S. Fleischmann, B. M. Rosen, V. Percec. The Effect of Ligand on the Rate of Propagation of Cu(0)-Wire Catalyzed SET-LRP of MA in DMSO at 25 oC [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2009, 47(21):5629–5638.
    [112] G. Lligadas, B. M. Rosen, M. J. Monteiro, V. Percec. Solvent Choice Differentiates SET-LRP and Cu-Mediated Radical Polymerization with Non-First-Order Kinetics [J]. Macromolecules, 2008, 41(22): 8360–8364.
    [113] N. H. Nguyen, B. M. Rosen, G. Lligadas, V. Percec. Surface-Dependent Kinetics of Cu(0)-Wire-Catalyzed Single-Electron Transfer Living Radical Polymerization of Methyl Acrylate in DMSO at 25°C [J]. Macromolecules, 2009, 42(7):2379-2386.
    [114] G. Lligadas, V. Percec. A comparative analysis of SET-LRP of MA in solvents mediating different degrees of disproportionation of Cu(I)Br [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2008, 46(20):6880–6895.
    [115] G. Lligadas, V. Percec. Ultrafast SET-LRP of methyl acrylate at 25°C in alcohols [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2008, 46(8):2745–2754.
    [116] X. Jiang, S. Fleischmann, N. H. Nguyen, B. M. Rosen, V. Percec. Cooperative and Synergistic Solvent Effects in SET-LRP of MA [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2009, 47(21):5591–5605.
    [117] T. Kowalewski, N. V. Tsarevsky, K. Matyjaszewski. Nanostructured Carbon Arrays from Block Copolymers of Polyacrylonitrile [J]. Journal of American Chemical Society, 2002, 124(36):10632-10633.
    [118] J. W. Long, B. Dunn, D. R. Rolison, H. S. White. Three-Dimensional Battery Architectures [J]. Chemical Reviews, 2004, 104(10):4463-4492.
    [119]杨晓峰,李曼尼,陈志萍,丙烯腈聚合行为的谱学研究,高分子材料科学与工程,2007, 23( 6):185-187.
    [120] S. M. Zhu, D. Y. Yan, G. S. Zhang, M. Li. Controlled/“living”radical polymerization of styrene catalyzed by FeCl2/succinic acid [J]. Macromolecular Chemistry and Physics, 2000, 201(18):2666-2669.
    [121] S. M. Zhu, D. Y. Yan. Atom Transfer Radical Polymerization of Methyl Methacrylate Catalyzed by IronII Chloride/Isophthalic Acid System [J]. Macromolecules, 2000, 33(22):8233-8238.
    [122] R. G Gilbert. Critically-evaluated propagation rate coefficients in free radical polymerizations I. Styrene and methyl methacrylate [J]. Pure and Applied Chemistry, 1996, 68(7):1491-1494.
    [123] Q. Yu, F. Q. Zeng, S. P. Zhu. Atom transfer radical polymerization of poly(ethylene glycol) dimethacrylate [J]. Macromolecules, 2001, 34(6):1612-1618.
    [124] B. Boutevin, Y. Pietrasanta. Comprehensive Polymer Science, Pergamon Press: Oxford, 1989; 185.
    [125] M. Destarac, J.-M. Bessiere, B. Boutevin. Atom transfer radical polymerization of styrene initiated by polychloroalkanes and catalyzed by CuCl/2,2′-bipyridine: A kinetic and mechanistic study [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1998, 36(16): 2933-2947.
    [126] C. Feng, Z. Shen, Y. J. Li, L. N. Gu, Y. Q. Zhang, G. L. Lu, X. Y. Huang. PNIPAM-b-(PEA-g-PDMAEA) double-hydrophilic graft copolymer: Synthesis and its application for preparation of gold nanoparticles in aqueous media [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(7), 1811-1824.
    [127] C. Feng, Z. Shen, D. Yang, Y. G. Li, J. H. Hu, G. L. Lu, X. Y. Huang. Synthesis of well-defined amphiphilic graft copolymer bearing poly(2-acryloyloxyethyl ferrocenecarboxylate) side chains via successive SET-LRP and ATRP [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(17): 4346-4357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700