聚合物毛细管整体柱的制备及其在环境监测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境问题的日益严峻对色谱分离技术提出了更高的要求,毛细管整体柱是应用于微柱液相色谱中的一种新型色谱柱,具有制备简单、重现性好、多孔性优越、能实现快速分离等优点,但目前仍然处于发展初期,在新型基质研制、制备方法优化、理论基础研究以及应用方面还有待进一步发展。本文在以往研究的基础上,以环境生物大分子和农药为分离对象,制备了三种聚合物毛细管整体柱,并拓展了毛细管整体柱在环境生物大分子和农药分析方面的应用。论文的研究内容和主要结论如下:
     第一,新型聚苯乙烯-十八碳烯-二乙烯基苯(PS-OD-DVB)毛细管整体柱的制备及其在蛋白质分离中的应用研究。实验结果表明,以苯乙烯为单体、1-十八碳烯为功能单体、二乙烯基苯为交联剂单步制备的PS-OD-DVB毛细管整体柱具有高达85%的孔隙率、良好的渗透性、稳定的机械性能以及足够的柱容量。通过对比发现,PS-OD-DVB和聚苯乙烯-二乙烯基苯(PS-DVB)毛细管整体柱具有相似的蛋白质分离性能,可以在2.5 min内实现六种蛋白质的基线分离;对于多肽分离,由于C18长碳链的引入,PS-OD-DVB毛细管整体柱可以在9.0 min内实现血红蛋白α、β多肽链的基线分离。PS-OD-DVB毛细管整体柱制备简单、分离效果显著,有望应用于环境毒理学和环境医学中生物大分子的快速分离分析。
     第二,毛细管内径对整体柱的物理性能以及对分离蛋白质的色谱性能的影响。实验结果显示毛细管内径越小,柱床的微球簇和簇间孔隙越大,渗透性越大。从色谱基础理论入手,以动力学角度考察不同内径整体柱对蛋白质的色谱分离性能发现小内径毛细管整体柱的Van-Deemter方程的涡流扩散、分子扩散系数项较小,蛋白质传质效率较高。虽然小内径毛细管整体柱内形成的微球簇更大,但是柱效反而更高,这些实验结果与传统填充柱的实验现象相反。本部分所得的实验结果以及相关理论的初步探讨对整体柱的基础理论发展以及在分离生物大分子中的实际应用具有一定的指导意义。
     第三,聚甲基丙烯酸丁酯类毛细管整体柱在μ-HPLC和加压毛细管电色谱(pCEC)系统中分离微囊藻毒素(MCs)的新方法。该部分共包括三项内容:(1)聚甲基丙烯酸丁酯毛细管整体柱在μ-HPLC系统中分离MCs新方法的建立。优化条件后可以在9 min之内实现MC-LR、MC-YR和MC-RR的基线分离,并成功应用于巢湖水样中MCs的分离分析。(2)磺酸化聚甲基丙烯酸丁酯毛细管整体柱在μ-HPLC系统中分离MCs,实验表明该整体柱在μ-HPLC模式下具有疏水作用和离子交换混合分离机理,优化分离条件后可以在5 min内实现模拟水样中藻毒素的基线分离。(3)磺酸化聚甲基丙烯酸丁酯毛细管整体柱在pCEC系统中分离MCs,优化分离条件之后可以在6 min内等度洗脱条件下实现三种藻毒素的基线分离。与μ-HPLC相比分离柱效更高,还可以避免梯度洗脱,具有良好的重现性。总之,甲基丙烯酸酯类毛细管整体柱分离藻毒素可达到良好的分离度,与常用方法相比大大缩短了分析时间,充分显示了毛细管整体柱在快速分离环境生物样品方面的优势。
     第四,合成单体11-acrylamidoundodecanoic acid(AAUA),利用D-optimal实验设计和响应面(RSM)分析方法优化聚合混合物配比,制备了适用于分离烷基苯和烷基苯酮同系物的AAUA-EDMA毛细管整体柱。实验结果表明在最佳配比下制备的整体柱的渗透性和机械性能良好,CEC模式下分离性能稳定,整体柱制备的批次内和批次间重现性分别可以达到2.14%和2.92%以内。实验证明,这种软件辅助优化方法可以通过较少的实验来实现有限制性条件的多因素优化,除此之外,与普遍采用的固定其他因素变化单一因素的优化方法相比,避免了单纯的经验性优选,同时还可以考察各因素之间的相互作用。实验结果与模型预测结果误差在-4%~9%,证明这种方法在整体柱制备条件优化中的应用是成功的。另外还初步研究了AAUA-EDMA毛细管整体柱在CEC中分离氨基甲酸酯农药的可行性,在35 min内可以实现7种农药的完全分离。
Environmental problems have been posing a great challenge to separation technology. Microflow or nanoflow chromatographic methods have attracted strong interest. While there is a lot of problems when comes to the particulate-packed capillary columns which are the traditional columns used in HPLC. The appearance of capillary monolithic columns put forward a completely significantly alternative for traditional packed capillary column. But its development is still in the very beginning step. Therefore, novel monolithic columns were developed and their applications have been studied. The main contents include the following four parts:
     1 . A new poly (styrene-octadecene-divinylbenzene) (PS-OD-DVB) monolithic column was simply prepared by in-situ polymerization of styrene, DVB and octadecene with DMF and decanol as porogens in one step. It was found that this kind of monolithic column had a total porosity of 85%, perfect mechanical intensity and adequate loading capacity. Compared with PS-DVB monolithic column, PS-OD-DVB monolith showed similar ability for the fast separation of six proteins in 2.5 min, and both the PS-DVB and PS-OD-DVB monolithic columns have good durability for high pressure and have good reproducibility after repeated injections. Batch-to-batch reproducibility of column fabrication was good with RSD below 9.5%. Moreover, the experimental results indicated that the PS-OD-DVB monolith showed higher loading capacity and provided better resolution for the separation ofαandβchains of hemoglobin than the PS-DVB monoliths because of the importing of C18 chain. These results make it reasonable to believe that this kind of column is promising in fast and highly effective separation of protein and has great potential for separation of complicated bio-macromolecule samples.
     2. Eeffect of inner diameter of capillary monolithic column on separation of macromolecules inμ-HPLC. PS-DVB monolithic columns with different ID from 100μm to 320μm were prepared and used for separation of standard proteins. The effects of the ID on various column parameters were studied. It was found that the smaller the column diameter is, the higher the permeability. As to the separation efficiency, it was evident that more theoretical plates can be achieved in less time using the smaller diameter columns. It is interpreted that the interstitial structure of the pores formed during the polymerizing of the polymer matrix depends a lot on the ID of the monolithic column, and the monolithic matrix in-suit polymerized in column with smaller diameter consist of larger clusters and through pores. From the Van Deemter equation simulated for each column, it was found with the increase of the column ID, there is an overall increasing trend for the parameters for eddy dispersion, longitudinal infusion and mass transfer. The monolithic column with samller ID which has larger clusters and through pores gives better performance for protein sparation. These results and discussion will be helpful in practical use of monolithic column for separation of biomacromolecules and development of the theory of the monolithic column.
     3. Two kinds of polymethacrylate-based monolithic columns, prepared with or without 2-acrylamido-2-methyl-1-propanesulfoni acid (AMPS) in fused silica capillary, were used for rapid analysis of three cyanobacterial toxins (MC-LR, MC-YR and MC-RR) inμ-HPLC and pCEC systems. Under the optimal gradient elution conditions, polybutylmethacrylate monolithic column inμ-HPLC allows the separation of these toxins in less than 9 min with good reproducibility, recovery and satisfied LODs. For the column prepared with AMPS, introduction of sulphonic bands led to a mixed retention mechanism inμ-HPLC for separation of MCs. After optimizing the separation conditions, this method could separate three MCs in 5 min. In pCEC system, the supplementary high pressure could effectively suppress the bubble formation and shorten analysis time. Under the optimized conditions, three MCs could be baseline separated in less than 6 min in an isocratic elution mode. Compared with MCs separation inμ-HPLC, pCEC collude improve the efficiency obviously and gradient elution could also be avoided. pCEC is a flexible and versatile solution to method optimization studying, and there is a great potential that this system could be used as a fast separation tool for routine use in microcystin monitoring.
     4. A new monolithic column was prepared by a home-made monomer 11-acrylamidoundodecanoic acid (AAUA) and EDMA. The optimization of the preparation was carried out with the assistant of experimental design software. A D-optimal design was performed to evaluate the effect of preparation mixture (concentration of crosslinker, monomer and progens) and optimize the preparation solutions. This method allows one to obtain appropriate data that can be analyzed to study the individual effects and the interaction effects of several factors as well as to determine the optimum conditions through a relatively smaller number of experiments. It was found that the experimental results were in a good aggrement with the predicted value from the software, which proved that this optimization method is successful. The optimized column could provid satisfactory separation of alkylbenzene and alkyl phenyl ketone homologous with good reproducibility. Separation of seven N-methylcarbamates (NMCs) pesticides was also preliminarily studied and a satisfied result was achieved.
引文
[1] Hernandez-Borges, J. Recent applications in nanoliquid chromatography [J]. Journal of Separation Science. 2007, 30(11): 1589-1610.
    [2] Ito, S., Yoshioka, S., Ogata, I., et al. Capillary high-performance liquid chromatography/electrospray ion trap time-of-flight mass spectrometry using a novel nanoflow gradient generator [J]. Journal of Chromatography A. 2005, 1090(1-2): 178-183.
    [3] Masuda, J., Maynard, D.M., Nishimura, M., et al. Fully automated micro- and nanoscale one- or two-dimensional high-performance liquid chromatography system for liquid chromatography-mass spectrometry compatible with non-volatile salts for ion exchange chromatography [J]. Journal of Chromatography A [J]. 2005, 1063(1-2): 57-69.
    [4] Horvath, C.G., Preiss, B.A., Lipsky, S.R. Fast liquid chromatography. investigation of operating parameters and the separation of nucleotides on pellicular ion exchangers [J]. Anal. Chem. 1967, 39(12): 1422-1428.
    [5] Ishii, D., Asai, K., Hibi, K., et al. A study of micro-high-performance liquid chromatography [J]. Journal of Chromatography. 1977, 144: 157-168.
    [6] Scott, R.P.W., Small bore liquid chromatography columns. 1984, New York: John Wiley & Sons Inc (August 1, 1984) 272.
    [7] N?gele, E., Vollmer, M. Coupling of nanoflow liquid chromatography to matrix-assisted laser desorption/ionization mass spectrometry: Real-time liquid chromatography run mapping on a MALDI plate [J]. Rapid Communications in Mass Spectrometry. 2004, 18(24): 3008-3014.
    [8] Le Bihan, T., Duewel, H.S., Figeys, D. On-line strong cation exchangeμ-HPLC-ESI-MS/MS for protein identification and process optimization [J]. Journal of the American Society for Mass Spectrometry. 2003, 14(7): 719-727.
    [9] Colon, L.A., Maloney, T.D., Fermier, A.M. Packing columns for capillary electrochromatography [J].Journal of Chromatography A. 2000, 887(1-2): 43-53.
    [10] Szumski M., Buszewski, B. Preparation and application of monolithic beds in the separation of selected natural biologically important compounds [J]. Journal of Separation Science. 2007, 30(1): 55-66.
    [11] Olsen, B.A., Castle, B.C., Myers, D.P. Advances in HPLC technology for the determination of drug impurities [J]. TrAC Trends in Analytical Chemistry. 2006, 25(8): 796-805.
    [12] K?odzińska, E., Moravcova, D., Jandera P., et al. Monolithic continuous beds as a new generation of stationary phase for chromatographic and electro-driven separations [J]. Journal of Chromatography A. 2006, 1109(1): 51-59.
    [13] Frantisek, S., Recent developments in the field of monolithic stationary phases for capillary electrochromatography [J]. Journal of Separation Science. 2005, 28(8): 729-745.
    [14] Kubin, M., Spacek, P., Chromecek, R. Gel permeation chromatography on porous poly (ethylene glycol methacrylate) [J]. Collection of Czech Chemistry Communication. 1967, 32(11): 3881-3887.
    [15] Hjerten, S., Liao, J.-L., Zhang, R. High-performance liquid chromatography on continuous polymer beds [J]. Journal of Chromatography A. 1989, 473: 273-275.
    [16] Preinerstorfer, B., Recent accomplishments in the field of enantiomer separation by CEC [J]. Electrophoresis. 2007, 28(15): 2527-2565.
    [17] Ou J., Dong J., Dong X., et al. Recent progress in polar stationary phases for CEC [J]. Electrophoresis. 2007, 28(1-2): 148-163.
    [18] Nú?ez, O., Ikegami, T., Tanaka, N., et al. Study of a monolithic silica capillary column coated with poly(octadecyl methacrylate) for the reversed-phase liquid chromatographic separation of some polar and non-polar compounds [J]. Journal of Chromatography A. 2007, 1175(1): 7-15.
    [19] Huo, Y., Schoenmakers, P.J., Kok, W.T. Efficiency of methacrylate monolithic columns in reversed-phase liquid chromatographic separations [J]. Journal of Chromatography A. 2007, 1175(1): 81-88.
    [20] Horie, K., Ikegami T., Hosoya K., et al., Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography [J]. Journal ofChromatography A. 2007, 1164(1-2): 198-205.
    [21] Puy, G., Roux, R., Demesmay, C., et al., Influence of the hydrothermal treatment on the chromatographic properties of monolithic silica capillaries for nano-liquid chromatography or capillary electrochromatography [J]. Journal of Chromatography A. 2007, 1160(1-2): 150-159.
    [22] Premstaller, A., Oberacher, H., Walcher, W., et al., High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry Using Monolithic Capillary Columns for Proteomic Studies [J]. Analytical Chemistry. 2001, 73(11): 2390-2396.
    [23] Jmeian, Y., ElRassi, Z. Tandem Affinity Monolithic Microcolumns with Immobilized Protein A, Protein G', and Antibodies for Depletion of High Abundance Proteins from Serum Samples: Integrated Microcolumn-Based Fluidic System for Simultaneous Depletion and Tryptic Digestion [J]. Journal of Proteome Research. 2007, 6(3): 947-954.
    [24] Marcus, K., Sch?fer, H., Klaus, S., et al. A New Fast Method for nanoLC-MALDI-TOF/TOF-MS Analysis Using Monolithic Columns for Peptide Preconcentration and Separation in Proteomic Studies [J]. Journal of Proteome Research. 2007, 6(2): 636-643.
    [25] Kato, M., Sakai-Kato, K., Matsumoto, N., et al. A Protein-Encapsulation Technique by the Sol-Gel Method for the Preparation of Monolithic Columns for Capillary Electrochromatography [J]. Analytical Chemistry. 2002, 74(8): 1915-1921.
    [26] Wang, F., Dong, J., Ye, M., et al., Online Multidimensional Separation with Biphasic Monolithic Capillary Column for Shotgun Proteome Analysis [J]. Journal of Proteome Research. 2008, 7(1): 306-310.
    [27] Gerber, F., Krummen, M., Potgeter, H., et al., Practical aspects of fast reversed-phase high-performance liquid chromatography using 3μm particle packed columns and monolithic columns in pharmaceutical development and production working under current good manufacturing practice [J]. Journal of Chromatography A. 2004, 1036(2): 127-133.
    [28] Cledera-Castro, M., Santos-Montes, A., Izquierdo-Hornillos, R. Comparison of the performance of conventional microparticulates and monolithic reversed-phase columns for liquid chromatography separation of eleven pollutant phenols [J]. Journal of Chromatography A. 2005, 1087(1-2): 57-63.
    [29] Ye, X., Kuklenyik, Z., Needham, L.L., et al., Automated On-Line Column-Switching HPLC-MS/MS Method with Peak Focusing for the Determination of Nine Environmental Phenols in Urine [J]. Analytical Chemistry. 2005, 77(16): 5407-5413.
    [30] Oguri, S., Tanagaki, H., Hamaya, M., et al., On-Line Preconcentration Prior to On-Column Derivatization Monolith Octadecasiloxane Capillary Electrochromatography for the Determination of Biogenic Amines [J]. Analytical Chemistry. 2003, 75(19): 5240-5245.
    [31] Lee, W.L., Katsuaki H., Shinichi T., et al., Sample enrichment by using monolithic precolumns in microcolumn liquid chromatography [J]. Journal of Chromatography A. 2004, 1033(2): 205-212.
    [32] Chu, Y., Poole, C.F. System maps for retention of neutral organic compounds under isocratic conditions on a reversed-phase monolithic column [J]. Journal of Chromatography A. 2003, 1003(1-2): 113-121.
    [33] Ishizuka, N., Kobayashi, H., Minakuchi, H., et al., Monolithic silica columns for high-efficiency separations by high-performance liquid chromatography [J]. Journal of Chromatography A. 2002, 960(1-2): 85-96.
    [34] Gu, C., Lin, Li., Chen X., et al. Fabrication of a poly(styrene-octadecene-divinylbenzene) monolithic column and its comparison with a poly(styrene-divinylbenzene) monolithic column for the separation of proteins [J]. Journal of Separation Science. 2007, 30(7): 1005-1012.
    [35] Cabrera, K., Lubda, D., Eggenweiler, H.M. A New Monolithic-Type HPLC Column For Fast Separations [J]. Journal of High Resolution Chromatography. 2000, 23(1): 93-99.
    [36] Tanaka, N., Kobayashi, H., Ishizuka, N., et al., Monolithic silica columns for high-efficiency chromatographic separations [J]. Journal of Chromatography A. 2002, 965(1-2): 35-49.
    [37] Zou, H., Huang, X., Ye, M., et al. Monolithic stationary phases for liquid chromatography and capillary electrochromatography [J]. Journal of Chromatography A. 2002, 954(1-2): 5-32.
    [38] Shi, Z.G., Feng, Y.Q., Xu, L., et al., Preparation and evaluation of zirconia-coated silica monolith for capillary electrochromatography [J]. Talanta. 2004, 63(3): 593-598.
    [39] Crosnier de Bellaistre, M., Mathieu, O., Randon, J., et al., Control of electroosmotic flow in zirconia-coated capillaries [J]. Journal of Chromatography A. 2002, 971(1-2): 199-205.
    [40] Chuzo, F., Titanium dioxide coated surfaces for capillary electrophoresis and capillary electrochromatography [J]. Electrophoresis. 2002, 23(17): 2929-2937.
    [41]Motokawa, M., Kobayashi, H., Ishizuka, N., et al., Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography [J]. Journal of Chromatography A. 2002, 961(1): 53-63.
    [42] Tang, Q., Lee, M.L. Capillary electrochromatography using continuous-bed columns of sol-gel bonded silica particles with mixed-mode octadecyl and propylsulfonic acid functional groups [J]. Journal of Chromatography A. 2000, 887(1-2): 265-275.
    [43] Ratnayake, C.K., Oh, C.S., Henry, M.P., et al. Particle Loaded Monolithic Sol-Gel Columns for Capillary Electrochromatography: A New Dimension for High Performance Liquid Chromatography [J]. Journal of High Resolution Chromatography. 2000, 23(1): 81-88.
    [44] Tang, Q., Xin, B., Lee, M.L. Monolithic columns containing sol-gel bonded octadecylsilica for capillary electrochromatography [J]. Journal of Chromatography A. 1999, 837(1-2): 35-50.
    [45] Dulay, M.T., Kulkarni, R.P., Zare, R.N. Preparation and Characterization of Monolithic Porous Capillary Columns Loaded with Chromatographic Particles [J]. Analytical Chemistry. 1998, 70(23): 5103-5107.
    [46] Chirica, G.S. Remcho, V.T. Fritless Capillary Columns for HPLC and CEC Prepared by Immobilizing the Stationary Phase in an Organic Polymer Matrix [J]. Analytical Chemistry. 2000, 72(15): 3605-3610.
    [47] Asiaie, R., Huang, X., Farnan, D., et al., Sintered octadecylsilica as monolithic column packing in capillary electrochromatography and micro high-performance liquid chromatography [J]. Journal of Chromatography A. 1998, 806(2): 251-263.
    [48] Allen, D. Rassi, Z. El, Capillary electrochromatography with monolithic silica columns: III. Preparation of hydrophilic silica monoliths having surface-bound cyano groups: chromatographic characterization and application to the separation of carbohydrates, nucleosides, nucleic acid bases and other neutral polar species [J]. Journal of Chromatography A. 2004, 1029(1-2): 239-247.
    [49] Svec F., Peters, E.C., Sykora, D. et al. Monolithic Stationary Phases for CapillaryElectrochromatography Based on Synthetic Polymers: Designs and Applications [J]. Journal of High Resolution Chromatography. 2000, 23(1): 3-18.
    [50] Turiel, E., Tadeo, J.L., Martin-Esteban, A. Molecularly Imprinted Polymeric Fibers for Solid-Phase Microextraction [J]. Analytical Chemistry. 2007, 79(8): 3099-3104.
    [51] Andersson, L.I. Molecular imprinting: developments and applications in the analytical chemistry field [J]. Journal of Chromatography B: Biomedical Sciences and Applications, 2000. 745(1): 3-13.
    [52] Ou, J., Dong, J., Tian T., et al., Enantioseparation of tetrahydropalmatine and Troger's base by molecularly imprinted monolith in capillary electrochromatography [J]. Journal of Biochemical and Biophysical Methods. 2007, 70(1): 71-76.
    [53] Fairhurst, R.E., Chassaing, C., Venn, R.F., et al. A direct comparison of the performance of ground, beaded and silica-grafted MIPs in HPLC and Turbulent Flow Chromatography applications [J]. Biosensors and Bioelectronics. 2004, 20(6): 1098-1105.
    [54] Huang, X., Zou, H., Chen, X., et al., Molecularly imprinted monolithic stationary phases for liquid chromatographic separation of enantiomers and diastereomers [J]. Journal of Chromatography A. 2003, 984(2): 273-282.
    [55] Holdsvendova, P., Coufal, P., Suchankova, J., et al. Methacrylate monolithic columns for capillary liquid chromatography polymerized using ammonium peroxodisulfate as initiator [J]. Journal of Separation Science. 2003, 26(18): 1623-1628.
    [56] Ueki, Y., Umemura, T., Li, J., et al. Preparation and Application of Methacrylate-Based Cation-Exchange Monolithic Columns for Capillary Ion Chromatography [J]. Analytical Chemistry. 2004, 76(23): 7007-7012.
    [57] Wen, J., Guillo, C., Ferrance, J.P., et al., DNA Extraction Using a Tetramethyl Orthosilicate-Grafted Photopolymerized Monolithic Solid Phase [J]. Analytical Chemistry. 2006, 78(5): 1673-1681.
    [58] Vidi?, J., Podgornik, A., Jan?ar, J., et al., Chemical and chromatographic stability of methacrylate-based monolithic columns [J]. Journal of Chromatography A. 2007, 1144(1): 63-71.
    [59] Geiser, L., Eeltink, S., Svec, F., et al., Stability and repeatability of capillary columns based on porous monoliths of poly(butyl methacrylate-co-ethylene dimethacrylate) [J]. Journal ofChromatography A. 2007, 1140(1-2): 140-146.
    [60] Eeltink, S., Rozing, G.P., Schoenmakers, P.J., et al., Practical aspects of using methacrylate-ester-based monolithic columns in capillary electrochromatography [J]. Journal of Chromatography A. 2006, 1109(1): 74-79.
    [61] Dong, X., Dong, J., Ou, J., et al. Capillary electrochromatography with zwitterionic stationary phase on the lysine-bonded poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic capillary column [J]. Electrophoresis. 2006, 27(12): 2518-2525.
    [62] Svec, F., Less common applications of monoliths: Preconcentration and solid-phase extraction [J]. Journal of Chromatography B. 2006, 841(1-2): 52-64.
    [63] Trojer, L., Lubbad, S.H., Bisjak, C.P., et al. Monolithic poly(p-methylstyrene-co-1,2-bis(p-vinylphenyl)ethane) capillary columns as novel styrene stationary phases for biopolymer separation [J]. Journal of Chromatography A. 2006, 1117(1): 56-66.
    [64] Toll, H., Oberacher, H., Swart, R., et al. Separation, detection, and identification of peptides by ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry at high and low pH [J]. Journal of Chromatography A. 2005, 1079(1-2): 274-286.
    [65] Walcher, W., Toll, H., Ingendoh, A., et al. Operational variables in high-performance liquid chromatography-electrospray ionization mass spectrometry of peptides and proteins using poly(styrene-divinylbenzene) monoliths [J]. Journal of Chromatography A. 2004, 1053(1-2): 107-117.
    [66] Legido-Quigley, C., Marlin, N., Smith, N.W. Comparison of styrene-divinylbenzene-based monoliths and Vydac nano-liquid chromatography columns for protein analysis [J]. Journal of Chromatography. 2004, 1030(1-2): 195-200.
    [67] Oberacher, H., Premstaller, A., Huber, C.G. Characterization of some physical and chromatographic properties of monolithic poly(styrene-co-divinylbenzene) columns [J]. Journal of Chromatography. 2004, 1030(1-2): 201-208.
    [68] Premstaller, A., Oberacher, H. Huber, C.G. High-Performance LiquidChromatography-Electrospray Ionization Mass Spectrometry of Single- and Double-Stranded Nucleic Acids Using Monolithic Capillary Columns [J]. Analytical Chemistry. 2000. 72(18): 4386-4393.
    [69] Ryan, T.W., HPLC Method Transfer to Narrow Bore Columns: An Evaluation. Journal of Liquid Chromatography & Related Technologies. 1995, 18(1): 51 - 62.
    [70] Legido-Quigley, C., Marlin, N.D., Melin, V., et al. Advances in capillary electrochromatography and micro-high performance liquid chromatography monolithic columns for separation science [J]. Electrophoresis. 2003, 24(6): 917-944.
    [71] Ivanov, A.R., Zang, L., Karger, B.L. Low-Attomole Electrospray Ionization MS and MS/MS Analysis of Protein Tryptic Digests Using Polystyrene-Divinylbenzene Monolithic Capillary Columns. Analytical Chemistry. 2003, 75(20): 5306-5316.
    [72] Huang, X., Zhang, S., Schultz, G.A., et al., Surface-Alkylated Polystyrene Monolithic Columns for Peptide Analysis in Capillary Liquid Chromatography-Electrospray Ionization Mass Spectrometry [J]. Analytical Chemistry. 2002, 74(10): 2336-2344.
    [73] Freitag, R., Comparison of the chromatographic behavior of monolithic capillary columns in capillary electrochromatography and nano-high-performance liquid chromatography. Journal of Chromatography A, 2004. 1033(2): p. 267-273.
    [74] Maruska, A., Kornysova, O., Continuous beds (monoliths): stationary phases for liquid chromatography formed using the hydrophobic interaction-based phase separation mechanism [J]. Journal of Biochemical and Biophysical Methods. 2004, 59(1): 1-48.
    [75] Viklund, C., Svec, F., Frechet, J.M.J., et al. Monolithic, "Molded", Porous Materials with High Flow Characteristics for Separations, Catalysis, or Solid-Phase Chemistry: Control of Porous Properties during Polymerization. Chemistry Material. 1996, 8(3): 744-750.
    [76] Lammerhofer, M., Svec, F., Frechet, J.M.J., et al. Capillary electrochromatography in anion-exchange and normal-phase mode using monolithic stationary phases [J]. Journal of Chromatography A, 2001. 925(1-2): 265-277.
    [77] Stulik, K., Pacakova, V., Suchankova, J., et al. Monolithic organic polymeric columns for capillaryliquid chromatography and electrochromatography [J]. Journal of Chromatography B. 2006, 841(1-2): 79-87.
    [78] Kvasni?kováa, L., Zdeněk G., ?těrbováa, H., et al., Application of capillary electrochromatography using macroporous polyacrylamide columns for the analysis of lignans from seeds of Schisandra chinensis [J]. Journal of Chromatography A. 2001, 916(1-2): 265-271.
    [79] Chen, Z., Nishiyama, T., Uchiyama, K., et al., Electrochromatographic enantioseparation using chiral ligand exchange monolithic sol-gel column [J]. Analytica Chimica Acta. 2004, 501(1): 17-23.
    [80] Branovic, K., Buchacher A., Barut M., et al., Application of semi-industrial monolithic columns for downstream processing of clotting factor IX [J]. Journal of Chromatography B. 2003, 790(1-2): 175-182.
    [81] Michel, M., Baczek, T., Studzińska, S., et al., Comparative evaluation of high-performance liquid chromatography stationary phases used for the separation of peptides in terms of quantitative structure-retention relationships [J]. Journal of Chromatography A. 2007, 1175(1): 49-54.
    [82] Ishizuka, N., Minakuchi, H., Nakanishi, K., et al., Performance of a Monolithic Silica Column in a Capillary under Pressure-Driven and Electrodriven Conditions [J]. Analytical Chemistry. 2000, 72(6): 1275-1280.
    [83] Carbonnier, B., Guerrouache, M., Denoyel, R., et al. CEC separation of aromatic compounds and proteins on hexylamine-functionalized N-acryloxysuccinimide monoliths. Journal of Separation Science. 2007, 30(17): 3000-3010.
    [84] Wen, Y., Feng, Y.Q. Preparation and evaluation of hydroxylated poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic capillary for in-tube solid-phase microextraction coupled to high-performance liquid chromatography [J]. Journal of Chromatography A. 2007, 1160(1-2): 90-98.
    [85] Tolstikov, V.V., Lommen, A., Nakanishi, K., et al. Monolithic Silica-Based Capillary Reversed-Phase Liquid Chromatography/Electrospray Mass Spectrometry for Plant Metabolomics [J]. Analytical Chemistry. 2003, 75(23): 6737-6740.
    [86] Spoof, L. Meriluoto, J. Rapid separation of microcystins and nodularin using a monolithic silicaC18 column [J]. Journal of Chromatography A. 2002, 947(2): 237-245.
    [87] Rocheleau, M.J., Jean, C., Bolduc, J., et al. Evaluation of a silica-based monolithic column in the HPLC analysis of taxanes [J]. Journal of Pharmaceutical and Biomedical Analysis. 2003, 31(1): 191-196.
    [88] Schulte, M., Lubda, D., Delp, A., et al. Preparative Monolithic Silica Sorbents (PrepRODsTM) and Their Use in Preparative Liquid Chromatography [J]. Journal of High Resolution Chromatography. 2000, 23(1): 100-105.
    [89] Miyazaki, S., Morisato, K., Ishizuka, N., et al. Development of a monolithic silica extraction tip for the analysis of proteins [J]. Journal of Chromatography A. 2004, 1043(1): 19-25.
    [90] Yan, H., Row, K.H., Novel molecularly imprinted monolithic column for selective on-line extraction of ciprofloxacin from human urine [J]. Biomedical Chromatography, 2008. 9999(9999): n/a.
    [91] Wei, F., Fan, Y., Zhang, M. Poly(methacrylic acid-ethylene glycol dimethacrylate) monolith in-tube solid-phase microextraction applied to simultaneous analysis of some amphetamine derivatives in urine by capillary zone electrophoresis [J]. Electrophoresis. 2005, 26(16): 3141-3150.
    [92] Lin, B., Zheng, M.-M., Ng, S.-C., et al. Development of in-tube solid-phase microextraction coupled to pressure-assisted CEC and its application to the analysis of propranolol enantiomers in human urine [J]. Electrophoresis. 2007, 28(15): 2771-2780.
    [93] Zhang, L.-H., Zhang C.-J., Chen X., et al. In-capillary solid-phase extraction-capillary electrophoresis for the determination of chlorophenols in water [J]. Electrophoresis. 2006, 27(16): 3224-3232.
    [94] Lin B., Zheng, M.-M., Ng, S.-C., et al. Perphenylcarbamoylated ?-cyclodextrin bonded-silica particles as chiral stationary phase for enantioseparation by pressure-assisted capillary electrochromatography [J]. Electrophoresis. 2006, 27(15): 3057-3065.
    [95] Wei, F., Fan, Y., Zhang, M. Application of poly(methacrylic acid-ethylene glycol dimethacrylate) monolith microextraction coupled with capillary zone electrophoresis to the determination of opiates in human urine [J]. Electrophoresis. 2006, 27(10): 1939-1948.
    [96] Nie J., Zhao, Q., Huang, J., et al. Determination of telmisartan in rat tissues by in-tube solid-phase microextraction coupled to high performance liquid chromatography [J]. Journal of Separation Science, 2006. 29(5): 650-655.
    [1] Minakuchi, H., et al., Octadecylsilylated Porous Silica Rods as Separation Media for Reversed-Phase Liquid Chromatography [J]. Analytical Chemistry. 1996, 68(19): 3498-3501
    [2] Svec, F., Fréchet, J.M.J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media [J]. Analytical Chemistry. 1992, 54: 820-822.
    [3] Svec, F., Huber, C.G. Monolithic materials: Promises, challenges, achievements [J]. Analytical Chemistry. 2006, 78(7): 2101-2107.
    [4] Svec, F., Tennikova, T.B., Deyl, Z. monolithic materials. 2003, Netherlands: Journal of Chromatography Library.
    [5] Karin, C., Applications of silica-based monolithic HPLC columns [J]. Journal of Separation Science. 2004, 27(10-11): 843-852.
    [6] Hjertén, S., Liao, J.-L., Zhang, R. High-performance liquid chromatography on continuous polymer beds [J]. Journal of Chromatography A. 1989, 473: 273-275.
    [7] ?atínsky, D., Huclová, J., Ferreira, R.L.C. et al. Determination of ambroxol hydrochloride, methylparaben and benzoic acid in pharmaceutical preparations based on sequential injection technique coupled with monolithic column [J]. Journal of Pharmaceutical and Biomedical Analysis. 2006, 40: 287-293.
    [8] Xu, N., Fan, R., Kim, L., El-Shourbagy, T.A. A monolithic-phase based on-line extraction approach for determination of pharmaceutical components in human plasma by HPLC–MS/MS and a comparison with liquid-liquid extraction [J]. Journal of Pharmaceutical and Biomedical Analysis. 2006, 40: 728-736.
    [9] Cledera-Castro, M., Santos-Montes, A., Izquierdo-Hornillos, R. Comparison of the performance of conventional microparticulates and monolithic reversed-phase columns for liquid chromatography separation of eleven pollutant phenols [J]. Journal of Chromatography A. 2005, 1087(1-2): 57-63.
    [10] Ye, X., Kuklenyik, Z., Needham, L.L. et al. Automated On-Line Column-Switching HPLC-MS/MS Method with Peak Focusing for the Determination of Nine Environmental Phenols in Urine.Analytical Chemistry. 2005, 77(16):5407-5413.
    [11] Huber, CG, Premstaller, A, Xiao, W. et al. Mutation detection by capillary denaturing high-performance liquid chromatography using monolithic columns [J]. Journal of Biochemistry Biophysical Methods. 2001, 47: 5-19.
    [12] H?lzl, G., Oberacher, H., Pitsch, S., et al., Analysis of biological and synthetic ribonucleic acids by liquid chromatography-mass spectrometry using monolithic capillary columns [J]. Analytical Chemistry. 2005, 77(2): 673-680.
    [13] Huang, X., Zhang, S., Schultz, G.A., et al., Surface-alkylated polystyrene monolithic columns for peptide analysis in capillary liquid chromatography-electrospray ionization mass spectrometry [J]. Analytical Chemistry. 2002, 74(10): 2336-2344.
    [14] Huisman., T.H.J. High performance liquid chromatographic analysis of human hemoglobins and their polypeptide chains: its use in the identification of variants [J]. Analytica Chimica Acta. 1997, 352: 187-200.
    [15] Oefner, P.J., Huber, C.G. A decade of high-resolution liquid chromatography of nucleic acids on styrene-divinylbenzene copolymers [J]. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2002, 782(1-2): 27-55.
    [16] Tholey, A., Toll, H., Huber, C.G. Separation and detection of phosphorylated and nonphosphorylated peptides in liquid chromatography-mass spectrometry using monolithic columns and acidic or alkaline mobile phases [J]. Analytical Chemistry. 2005, 77(14): 4618-4625.
    [17] Toll, H., Oberacher, H., Swart, R., et al., Separation, detection, and identification of peptides by ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry at high and low pH [J]. Journal of Chromatography A. 2005, 1079(1-2): 274-286.
    [18] Vigassy, T., Huber, C.G., Wintringer, R., et al., Monolithic capillary-based ion-selective electrodes [J]. Analytical Chemistry. 2005, 77(13): 3966-3970.
    [19] Oberacher, H., Premstaller, A., Huber, C.G. Characterization of some physical and chromatographic properties of monolithic poly(styrene-co-divinylbenzene) columns [J]. Journal of Chromatography. 2004, 1030(1-2): 201-208.
    [20] Petro, M., Svec, F., Gitsov, I., et al. Molded monolithic rod of macroporous poly(styrene-co-divinylbenzene) as a separation medium for HPLC of synthetic polymers: "On-column" precipitation-redissolution chromatography as an alternative to size exclusion chromatography of styrene oligomers and polymers [J]. Analytical Chemistry. 1996, 68(2): 315-321.
    [21] Lin, J., Wu, X., Lin, X., et al., Preparation of polymethacrylate monolithic stationary phases having bonded octadecyl ligands and sulfonate groups: Electrochromatographic characterization and application to the separation of polar solutes for pressurized capillary electrochromatography [J]. Journal of Chromatography A. 2007, 1169(1-2): 220-227.
    [22] Premstaller, A., Oberacher, H., Walcher, W., et al., High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry Using Monolithic Capillary Columns for Proteomic Studies [J]. Analytical Chemistry. 2001, 73(11): 2390-2396.
    [23] Gusev, I., Huang, X., Horváth, C. Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography [J]. Journal of Chromatography A. 1999, 855: 273-290.
    [24] Kanji Miyabe, G.G., Characterization of monolithic columns for HPLC [J]. Journal of Separation Science. 2004, 27(10-11): 853-873.
    [25] Leinweber, F.C., Lubda, D., Cabrera, K., et al. Characterization of silica-based monoliths with bimodal pore size distribution [J]. Analytical Chemistry. 2002, 74: 2470-2477.
    [26] Huang, X., Zhang, J., Horváth, C. Capillary electrochromatography of proteins and peptides with porous-layer open-tubular columns [J]. Journal of Chromatography A. 1999, 858(1): 91-101.
    [27] Meyers, V.M., Practical High-Performance Liquid Chromatography. 2005, New Jersey: Wiley. 131.
    [28] Ratnayake, C.K., Oh, C.S., Michael, P.H. Particle Loaded Monolithic Sol-Gel Columns for Capillary Electrochromatography: A New Dimension for High Performance Liquid Chromatography [J]. Journal of High Resolution Chromatography. 2000, 23(1): 81-88.
    [29] Delaunay-Bertoncini, N., Demesmay, C., Rocca, J.-L. Development and synthesis of monolithic stationary phases for electrochromatographic separations [J]. Electrophoresis. 2004, 25(18-19):3204-3215.
    [30] Hahn, R., Jungbauer, A. Control method for integrity of continuous beds [J]. Journal of Chromatography A. 2001, 908(1-2): 179-184.
    [31] Smet, D.J., Gzil, P., Vervoort, N. et al., On the optimisation of the bed porosity and the particle shape of ordered chromatographic separation media [J]. Journal of Chromatography A. 2005, 1073(1-2): 43-51.
    [32] Bristow, P.A., Knox, J.H. Standardization of test conditions. for high perpormance liquid chromatography columns [J]. Chromatographia. 1977, 10: 279-289.
    [33]. Papadea, C., Cate J.C. Identification and quantification of hemoglobin A,F,S,and C by automated chromatography [J]. Clinical Chemitry. 1996, 42(1): 57-63.
    [34] Hadzi-Nesic, J., Nardi, M.A., Joutovsky, A. HPLC retention time as a diagnosis tool for hemoglobin variants and hemoglobinopathies: A study of 60000 samples in a clinical diagnostic laboratory [J]. Clinical chemistry. 2004, 50(10): 1736-1747.
    [35] Huber, C. G., Kleindienst, G., Bonn, G. K. Application of Micropellicular Poly-styrene/divinylbenzene Stationary Phases for High-Performance Liquid Chromatography Electrospray-Mass Spectrometry of Proteins and Peptides [J]. Chromatographia. 1997, 44: 438-448.
    [36] Huber C. G., Oefner P. J., Bonn G. K. High-Resolution Liquid Chromatography of Oligonucleotides on Nonporous Alkylated Styrene-Divinylbenzene Copolymers [J]. Analytical Biochemistry. 1993, 212(2): 351-358.
    [37] Ro, K.W., Liu, J., Busman, M., et al. Capillary high-performance liquid chromatography-electrospray ionization mass spectrometry using monolithic columns and carbon fiber electrospray ionization emitters [J]. Journal of Chromatography A. 2004, 1047(1): 49-57.
    [1] Ivanov, A.R., Zang, L., Karger, B.L. Low-Attomole Electrospray Ionization MS and MS/MS Analysis of Protein Tryptic Digests Using 20-μm-i.d. Polystyrene-Divinylbenzene Monolithic Capillary Columns [J]. Analytical Chemistry. 2003, 75(20): 5306-5316.
    [2] Coufal, P., Cihak, M., Suchankova, J., et al. Methacrylate monolithic columns of 320μm ID for capillary liquid chromatography [J]. Journal of Chromatography A. 2002, 946(1-2): 99-106.
    [3] Gu, X., Wang, Y., Zhang, X. Large-bore particle-entrapped monolithic precolumns prepared by a sol-gel method for on-line peptides trapping and preconcentration in multidimensional liquid chromatography system for proteome analysis [J]. Journal of Chromatography A. 2005, 1072(2): 223-232.
    [4] Huang, H.-Y., Chiu, C.-W., Huang, I.-Y., et al. Analyses of benzophenones by capillary electrochromatography using methacrylate ester-based monolithic columns [J]. Journal of Chromatography A. 2005, 1089(1-2): 250-257.
    [5]. Karlsson, K.M., Spoof, L.E.M., Jussi A.O. Quantitative LC-ESI-MS analyses of microcystins and nodularin-R in animal tissue-Matrix effects and method validation [J]. Environmental Toxicology. 2005, 20(3): 381-389.
    [6] Legido-Quigley, C., Marlin, N., Smith, N.W. Comparison of styrene-divinylbenzene-based monoliths and Vydac nano-liquid chromatography columns for protein analysis [J]. Journal of Chromatography. 2004, 1030(1-2): 195-200.
    [7] Svec, F., Huber, C.G. Monolithic materials: Promises, challenges, achievements [J]. Analytical Chemistry. 2006, 78(7): 2101-2107.
    [8] Kyung W.R., Nayak, R., Knapp, D.R. Monolithic media in microfluidic devices for proteomics [J]. Electrophoresis. 2006, 27(18): 3547-3558.
    [9] Klodzinska, E., Moravcova, D., Jandera, P., et al. Monolithic continuous beds as a new generation of stationary phase for chromatographic and electro-driven separations [J]. Journal of Chromatography A. 2006, 1109(1): 51-59.
    [10] Eeltink, S., Svec, F. Recent advances in the control of morphology and surface chemistry of porous polymer-based monolithic stationary phases and their application in CEC [J]. Electrophoresis. 2007, 28(1-2): 137-147.
    [11] Campas, M., Marty, J.-L. Highly sensitive amperometric immunosensors for microcystin detection in algae [J]. Biosensors and Bioelectronics. 2007, 22(6): 1034-1040.
    [12] Szumski, M., Buszewski, B. Preparation and application of monolithic beds in the separation of selected natural biologically important compounds [J]. Journal of Separation Science. 2007, 30(1): 55-66.
    [13] Stulik, K., Pacáková, V., Suchánková, J., et al. Monolithic organic polymeric columns for capillary liquid chromatography and electrochromatography [J]. Journal of Chromatography B. 2006, 841(1-2): 79-87.
    [14] Barut, M., Podgornik, A., Brne, P. Convective Interaction Media short monolithic columns: Enabling chromatographic supports for the separation and purification of large biomolecules [J]. Journal of Separation Science. 2005, 28(15): 1876-1892.
    [15] Rieux, L., Niederlander, H., Verpoorte, E., et al. Silica monolithic columns: Synthesis, characterisation and applications to the analysis of biological molecules [J]. Journal of Separation Science. 2005, 28(14): 1628-1641.
    [16] Frantisek, S. Recent developments in the field of monolithic stationary phases for capillary electrochromatography [J]. Journal of Separation Science. 2005, 28(8): 729-745.
    [17] Bedair, M., El-Rassi, Z. Recent advances in polymeric monolithic stationary phases for electrochromatography in capillaries and chips [J]. Electrophoresis. 2004, 25(23-24): 4110-4119.
    [18] Walcher, W., et al., Operational variables in high-performance liquid chromatography-electrospray ionization mass spectrometry of peptides and proteins using poly(styrene-divinylbenzene) monoliths. Journal of Chromatography A, 2004. 1053(1-2): p. 107-117.
    [19] Petro, M., Svec, F., Gitsov, I., et al. Molded monolithic rod of macroporous poly(styrene-co-divinylbenzene) as a separation medium for HPLC of synthetic polymers: "On-column" precipitation-redissolution chromatography as an alternative to size exclusion chromatography of styrene oligomers and polymers [J]. Analytical Chemistry. 1996, 68(2): 315-321.
    [20] Gooding, K.M., Regnier, F.E. (Editor), HPLC of Biological Macromolecules.Methods and Applications. 1990, New York.
    [21] Glockner, G., Gradient HPLC of Copolymers and Chromatographic Cross-Fractionation. 1991, Berlin: Springer. 45.
    [22] Petro, M., Svec, F., Gitsov, I., et al., Molded monolithic rod of macroporous Poly(styrene-co-divinylbenzene) as a Separation Medium for HPLC of Synthetic Polymers: on-Column Percipitation-Redissolution Chromatography as an Alternative to Size Exclusion Chromatography of Styrene Oligomers and Polymers [J]. Analytical Chemistry. 1996, 68(2): 315-321.
    [23] Kennedy, T., Jorgenson, W. preparation and evaluation of packed capillary liguid chromatography columns wtih inner diameters from 20 to 50μm [J]. Analytical Chemistry. 1989, 61: 1128-1135.
    [24] Svec, F., Tennikova, T.B., Deyl, Z. monolithic materials. 2003, Netherlands: Journal of Chromatography Library.
    [25] Gu, C., Lin, L., Chen, X., et al. Fabrication of a poly(styrene-octadecene-divinylbenzene) monolithic column and its comparison with a poly(styrene-divinylbenzene) monolithic column for the separation of proteins [J]. Journal of Separation Science. 2007, 30(7): 1005-1012.
    [26] Ro, K.W., et al. Capillary high-performance liquid chromatography-electrospray ionization mass spectrometry using monolithic columns and carbon fiber electrospray ionization emitters [J]. Journal of Chromatography A. 2004, 1047(1): 49-57.
    [27] Okay, O., Macroporous copolymer networks [J]. Progress in polymer science. 2000, 25(6): 711-779.
    [28] Geiser, L., et al. Stability and repeatability of capillary columns based on porous monoliths ofpoly(butyl methacrylate-co-ethylene dimethacrylate) [J]. Journal of Chromatography A. 2007, 1140(1-2): 140-146.
    [29] Oberacher, H., A. Premstaller, and C.G. Huber, Characterization of some physical and chromatographic properties of monolithic poly(styrene-co-divinylbenzene) columns. Journal of Chromatography, 2004. 1030(1-2): p. 201-208.
    [30] Van deemter, J.J., Zuiderweg, F.J., Klinkenberg, A. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography, Chemical Engineering Science. 1956, 5: 271-289.
    [31] Karlsson, K.-E. separation efficiency of slurry-packed liquid chromatography microcolumns with very small inner diameters [J]. Analytical Chemistry. 1988, 60: 1662-1665.
    [32] Knox, J.H., Scott, H.P. B and C terms in the Van Deemter equation for liquid chromatography [J]. Journal of Chromatography. 1983, 282: 297-313.
    [33] Yang, Y.-B., Harrison, K., Carr, D., et al., Factors affecting the separation and loading capacity of proteins in preparative gradient elution high-performance liquid chromatography [J]. Journal of Chromatography. 1992, 590(1): 35-47.
    [34] Armstrong, D.W., Boehm, R.E. Gradient LC separation of macromolecules: Theory and mechanism [J]. Journal of Chromatographic Science, 1984. 22(9): 378-385.
    [35] Rapp, E., Tallarek, U., Liquid flow in capillary (electro)chromatography: Generation and control of micro- and nanoliter volumes [J]. Journal of Separation Science. 2003, 26(6-7): 453-470.
    [36] Smet, J.D., Gzil, P., Vervoort, N., et al., On the optimisation of the bed porosity and the particle shape of ordered chromatographic separation media [J]. Journal of Chromatography A. 2005, 1073(1-2): 43-51.
    [37] Knox, J.H., Journal of Chromatographic Science, 1980. 18(9): 453-461.
    [38] Felix, C.L., DIeter L., Karin C., et al. Characterization of silica-based monoliths with bimodal pore size distribution [J]. Analytical Chemistry. 2002, 74: 2470-2477.
    [39] Premstaller, A., Oberacher, H., Huber, C.G. High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry of Single and Double-StrandedNucleic Acids Using Monolithic Capillary Columns [J]. Analytical Chemistry. 2000, 72(18): 4386-4393.
    [1] Codd, G.A., Morrison, L.F., Metcalf, J.S. Cyanobacterial toxins: risk management for health protection [J]. Toxicology and Applied Pharmacology. 2005, 203(3): 264-272.
    [2] MacKintosh, C., Beattie, K.A., Klumpp, S., et al. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants [J]. FEBS Letter. 1990, 264: 187-192.
    [3]Carmichael, W.W., Cyanobacteria secondary metab-olites: the cyanotoxins [J]. Journal of Applied Bacteriology. 1992. 72: 445-459.
    [4] Codd, G.A., Bell, S.G., Kaya, K., et al. Cyanobacterial toxins, exposure routes and human health [J]. European Journal of Phycology. 1999, 34: 405-415.
    [5] Ito, E., Kondo, F., Terao, K., et al. Neoplastic nodular formation in mouse liver induced by repeated intraperitoneal injections of microcystin-LR [J]. Toxicon. 1997, 35(9): 1453-1457.
    [6] Siren, H., Jussila, M., Liu, H., et al. Separation, purity testing and identification of cyanobacterial hepatotoxins with capillary electrophoresis and electrospray mass spectrometry [J]. Journal of Chromatography A. 1999, 839(1-2): 203-215.
    [7] Kondo, F., Matsumoto, H.,Yamada, S., et al. Immunoaffinity purification method for detection and quantification of microcystins in lake water [J]. Toxicon, 2000. 38(6): 813-823.
    [8] Rapala, J., Erkomaa, K., Kukkonen, J., et al. Detection of microcystins with protein phosphatase inhibition assay, high-performance liquid chromatography-UV detection and enzyme-linked immunosorbent assay: Comparison of methods [J]. Analytica Chimica Acta. 2002, 466(2): 213-231.
    [9]王静,庞晓露,刘铮铮等.超高效液相色谱/串联质谱法分析水中微囊藻毒素.色谱.2006, 24(4): 335-338.
    [10] Sangolkar, L.N., Maske, S.S., Chakrabarti, T. Methods for determining microcystins (peptidehepatotoxins) and microcystin-producing cyanobacteria [J]. Water Research. 2006, 40: 3485-3496.
    [11] Pyo, D., Shin, H. Extraction and analysis of microcystins RR and LR in cyanobacteria using a cyano cartridge [J]. Journal of Biochemical and Biophysical Methods, 2002. 51(2): 103-109.
    [12] Hawkins, P.R., Novic, S., Cox, P., et al. A review of analytical methods for assessing the public health risk from microcystin in the aquatic environment [J]. Journal of Water Supply: Research Technol. 2006 54(8): 509-518.
    [13] Spoof, L., Meriluoto, J. Rapid separation of microcystins and nodularin using a monolithic silica C18 column [J]. Journal of Chromatography A. 2002, 947(2): 237-245.
    [14] Aguete, E.C., Gago-Martinez, A., Leao, J. M., et al. HPLC and HPCE analysis of microcystins RR, LR and YR present in cyanobacteria and water by using immunoaffinity extraction [J]. Talanta. 2003, 59(4): 697-705.
    [15] Zeisbergerová, M., Ko?tál, V., ?rámková, M., et al. Separation of microcystins by capillary electrochromatography in monolithic columns [J]. Journal of chromatography B. 2006, 841: 140-144.
    [16] Premstaller, A., Oberacher, H., Huber, C.G. High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry of Single- and Double-Stranded Nucleic Acids Using Monolithic Capillary Columns [J]. Analytical Chemistry. 2000, 72(18): 4386-4393.
    [17] Tholey, A., Toll, H., Huber, C.G. Separation and detection of phosphorylated and nonphosphorylated peptides in liquid chromatography-mass spectrometry using monolithic columns and acidic or alkaline mobile phases [J]. Analytical Chemistry. 2005, 77(14): 4618-4625.
    [18] Nie, J., Zhao, Q., Huang, J., et al. Determination of telmisartan in rat tissues by in-tube solid-phase microextraction coupled to high performance liquid chromatography [J]. Journal of Separation Science. 2006, 29(5): 650-655.
    [19] Svec, F., Huber, C.G. Monolithic materials: Promises, challenges, achievements [J]. Analytical Chemistry. 2006, 78(7): 2101-2107.
    [20] Oberacher, H., Premstaller, A., Huber, C.G. Characterization of some physical and chromatographicproperties of monolithic poly(styrene-co-divinylbenzene) columns [J]. Journal of Chromatography. 2004, 1030(1-2): 201-208.
    [21] Svec, F., Tennikova, T.B., Deyl, Z. monolithic materials. 2003, Netherlands: Journal of Chromatography Library.
    [22] Karin, C., Applications of silica-based monolithic HPLC columns [J]. Journal of Separation Science. 2004, 27(10-11): 843-852.
    [23] Eeltink, S., Rozing, G.P., Schoenmakers, P.J., et al. Practical aspects of using methacrylate-ester-based monolithic columns in capillary electrochromatography [J]. Journal of Chromatography A. 2006, 1109(1): 74-79.
    [24] Grafnetter, J., Coufal, P., Tesarova, E., et al. Optimization of binary porogen solvent composition for preparation of butyl methacrylate monoliths in capillary liquid chromatography [J]. Journal of Chromatography A. 2004, 1049(1-2): 43-49.
    [25] Svec F., Peters, E.C., Sykora, D. et al. Monolithic Stationary Phases for Capillary Electrochromatography Based on Synthetic Polymers: Designs and Applications [J]. Journal of High Resolution Chromatography. 2000, 23(1): 3-18.
    [26] Petrus H., Anna N., Knut I., et al. Polymer-based monolithic microcolumns for hydrophobic interaction chromatography of proteins [J]. Journal of Separation Science. 2006, 29(1): 25-32.
    [27] Shediac, R., Eeltink, S., Svec, F., et al., Reversed-phase electrochromatography of amino acids and peptides using porous polymer monoliths [J]. Journal of Chromatography A. 2001, 925(1-2): 251-263.
    [28] Barrioulet, M.P. Development of acrylate-based monolithic stationary phases for electrochromatographic separations [J]. Electrophoresis. 2005, 26(21): 4104-4115.
    [29] Geiser, L., Eeltink, S., Svec, F., et al., Stability and repeatability of capillary columns based on porous monoliths of poly(butyl methacrylate-co-ethylene dimethacrylate) [J]. Journal of Chromatography A. 2007, 1140(1-2): 140-146.
    [30] Ruangyuttikarn, W., Miksik, I., Pekkoh, J., et al. Reversed-phase liquid chromatographic-mass spectrometric determination of microcystin-LR in cyanobacteria blooms under alkaline conditions[J]. Journal of Chromatography B. 2004, 800(1-2): 315-319.
    [31] Hummert, C., Dahlmann, J., Reichelt, M., et al. Analytical techniques for monitoring harmful cyanobacteria in lakes [J]. Lakes and Reservoirs: Research and Management. 2001, 6(2): 159-168.
    [32] Rivasseau, C., Martins, S., Hennion, M.-C. Determination of some physicochemical parameters of microcystins (cyanobacterial toxins) and trace level analysis in environmental samples using liquid chromatography [J]. Journal of Chromatography A. 1998, 799(1-2): 155-169.
    [33] Cong, L., Huang, B., Chen, Q., et al. Determination of trace amount of microcystins in water samples using liquid chromatography coupled with triple quadrupole mass spectrometry [J]. Analytica Chimica Acta. 2006, 569(1-2): 157-168.
    [34] Kaya, K., Sano, T., Inoue, H., et al. Selective determination of total normal microcystin by colorimetry, LC/UV detection and/or LC/MS [J]. Analytica Chimica Acta. 2001, 450(1-2): 73-80.
    [35] Gustavsson, S.A., Samskog, J., Markides, K.E., et al. Studies of signal suppression in liquid chromatography-electrospray ionization mass spectrometry using volatile ion-pairing reagents [J]. Journal of Chromatography A. 2001, 937(1-2): 41-47.
    [36] Andy J., Tomlinson, R.M.C. Microcapillary liquid chromatography/tandem mass spectrometry using alkaline pH mobile phases and positive ion detection [J]. Rapid Communications in Mass Spectrometry. 2003, 17(9): 909-916.
    [37] Alexander Beck, Martin D., Klaus M., et al. Alkaline liquid chromatography/electrospray ionization skimmer collision-induced dissociation mass spectrometry for phosphopeptide screening [J]. Rapid Communications in Mass Spectrometry. 2001, 15(23): 2324-2333.
    [38] Kennedy, R.T., Jorgenson, J.W. Preparation and evaluation of packed capillary liquid chromatography columns with inner diameters from 20 to 50 micrometers [J]. Analytical. Chemistry. 1989, 61(10): 1128-1135.
    [39] Ratnayake, C.K., Oh, C.S., Henry, M.P. Particle Loaded Monolithic Sol-Gel Columns for Capillary Electrochromatography: A New Dimension for High Performance Liquid Chromatography [J]. Journal of High Resolution Chromatography. 2000, 23(1): 81-88.
    [40] Lin B., Shi, Z.-G., Zhang, H.-J., et al. Perphenylcarbamoylated cyclodextrin bonded-silica particlesas chiral stationary phase for enantioseparation by pressure-assisted capillary electrochromatography [J]. Electrophoresis. 2006, 27(15): 3057-3065.
    [41] Gu, C., Lin, L., Chen, X., et al., Study on Separation of Microcystins Using Polymethacrylate-Based Capillary Monolithic Column [J]. Chinese Journal of Chromatography. 2007, 25(2): 174-178.
    [42] Lin, J., Wu, X., Lin, X., et al., Preparation of polymethacrylate monolithic stationary phases having bonded octadecyl ligands and sulfonate groups: Electrochromatographic characterization and application to the separation of polar solutes for pressurized capillary electrochromatography [J]. Journal of Chromatography A. 2007, 1169(1-2): 220-227.
    [43] Wu, X., Wang, L., Xie, Z., et al. Rapid separation and determination of carbamate insecticides using isocratic elution pressurized capillary electrochromatography [J]. Electrophoresis. 2006, 27(4): 768-777.
    [44] Dean Norton, S.A.A.R.S.A.S., Capillary electrochromatography-mass spectrometry of cationic surfactants. Electrophoresis, 2006, 27(21): 4273-4287.
    [45] Tsuda, T. Chromatographic behavior in electrochromatography. Analytical Chemistry. 1988, 60(17): 1677-1680.
    [46] Liang, Z., et al., Pressurized Electrochromatography Coupled with Electrospray Ionization Mass Spectrometry for Analysis of Peptides and Proteins. Anal. Chem., 2004. 76(23): p. 6935-6940.
    [47] Qu, Q.S. Preparation and evaluation of C18-bonded 1-mu m silica particles for pressurized capillary electrochromatography [J]. Electrophoresis. 2006, 27(20): 3981-3987.
    [48] Zhang, K., Jiang, Z., Yao, C., et al. Separation of peptides by pressurized capillary electrochromatography [J]. Journal of Chromatography A. 2003, 987(1-2): 453-458.
    [49] Gu, C., Lin, L., Chen, X., et al. Fabrication of a poly(styrene-octadecene-divinylbenzene) monolithic column and its comparison with a poly(styrene-divinylbenzene) monolithic column for the separation of proteins [J]. Journal of Separation Science. 2007, 30(7): 1005-1012.
    [50] Gu, C., Lin, L., Chen, X., et al. Effects of inner diameter of monolithic column on separation of proteins in capillary-liquid chromatography [J]. Journal of Chromatography A. 2007, 1170(1-2):15-22.
    [51] Kennedy, T., W.Jorgenson, J. Preparation and evaluation of packed capillary liguid chromatography columns wtih inner diameters from 20 to 50μm [J]. Analytical Chemistry. 1989, 61: 1128-1135.
    [52] Svec, F., Peters, E.C., Sykora, D., et al. Design of the monolithic polymers used in capillary electrochromatography columns [J]. Journal of Chromatography A. 2000, 887(1-2): 3-29.
    [53] Gu, C., Lin, L., Chen, X., et al. Analysis of microcystins by capillary high performance liquid chromatography using a polymethacrylate-based monolithic column [J]. Journal of Separation Science. 2007, 30(17): 2866-2873.
    [54] Spoof, L., Karlsson, K., Meriluoto, J. High-performance liquid chromatographic separation of microcystins and nodularin, cyanobacterial peptide toxins, on C18 and amide C16 sorbents. Journal of Chromatography A. 2001, 909(2): 225-236.
    [1] Viklund, C., Svec, F., Frechet, J.M.J., et al. Monolithic, "Molded", Porous Materials with High Flow Characteristics for Separations, Catalysis, or Solid-Phase Chemistry: Control of Porous Properties during Polymerization. Chemistry Material. 1996, 8(3): 744-750.
    [2] Lammerhofer, M., Svec, F., Frechet, J.M.J., et al. Capillary electrochromatography in anion-exchange and normal-phase mode using monolithic stationary phases [J]. Journal of Chromatography A, 2001. 925(1-2): 265-277.
    [3] Stulik, K., Pacakova, V., Suchankova, J., et al. Monolithic organic polymeric columns for capillary liquid chromatography and electrochromatography [J]. Journal of Chromatography B. 2006, 841(1-2): 79-87.
    [4] Rebeca F., Vicente S. Experimental design optimization of the separation of the aromatic compounds in petroleum cuts by supercritical fluid chromatography [J]. Journal of High Resolution Chromatography. 1993, 16(3): 169-174.
    [5] Baranda, A.B. Development of a liquid-liquid extraction procedure for five 1,4-dihydropyridines calcium channel antagonists from human plasma using experimental design [J]. Talanta. 2005, 67(5): 933-941.
    [6] Candioti, L.V., Robles, J.C., Mantovani, V.E., et al. Multiple response optimization applied to the development of a capillary electrophoretic method for pharmaceutical analysis [J]. Talanta. 2006, 69(1): 140-147.
    [7] Chang, L.-H., Jong T.-T., Huang, H.-S., et al. Supercritical carbon dioxide extraction of turmeric oil from Curcuma longa Linn and purification of turmerones [J]. Separation and Purification Technology. 2006, 47(3): 119-125.
    [8] Arag?o, N.M., Veloso, M.C.C., Bispo, M.S., et al. Multivariate optimization of the experimental conditions for determination of three methylxanthines by reversed-phase high-performance liquid chromatography [J]. Talanta. 2005, 67(5): 1007-1013.
    [9] Faveri, D., Torre, P., Perego, P., et al., Optimization of xylitol recovery by crystallization from synthetic solutions using response surface methodology [J]. Journal of Food Engineering. 2004, 61(3): 407-412.
    [10] Anderson, M.J., Whitcomb, P.J. Mixture DOE uncovers formulations quicker. Rubber and plasticnews, 2002.
    [11] Gu C., Lin, L., Chen, X., et al. Fabrication of a poly(styrene-octadecene-divinylbenzene) monolithic column and its comparison with a poly(styrene-divinylbenzene) monolithic column for the separation of proteins [J]. Journal of Separation Science. 2007, 30(7): 1005-1012.
    [12] Gu, C., Lin, L., Chen, X., et al., Effects of inner diameter of monolithic column on separation of proteins in capillary-liquid chromatography [J]. Journal of Chromatography A. 2007, 1170(1-2): 15-22.
    [13] Stoll, D.R., Li, X., Wang, X., et al. Fast, comprehensive two-dimensional liquid chromatography [J]. Journal of Chromatography A. 2007, 1168(1-2): 3-43.
    [14] Cong, L., Huang, B., Chen, Q., et al. Determination of trace amount of microcystins in water samples using liquid chromatography coupled with triple quadrupole mass spectrometry [J]. Analytica Chimica Acta. 2006, 569(1-2): 157-168.
    [15] Oberacher, H., Premstaller, A., Huber, C.G. Characterization of some physical and chromatographic properties of monolithic poly(styrene-co-divinylbenzene) columns [J]. Journal of Chromatography. 2004, 1030(1-2): 201-208.
    [16] Meyers, V.M., Practical High-Performance Liquid Chromatography. 2005, New Jersey: Wiley. 131.
    [17] Ratnayake, C.K., Oh, C.S., Henry M.P. Particle Loaded Monolithic Sol-Gel Columns for Capillary Electrochromatography: A New Dimension for High Performance Liquid Chromatography [J]. Journal of High Resolution Chromatography. 2000, 23(1): 81-88.
    [18] Takino, M., Yamaguchi, K., Nakahara, T. Determination of Carbamate Pesticide Residues in Vegetables and Fruits by Liquid Chromatography-Atmospheric Pressure Photoionization-Mass Spectrometry and Atmospheric Pressure Chemical Ionization-Mass Spectrometry [J]. Journal Agriculture and Food Chemistry. 2004. 52(4): 727-735

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700