电Fenton法降解模拟偶氮染料废水的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偶氮染料废水由于其高色度、强毒性、难降解,在还原条件下易分解产生致癌性芳香胺,被视为现今急待治理的废水之一。而传统的废水处理方法都不同程度地存在着各种各样的问题,不能彻底地使有机染料矿化,脱色效率也不高,难以解决水的循环利用问题。电Fenton法作为一种新兴的废水处理技术,集自由基强氧化、电还原作用于一体,能高效降解有机物,已逐渐成为水处理领域的研究热点。
     本论文以具有典型偶氮染料结构的甲基橙水溶液为目标污染物,采用电Fenton法对其进行降解。实验通过分析槽电压、亚铁离子浓度、电解质浓度及电解时间等因素对甲基橙色度去除效果的影响,得出甲基橙降解的最佳实验条件。在最佳实验条件下,分析了另一种有机底物——表面活性剂存在时,其对甲基橙降解的影响;通过更换阴极材料,分析了阴极材料对甲基橙降解的影响;最后通过甲基橙溶液降解的紫外-可见光谱图和高效液相色谱图,对甲基橙的电Fenton法降解机理进行了初步探讨。
     实验结果表明,当甲基橙溶液的初始浓度为0.05mmol/L时,在pH值为3、通入空气量为0.1m3/h、Na2SO4和FeSO4浓度分别为14.08mmol/L、0.27mmol/L、槽压为5V的最佳实验条件下时,电解90min,甲基橙溶液的脱色率达98%以上,且甲基橙的降解过程可以采用一级动力学方程来描述。而当表面活性剂SDS和甲基橙共存时,若SDS浓度小于临界胶束浓度,两者同时发生氧化降解反应,甲基橙的脱色反应受到抑制;若SDS浓度大于临界胶束浓度,甲基橙脱色反应的抑制情况得到缓解。通过4种自制的阴极电极在电Fenton法降解甲基橙中的比较可知,当阴极为镀银钢丝电极时甲基橙降解效果最好,脱色率达到99.22%,其后依次为镀钛钢丝电极、钢丝电极和石墨电极,分别为95.98%、93.08%和90.92%,这为今后电Fenton阴极材料的选择提供了新思路。
Azo dyes wastewater is not only high chromatic,strong noxious,but also difficult to degrade and easy to discompose to carcinogenic aromatic amine under deoxidization condition.So,azo dyes wastewater must be treated urgently.However, many kinds of problems exist in the conventional wastewater treatment methods, which can not completely mineralize the organic dyes,the decolorization efficiency is not high,and the recycling of water is difficult to solve.As a new wastewater treatment technology, the electro-Fenton method,which includes strong free radical oxidation and electro-deoxidation,can degrade of organic matters efficiently,and it becomes a hot water treatment research in the field gradually.
     In this thesis,methyl orange solution,which had typical structure of azo dyes, was studied by electro-Fenton method.The best experimental conditions were obtained by the analysis of the influences of operating parameters including electrode potential, Fe2+ concentration,electrolyte Na2SO4 concentration and electrolytic time on the removal rate of methyl orange.Under the best conditions,the effect on the degradation of methyl orange by the surfactant SDS was studied,when it presented in the solution;then the effect of cathode materials on the degradation of methyl orange by replacing the cathode materials was studied,and at last the degradation mechanism of methyl orange was discussed through the analyse of the UV-Visible spectrum and high performance liquid chromatogram.
     The experimental results showed that,at the best conditions of the initial concentration of methyl orange of 0.05mmol/L,the pH value of 3,the air volume of 0.1m3/h,Na2SO4 and FeSO4 concentrations of 14.08mmol/L,0.27mmol/L,and the electrode potential of 5V,the decolorization rate of methyl orange could exceed 98% when electrolyzing 90min,and the degradation process of methyl orange accorded with first order kinetic equation.When methyl orange coexisted with the surfactant SDS,if the SDS concentration was lower than the critical micelle concentration,the two oxidative degradation reacted simultaneously,and the degradation of methyl orange was limited;The limitation was more significant as the concentration of SDS increased,but the limitation was gradually reduced if the concentration of SDS was higher than the critical micelle concentration.Through the comparison of four different cathodes in electro-Fenton degradation of methyl orange,we could see that,the decoloration value of methyl orange,which could reached 99.22%,was the highest with the silver-gilt steel wire cathode,and then the titanizing steel wire cathode,the steel wire cathode and the plumbaginous cathode in turn,which were 95.98%,93.08% and 90.92% respectively.And this result provided a new idea for the future selection of cathode materials in electro-Fenton method.
引文
[1]朱虹,孙杰,李剑超.印染废水处理技术[M].北京:中国纺织出版社,2004,16
    [2]王绍文,罗志腾,钱雷.高浓度有机废水处理技术与工程应用[M].北京:冶金工业出版社,2003,89-92
    [3]李尔汤,程洁红,史乐文.工程菌处理印染废水工艺条件的研究[J].化工环保,2002,22(3):135-137
    [4]薛少华,程建家.葸醌染料废水处理工艺研究[J].化工环保,2002,22(4):198-202
    [5]’刘梅红.纳滤膜技术处理印染废水试验研究[J].水处理技术,2002,28(1):42-44
    [6]钟金汤.偶氮染料及其代谢产物的化学结构与毒性关系的回顾与前瞻[J].环境与职业医学,2004,21(1):58-61
    [7]Astrid R, Michael T, Georg G. Application of power ultrasound for azo dye degradation[J]. Ultrasonics Sonochemistry,2004,11(3-4):177-182
    [8]张林生.印染废水处理技术及典型工程[M].北京:化学工业出版社,2005,20-49
    [9]王慧,周月霞,柏仕杰等.染料废水生物法处理技术的研究进展[J].厦门大学学报(自然科学版),2008,47(增刊2):286-290
    [10]占新民,王建龙,吴立波等.沉淀-树脂吸附法处理对氨基偶氮盐酸盐生产废水的研究[J].环境工程,1998,16(3):7-10
    [11]Matheswaran M, Karunanithi T, Adsorption of Chrysoidine R by using fly ash in batch process[J]. Journal of Hazardous Materials,2006,138(1):142-152
    [12]王振余,郭树才.炭膜处理染料水溶液的研究[J].膜科学与技术,1997,17(5):7-10
    [13]Gomes A C, Goncalves I C, Pinho M N, et al. The role of adsorption on nanofiltration of azo dyes[J]. Journal of Membrane Science,2005,255(1-2): 157-165
    [14]侯运生,鹿笃实,范俊欣.纳滤法除盐研究[J].膜科学与技术,1998,18(4):30-34
    [15]刘之玲,张忠燕,卞华松.印染废水处理中有机絮凝剂的应用[J].污染防治技术,1999,12(4):239-241
    [16]王晓明,李凤仙,阴浩.偶氮染料废水处理技术[J].山东环境,2000,(6):28-29
    [17]胡文容,钱梦路,高廷耀.超声强压臭氧氧化偶氮染料的脱色效能[J].中国给排水,1999,15(11):1-4
    [18]顾平,刘奎,杨造燕.Fenton试剂处理活性黑KBR染料废水研究[J].中国给排水,1997,13(6):16-18
    [19]张乃东,郑威,彭永臻.电Fenton法处理难降解有机物的研究进展[J].上海环境科学,2002,21(7):440-441
    [20]蔡建国,石洪雁,李爱民.催化氧化法处理工业废水的研究进展[J].江苏环境科技,2003,16(4):39-42
    [21]徐向荣,王文华,李华斌等.高锰酸钾对染料废水的脱色研究[J].环境化学,1999,18(1):57-60
    [22]杨玉身,周集体,杨风林.微电解法降解染料的研究[J].上海环境科学,1996,15(7):30-35
    [23]Ge J, Qu J. Ultrasonic irradiation enhanced degradation of azo dye on MnO2[J]. Applied Catalysis B:Environmental,2004,47(2):133-140
    [24]孙平,陈景文,全燮等.部分水溶性偶氮染料的光催化降解研究[J].环境化学,1999,18(3):254-257
    [25]Zanoni M V B, Sene J J, Anderson M A. Photoelectrocatalytic degradation of Remazol Brilliant Orange 3R on titanium dioxide thin-film electrodes[J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,157(1):55-63
    [26]张国宇,王鹏,姜思朋等.微波诱导氧化处理雅格素红BF-3B150%染料废水的研究[J].环境科学,2004,25(2):53-55
    [27]Supaka N, Juntonjin K, Damronglerd S, et al. Microbial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system[J]. Chemical Engineering Journal,2004,99(2):169-176
    [28]Novothy C, Svabodova K, Kasinath A, et al. Biodegeradation of synthetic dyes by Irpex Lacteus under various growth conditions[J]. International Biodeterioration and Biodegeradation,2004,5(4):215-223
    [29]戴晓红,田俊莹,姚晓庆.UV+O3+H2O2法处理活性染料废水的研究[J].针织工业,2006(3):65-67
    [30]Mohamed C.Edelahi, Nihal Oturan, Mehmet A.Oturan, et al. Degradation of diuron by the electro-Fenton process[J]. Environ Chem Lett,2004(1):233-234
    [31]闵怀,傅亮,陈泽军.Fenton法及其在废水处理中的应用研究[J].环境污染与防治,2004,26(1):28-30
    [32]A.Ventura, G.Jacquet, A.Bermond, et al. Electrochemical generation of the Fenton's reagent:application to atrazine degradation[J]. Water Research, 2002,36(14):3517-3522
    [33]孙德智.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002,283-312
    [34]汤心虎,黄秀微,刘佩璇等.无机/有机复合絮凝剂对印染废水脱色的研究[J].水处理技术,2001,27(5):267-271
    [35]雷乐成,汪大翠.水处理高级氧化技术[M].北京:化学工业出版社,2001,12-38
    [36]蒋绍阶,刘宗源.UV254作为水处理中有机物控制指标的意义[J].重庆建筑大学学报,2002,24(2):61-65
    [37]方建章,李浩,雷恒毅.电生成Fenton试剂处理染料废水[J].化工环保,2004,24(4):284-287
    [38]张乃东,彭永臻,李宁.阳极氧化与Fenton法结合的可行性[J].中国环境科学,2004,24(1):68-71
    [39]Qiang Z M, Chang J H, Huang C P. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions[J]. Water Research, 2002,36(1):85-94
    [40]Alberto A G, Derek P. The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell, Part 1. The electrosynthesis of hydrogen peroxide in aqueous acidic solutions[J]. Electrochimica Acta, 1998,44(5):853-861
    [41]Qiang Z M, Chang J H, Huang C P. Electrochemical regeneration of Fe2+ in Fenton oxidation processes[J]. Water Research,2003,37(6):1308-1319
    [42]郑曦,陈日耀,陈晓等.电化学法生成Fenton试剂及其在工业染料废水降解脱色中的应用[J].环境污染治理技术与设备,2001,2(4):72-76
    [43]郑曦,陈日耀,兰瑞芳等.电生成Fenton试剂及其对染料降解脱色的研究[J].电化学,2003,9(2):98-104
    [44]陈玉峰,方熠,程尉等.电生成Fenton试剂处理工业印染废水的中试研究[J].福建师范大学学报,2005,21(6):58-61
    [45]Duran M A, Frontana B A, Ramirez R M. Electro-Fenton as a feasible advanced treatment process to produce reclaimed water[J]. Water Science and Technology, 2004,50(2):83-90
    [46]徐桦,黄海云.改进电Fenton法处理印染废水[J].常熟高专学报,2004,18(4):45-48
    [47]Minghua Zhou, Qinghong Yu. Electro-Fenton method for the removal of methyl red in an efficient electrochemical system[J]. Separation and Purification Technology,2007,57(2):380-387
    [48]Konnann C, Bahnemann D, Hofmann M R. Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2,ZnO,and desert sand[J]. Environ.Sci. Technol.,1988,22(3):798-806
    [49]王宝辉,张学佳,纪巍等.表面活性剂环境危害性分析[J].化工进展,2007,26(9):1263-1268
    [50]陈莉娥,周兴求,伍健东.表面活性剂废水的危害及处理技术[J].工业水处理,2003,23(10):12-16
    [51]王秋芳.表面活性剂对偶氮染料光催化氧化降解的影响研究[D].天津:天津工业大学,2008,1-2
    [52]陈方博,方云,吴丽娜.十二烷基硫酸钠浓溶液的胶束行为与其溶液体相行为间的相关性[J].应用化学,2008,25(4):401-404
    [53]王秋芳,董永春.表面活性剂OP-10对活性红MS光催化降解反应的影响[J].天津工业大学学报,2007,26(2):31-35
    [54]王爱民,曲久辉,史红星等.活性炭纤维阴极电芬顿反应降解微囊藻毒素研究[J].高等学校化学学报,2005,26(9):1669-1672
    [55]梅涛,刘娟,李金坡等.纳米铁/碳纳米管复合氧阴极电-Fenton降解RhB[J].化工进展,2007,26(8):1166-1169
    [56]吴高明,杨志新,袁松虎等.碳基复合电极制备和电Fenton降解4-氯酚研究[J].环境科学与技术,2006,29(6):9-10
    [57]吴德礼,王红武,樊金红等.Fe0催化还原转化水中CCl4的实验研究[J].环境科学,2008,29(12):3433-3438
    [58]孙治荣,葛慧,张晓光等.钛修饰电极的制备及电化学性能比较[J].环境工程学报,2008,2(11):1571-1575
    [59]赵艺,赵保卫,许生辉.Ni-Fe双金属对氯代苯酚催化还原脱氯的试验[J].工业用水与废水,2007,38(4):39-42
    [60]Elodie Guivarch, Stephane Trevin, Claude Lahitte, et al. Degradation of azo dyes in water by Electro-Fenton process[J]. Environmental Chemistry Letters, 2003,1(1):38-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700