续断菊对镉的吸收累积特征和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过铅锌矿区采样分析、盆栽和水培试验,研究了镉对续断菊(Sonchus asper (L.)Hill.)生长生理的影响,续断菊对镉的累积特征及续断菊对镉的吸收累积机制,结果表明:
     (1)低浓度的镉处理促进了植物的生长,而200 mg/kg镉处理80天时植株的株高、叶面积、根长和生物量分别比对照降低了18%、46%、42%和66%;
     (2)随着镉处理浓度的升高,续断菊叶片中叶绿素a、b、总叶绿素和胡萝卜素含量均下降,80天200 mg/kg镉处理时总叶绿素比对照降低了58%,MDA增加2.4倍,细胞膜透性增大2.3倍;
     (3)不同镉浓度处理下,续断菊地上部镉含量均大于其根部镉含量,富集系数和转移因子均大于1;续断菊不仅具有较强的耐受环境高浓度镉胁迫的能力,而且具有更强的吸收和向地上部转运镉的能力;
     (4)随着镉浓度增加,续断菊根际土壤pH值显著降低,成熟期200 mg/kg镉处理pH下降了0.5个单位;
     (5)随着镉浓度增加,续断菊根系分泌有机酸、游离氨基酸及可溶性糖含量显著增加,其中可溶性糖占绝对优势。生长初期和旺期的续断菊根系分泌物中游离氨基酸的含量可以表征植株镉的积累;而在成熟期,可溶性糖和游离氨基酸可以指示植株中镉的积累;
     (6)续断菊体内大部分的镉分布在细胞壁中,占40%,且随着镉浓度的升高,细胞壁中的镉含量增大,20 mg/L镉处理下,细胞壁中的镉含量达到47%,减少了代谢活跃的细胞器及以膜系统上的镉含量,而使续断菊能够耐受高镉胁迫;
     (7)续断菊体内的镉主要与果胶酸、蛋白质结合,从而缓解了镉的危害。
Pot experiments and the solution culture were conducted in order to understand the effects of cadmium on the growth and physiology of Sonchus asper(L.)Hill., characteristics and mechanisms of cadmium uptake and accumulation in Sonchus asper (L.) Hill.. The results showed that:
     (1) The biomass, plant height, leaf area and root length were increased with low Cd concentration treatment. The biomass, plant height, leaf area and root length decreased 18%, 46%, 42% and 66% with 200 mg/kg Cd treatment comparing with CK in 80 days, respectively.
     (2) Contents of chlorophyll a and b, total chloropgyll and carotene decreased with increase in Cd concentration. Total chlorophyll decreased 58%, MDA and membrane permeability increased 2.4 times and 2.3 times with 200 mg/kg Cd treatment comparing with CK in 80 days, respectively.
     (3) The Cd concentrations in shoots were higher than that in roots. Enrichment coefficient and transfer factor in shoots were more than 1. Tolerate ability, transport and accumulation of Cd were observed in Sonchus asper(L.)Hill..
     (4) The rhizosphere pH decrased with increase in Cd concentrations. pH decreased 0.5 units in mature stage of 200 mg/kg Cd treatment.
     (5) The contents of organic acids, soluble sugar and dissociative amino acid in root exudates increased significantly with increase in Cd concentrations. The contents of soluble sugar were dominated. The contents of dissociative amino acid were related to Cd accumulation in early days of growth. Contents of soluble sugar and dissociative amino acid were related to Cd accumulation in mature stage.
     (6) The site of Cd distribution in subcelluar was mainly in cell wall, accounting for 37% (shoot) and 42% (root). The percentage of Cd contents in cell wall reached 47% with 20 mg/L Cd treatment. Cell wall which could tolerate and reserve a great deal of Cd in tissues was the main pool of Cd in Sonchus asper(L.)Hill..
     (7) Contents of NaCl-extractable Cd, HCl-extractable Cd were dominant in leaves and NaCl-extractable Cd was the heighest in roots. The harmful effect of Cd was relieved due to Cd bound with pectic acid and protein in leaves and roots of Sonchus asper(L.)Hill..
引文
[1] Adrian R C, Mikael C, Fabienne B,et al. Comparative CdNA-AFLP analysis of Cd-tolerant and -sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata ssp. petraea.. Journal of Experimental Botany. 2006, 57(12):2967-2983
    [2] Allen D L,Jarrell W M.Proton and copper adsorption to maize and soybean root cell walls[J].Plant Physiology. 1989,89:823-832.
    [3] Baker A J M.Metal tolerance[J].New Phytologist,1987,106:93-111.
    [4] Bertin C,Yang X H,Weston L A. The role of root exudates and allelochemicals in the rhizosphere. Plant and soil,2003,256: 67-83
    [5] Blarmey F P C, Joyce D C, Edwards D G, et al. Role of trichomes in sunflower tolerance to manganese toxicity[J]. Plant and Soil, 1986, 91: 171-180.
    [6] Booth B.The added danger of counterfeit cigarettes[J].Environmental Science and Technology,2005,39:34A(one page only).
    [7] Brooks R R, Show S, Marfil A A. The chemical form and physiological function of nickel in some Iberian alyssum species[J]. Plant Physiology, 1981, 51:167-170.
    [8] Dekencht J A, Koeviets P L M, Verkleij J A C, et al. Evidence against a role for phytochelatin in naturally selected increased cadmium tolerance in Silene vulganris (Moenech) Garcle[J]. New Phytologist, 1992, 122: 681-688.
    [9] Delhaize E, Ryan P, Randall P J. Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum stimulated excretion of malic acid from root apices[ J]. Plant Physiol, 1993,103: 695~702.
    [10] Devos C H R, Vonk M J, Vooijs R, et al. Glutathione depletion due to copper induced phytochelatin synthesis causes oxidative stress in Silene cucubalus [J]. Plant Physiology, 1992, 98: 853-858.
    [11] Ebbs S , Lau I ,et al . Phytochelatin synthesis is not responsible for Cd tolerance in Zn/Cd hyperacumulator Thlaspi caerulescens (J&C Pres )[J] .Plant .2002,214(4):635-640
    [12] Gerdol R.,Bragazza L.,Marehesini R. Monitoring of heavy metal deposition in Northern Italy by moss analysis. Environ. Pollu. 2000,108(2):201–208.
    [13] Greger M.,Lindberg S. Effects of Cd2+and EDTA on young beans(Beta vulgaris). Cd2+ up take and sugar accumulation. Plant Physiol. 1986,66: 69-74.
    [14] Grill E,Winnacker E L,Zenk M H.Synthesis of seven different homologous phytochelatinsin metal-exposed Sohizosaccharomyces pombe cells[J] . Federation of European Biochemical Societies,1987,197:l15-120.
    [15] Hammer D,Keller C.Change in the rhizosphere of metal-accumulating plants evidenced by chemical extractants[J].Joumal of Environmental Quality,2002,31(5):1561~1569.
    [16] Huang J W,Chen J J,Berti N R,et al. U uptake in B.chinensis in relation to exudation of citric acid[J]. Environmental science and Technology,1998,32: 2004~2008
    [17] Kagi J H R.Schaffer A.Biochemistry of metallothionein[J].Biochemistry,1988,27:8509~8551.
    [18] Kramer U,CotterHowells J D,Charnock J M,et al. Free histidine as a metal chelator in plants that accumulate nickel. Nature,1996,379:635-638
    [19] Krishnarnurti G S R,Cieslinski G,Huang P M et al. Kinetics of cadmium release from soils as influenced by organic acids: Implication in Cadmium Availibility. Journal of Environmental Quality,1997,26(1): 271~277
    [20] Krishnmaurti G.S.R., Naidu R. Speciation and phytoavaliability of cadmium in selected surface soil of South Australia. Aus.J.soil Res. 2000,38(5):991-1004.
    [21] Lasta M M, Baker A J M, Kochian L V. Physiological characterization of root Zn2+ absorption to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi [J]. Plant Physiology, 1996, 112: 1715-1722.
    [22] Lesage E,Meer E,Vervaeke P,et a1.Enhanced phytoextration:Ⅱ.Effect of EDTA and citric acid on heavy metal uptake by Hylianthusannuu . from a calcareous soil[J].International Joural of Phytoremedition,2005,7:143~152.
    [23] Leuchter R.Wolf K,Zimmermann M.Isolation of an arabidopsis thaliana CdNA complementing a Schizosaccharomyces pombe mutant which is deficient in phytochelatin synthesis[J].Plant Physiology,1998,l17:1526.
    [24] Lombi E.,Zhao E.J.,McGrath S.P.,et al. Physiological Evidence for a high-affinity cadmium transporter highly expressed in Thlaspi careulescens ecotype. New Phytol. 2001,149(l):53-61.
    [25] Lu H L, Yan C L, Liu J C. Low-molecular-weight organic acids exuded by Mangrove(Kandelia candel (L.) Druce) roots and their effect on cadmium species change in the rhizosphere. Environmental and Experimental Botany. 2007, 61: 159–166
    [26] Marion S N, Mette M N, Lena S, et al. Organic acids exudation by wild Herbs in responds to elevated Al concentrations [J ]. Annals of Botany,2001, : 87: 769~775.
    [27] Marion S N, Mette M N, Lena S, et al. Organic acids exudation by wild Herbs in responds to elevated Al concentrations [J]. Annals of Botany, 2001, 87: 769~775.
    [28] Marschner H. Mineral Nutrition of Higher P1ants. San Diego CA.USA: Academic Press,1995
    [29] Meharg A A. Integrated tolerance mechanisms: constitutive and adaptive responses to elevated concentration in the environment [J]. Plant Cell Environment, 1994, 17: 989-993.
    [30] Miyasaka S C, Bute J G, Howell R K, et al. Mechanism of aluminum tolerance in snapbeans root exudation of citric acid [J]. Plant Physiol,1991,96 :737~743.
    [31] NI T H.WEI Y Z.Subcellular distribution of cadmium in mining ecotype Sedum alfredii[J].Acta Botanica Sinica,2003,45(5):925-928.
    [32] Nishizono H.,Ichikawa H.,Suziki S. The Role of the Root Cell Wall in the Heavy Metal Tolerance of Athyrium yokoscense. Plant and Soil. 1987, 101:15-20.
    [33] Ortiz D. E.,Ruscitti T.,McCue K. F. et al. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J. Biol. Chem. 1995, 270: 4721-4728.
    [34] Pellet D M, Grunes D L, Kochian L V. Organic acids exudation as an aluminum tolerance mechanism in maize [J]. Planta,1995,196: 788~795.
    [35] Perronnet K,Schwartz C,Gerard E,et a1.Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multicontaminated soil[J].Plant and Soil,2003,249:19~25.
    [36] Rauser W E.Structure and function of metal chelators produced by plants[J].Cell Biochem and Biophys,1999,31:19~ 48.
    [37] Reena S, Fischer R. Rahner D. Behavior of cadmium, lead and zinc at the sediment water interface by electrochemically initiated processes[J]. Colloids and Surfaces A : Physicochem Eng. Aspects, 2003, 222:261-271
    [38] Reeves R D.,Baker A J M. Raskin I, Ensley B D eds. Metal-accumulating plants. Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment, New York: John Wiley & Sons, Ins, 2001, 193-229.
    [39] Reeves R.C.,Schwartz,J.L., Morel and J.Edmondson. Distribution and metal-accumulating behaviour of Thlaspi careulescens and associated metallophytes in France. Int. Journal of Phytoremediation,2001,3:145-172
    [40] Robinson B H,Lombi E,Zhao F J,et a1.Uptake and distribution of nickel and other metals in the hyper-accumulator Berkheya coddii[J].New Phytologist,2003,158:279-285.
    [41] Salt D E and Kramaer U. Mechanisms of metal hyperaccumulation in plants .In: Raskin H and Ensley B D (eds.).Phytoremediation of toxic metals;Using plants to clear up the environment.John Wiley &Sons,Inc.,2000,231-246.
    [42] Salt D E, Prince R C, Pickering I J, et al. Mechanisms of cadmium mobility andaccumulation in Indian mustard [J]. Plant Physiology, 1995, 109: 1427-1433.
    [43] Salt D E,Prince R C,Baker A J,et a1.Zinc legends in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy[J].Environmental Science and Technology ,1999,33:713- 7l7.
    [44] Sataru S,Baker J R,Urbenjapol S,et al. Global perapective on cadmium pollution and toxicity in non-occupationally exposed population[J]. Toxicology Letters,2003,137:65 - 83.
    [45] Shan S.L.,Ahmet.Alterations in The Immunological Parameters of Tench ( Tinca tinca L.1 758)After Acute and Chronic Exposure To Lethal and Sublethal Treatments With Mercury,Cadmium and Lead[J] Turk J Vet AnimSci,2005,29:l163-ll68.
    [46] Shanti S, Sharma1, Karl-Josef Dietz.The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany. 2006,57(4):711-726
    [47] Stephen W E,Calder A.Source and health implications of high toxic metal concentrations in illicit tobacco products[J].Envirnmental Science and Technology,2005,39,479~488.
    [48] Stobart A K,Grifiths W T, Ameen B L. et al. The effect of Cd on the biosynthesis of chlorophyll in leaves of barley[J].Plant Physiol,1985,63:293-298.
    [49] Surasak Siripornadulsila, Samuel Trainab, Desh Pal S,et al. Molecular Mechanisms of Proline-Mediated Tolerance to Toxic Heavy Metals in Transgenic Microalgae. Plant Cell. 2002,14:2837-2847
    [50] Szmigielask AM. Van Rees KCJ. Low molecular weight dicarboxylic acids in rhizosphere soil of durum wheat [J]. J. Agric. Food chem., 1996, 44: 1036~1040.
    [51] Tessier A.,Cambell P.C.,Bisson M. Sequential extraetion procedure for the Speciation of particulate trace metals. Analytieal Chemistry[J]. 1979,284:66-69.
    [52] Vazquez S, Fernandez-Pascual M, Sanchez-Pardo B, et al. Subcellular compartmentalisation of cadmium in white lupins determined by energy-dispersive X-ray microanalysis. J Plant Physiol. 2007,164(9):1235-1238.
    [53] Verkleij J. A. C.,Koevoets, P. Poly(γ-glutamylcysteinyl) glucines or phytochelatins and their role in cadmium tolerant of Silene vulgaris. Plant cell Environ. 1990,13: 913-921.
    [54] Vocgeli L R,Wagner G J.Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves[J].Plant Physiology,1990,92:1086-1093.
    [55] Wagner K J. Accumulation of cadmium in crop plants and its consequences to human health[J]. Adv. Agron, 1993,51:173
    [56] Weigel H. J.,Jager H. J. Subcellutar distribution and chemical form of Cadmium in bean plant. Plant Physiol.,1980,65: 480-482.
    [57] Wenzel W W,Bunkowski M,Puschenreiter M,et al. Rhizosphere characteristic of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environmenta1 Pollution,2003,123:31- 38
    [58] Wu F B,Dong J,Qian Q Q,et al. Subcellular distil-bution and chemical form of Cd and Cd-Zn interaction indifferent barley genotypes[J].Chemosphere,2005,60:1437 -1446.
    [59] Zu Y Q ,Li Y, Schvartz C, Schvartz C. Accumulation of Pb、Cd、Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. Environment International. 2004,30:567-576.
    [60] Zu Y Q, Li Y. Heavy metal in soil-vegetable system and sustainable management in Kunming, China. International symposium on trace elements and health-Trace elements in Agroecsystems and Health, Hangzhou, 2004:35.
    [61] Zu Y Q,Li Y,Chen J J et al .Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environment International, 2005, 31(5):755-762.
    [62]曹裕松,李志安,邹碧.根际环境的调节与重金属污染土壤的修复.生态环境. 2003,12(4): 493-497
    [63]陈怀满.土壤–植物系统中的重金属污染.北京:科学出版社.1996:p71~125.
    [64]陈英旭,林琦,陆芳等.有机酸对铅、镉植株危害的解毒作用研究.环境科学学报,2000,20(4):467-472.
    [65]陈瑛,李廷强,杨肖娥等.不同品种小白菜对镉的吸收积累差异.应用生态学报. 2009,20(3):736-740
    [66]陈媛.土壤中镉及镉的赋存形态研究进展.广东微量元素科学,2007,14(7):7~13.
    [67]仇荣亮,汤叶涛,方晓航,等.Phytoremediation of heavy metal contaminated soil and its mechanism[J].中山大学学报:自然科学版,2004,43(6):144-149.
    [68]仇硕,张敏,孙延东等.植物重金属镉(Cd2+ )吸收、运输、积累及耐性机理研究进展.西北植物学报.2006,26(12):2615-2622
    [69]戴晶平,胡岳华.香蒲植物生理特性及其对矿山尾矿的环保作用.矿冶工程. 2003,23(6):32-34
    [70]杜彩艳,祖艳群,李元,pH和有机质对土壤中镉和锌生物有效性影响研究,云南省环境科学学会学术论文集,昆明,2004:88-91.
    [71]段昌群,王焕校.重金属对蚕豆(Vicia faba)根尖的核酸含量及核酸酶活性的影响.环境科学. 1992,13(5): 31-35.
    [72]段昌群.植物对环境污染的适应与植物的微进化.生态学杂志. 1995,14(5): 43-50.
    [73]范迪富,吴新民,陈宝等.土壤有毒元素镉污染修复方法探讨[J].江苏地质,2005,29(1):32-36
    [74]方其仙,李元,祖艳群.重金属超累积植物与土壤重金属污染的植物修复.环境保护与环境工程.何少先主编.北京:原子能出版社.2004,459-464.
    [75]方晓航,曾晓雯,于方明等.镉胁迫对白菜生理特征及元素吸收的影响研究[J].农业环境科学学报, 2006,25(1):25~29
    [76]韩凤祥,胡霭堂,秦怀英.不同土壤环境中锡的形态分配及活性研究.环境化学,1990,9(2):l-5.
    [77]江水英,肖化云,吴声东.影响土壤中镉的植物有效性的因素及镉污染土壤的植物修复[J].中国土壤与肥料.2008,2:6-10
    [78]李德明,朱祝军,镉在不同品种小白菜中的亚细胞分布.科技通报,2004,20(4):278-282。
    [79]李花粉,张福锁,李春俭等.根分泌物对根际重金属动态的影响.环境科学学报,1998,18(3):199-2O3
    [80]李华,刘树庆,连彦峰,等.重金属在根际土壤环境中的化学行为的研究进展[J].河北环境科学, 2002, 1: 39~43.
    [81]李玉双,孙丽娜,孙铁珩,等.超富集植物叶用红菾菜(Beta vulgaris var.cicla L.)及其对镉的富集特征.农业环境科学学报2007,26(4):1386-1389.
    [82]李元,方其仙,祖艳群.两种生态型续断菊对镉累积特征研究.西北植物学报,2008,28(6):1150~1154.
    [83]李元,王焕校,吴玉树等. Cd, Fe及其复合污染对烟草叶片几项生理指标的影响.生态学报. 1992,12 (2):147-153.
    [84]李兆君,马国瑞,徐建民等.植物适应重金属镉胁迫的生理及分子生物学机理.土壤通报. 2004,35(2):234-238.
    [85]李子芳,刘惠芬,熊肖霞,等.锅胁迫对小麦种子萌发幼苗生长及生理生化特性的影响[J].农业环境科学学报,2005,24(51):17~20.
    [86]林琦,陈英旭,陈怀满等.根系分泌物与重金属的化学行为研究[J].植物营养与肥料学报, 2003,9(4):425~431.
    [87]刘成志,尚鹤,姚斌,等.柴河铅锌尾矿耐性植物与优势植物的重金属含量研究.林业科学研究. 2005,18(3):246-249
    [88]刘洪升,宋秋华,李凤民.根分泌物对根际矿物营养及根际微生物的效应[J].西北植物学报, 2002,22: 693~702.
    [89]刘建新.镉胁迫下玉米幼苗生理生态的变化[J].生态学杂志. 2005, 24(3): 265~268.
    [90]刘建新.镉胁迫对玉米幼苗生理生态的变化[J].生态学杂志,2005,24(3):265~268.
    [91]刘威,束文圣,兰崇钰.宝山堇菜(Viola baoshanensis)一一种新的镉超富集植物.科学通报,2003,48(19):2046-2049..
    [92]刘秀梅,王庆仁.植物对污泥的响应及其根系对重金属的活化作用.农业环境保护. 2002,21(5): 447-449
    [93]刘云国,尹志平.土壤镉污染生物整治研究[J].湖南大学学报(自然科学版),2000,27(3):34~38.
    [94]龙健,黄昌勇,滕应,等.天台铅锌矿区香根草(Vetiveria zizanioides)等几种草本植物的重金属耐性.应用与环境生物学报. 2003,9(3):226-229
    [95]龙新宪,倪吾钟,叶正钱等.外源有机酸对两种生态型东南景天吸收和积累锌的影响.植物营养与肥料学报,2002,8(4): 467-472
    [96]鲁如坤,熊礼明,时正元.关于土壤–作物系统中镉的研究.土壤.1992,24(3):129-132.
    [97]陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用.应用生态学报,1999,10(3): 379-382
    [98]聂发辉.镉超富集植物商陆及其富集效应.生态环境,2006,15(2):303-306
    [99]任继凯,陈清朗,陈灵芝等.土壤镉污染与作物.植物生态学与地植物学丛刊. 1982,6(2):131-141.
    [100]沈宏,严小龙.根分泌物研究现状及其在农业与环境领域的应用.农村生态环境,2000,16(3):51-54
    [101]沈振国,刘友良.重金属超积累植物研究进展.植物生理学通报,1998,34(2):133-139
    [102]施卫明.根系分泌物与养分有效性[J].土壤, 1993, 25: 252- 256.
    [103]苏德纯,黄焕忠,油菜作为超积累植物修复镉污染土壤的潜力.中国环境科学,2002,22(1):48-51.
    [104]孙瑞莲,周启星,高等植物重金属耐性与超积累特性及其分子机理研究,植物生态学报,2005,29(3):497-504.
    [105]孙瑞莲,周启星.高等植物重金属耐性与超积累特性及其分子机理研究[J].植物生态学报, 2005,29(3):497-504.
    [106]孙赛初,王焕校,李启任.水生维管束植物受镉污染后的生理变化及受害机制初探.植物生理学报. 1985,11 (2): 113-121.
    [107]孙约兵,周启星,任丽萍.镉超富集植物球果蔊菜对镉-砷复合污染的反应及其吸收积累特征.环境科学. 2007,28(6):1355-1360
    [108]汤春芳,刘云国,曾光明.镉胁迫对萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的影响.植物生理与分子生物学学报, 2004,30(4):469-474
    [109]王红新.镉污染土壤的超积累植物研究进展[J].池州学院学报. 2008,22(5):89-92
    [110]王焕校.污染生态学基础.云南:云南大学出版社. 1990,p71~148
    [111]王松良,郑金贵.土壤重金属污染的植物修复与金属超富集植物及其遗传工程研究.中国生态农业学报. 2007,15(1):190-194
    [112]王新,吴燕玉..重金属在土壤-水稻系统中的行为特征[J],生态学杂志, 1997, 16(1): 10~14.
    [113]王新,吴燕玉.1997 ,重金属在土壤–水稻系统中的行为特性.生态学杂志.16(4):10-14.
    [114]王艳红,龙新宪,吴启堂.两种生态型东南景天根系分泌物的差异性[J].生态环境,2008,l7(2):751~757.
    [115]王云一,陈尧,钱亚如等.镉胁迫对不同品种小麦幼苗生长和生理特性的影响.生态学杂志. 2008,27(5):767-770
    [116]王志坤,廖柏寒,黄运湘等.镉胁迫对大豆幼苗生长影响及不同品种耐镉差异性研究.农业环境科学学报. 2006,25(5):1143-1147
    [117]魏树和,周启星,王新,等.某铅锌矿坑口周围具有重金属超积累特征植物的研究.环境污染治理技术与设备. 2004b,5(3):33-39
    [118]魏树和,周启星,王新,等.一种新发现的镉超积累植物龙葵(Solarium nigrum L.).科学通报,2004a,49(24):2568-2573
    [119]吴大付,任秀娟,姜俊宇.镉在土壤–植物系统中迁移积累的研究进展[J].安徽农业科学, 2007, 35( 5) : 1420–1422.
    [120]吴启堂.根系分泌物对镉生物有效性的影响.土壤,1993,25(5):257-259
    [121]吴双桃,吴晓芙,胡日利,等.铅锌冶炼厂土壤污染及重金属富集植物的研究.生态环境2004,l3(2):156-157,160
    [122]夏汉平,束文圣.香根草和百喜草对铅锌尾矿重金属的抗性与吸收差异研究.生态学报. 2001,21(7):1121-1129
    [123]夏汉平.土壤–植物系统中的镉研究进展.应用与环境生物学报. 1997,3(3):289-298.
    [124]夏增禄.中国土壤环境容量.北京:地震出版社. 1992,P143-147.
    [125]徐卫红,黄河,王爱华,等.根系分泌物对土壤重金属活化及其机理研究进展.生态环境.2006,15(1):184-189
    [126]徐正浩.植物镉忍耐的分子机理[J].应用生态学报.2004,17(6): 1112~1116.
    [127]许嘉琳,鲍子平,杨居荣等.农作物体内铅、镉、铜的化学形态研究.应用生态学报.1991,2(3):244-248.
    [128]杨丹慧.重金属离子对高等植物光合膜结构与功能的影响.植物学通报. 1991,8 (3) : 26-29.
    [129]杨居荣,贺建群,张国祥等.农作物对镉毒害的耐性机理探讨.应用生态学报. 1995,6(1):87-91
    [130]杨居容,贺建群,蒋莞茹,等.镉污染对植物生理生化的影响[J].农业环境保护,2005,14(5):193~197
    [131]杨仁斌,曾清如,周细红等.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应[J].农业环境保护2000,19(3): 152~155
    [132]杨肖娥,龙新宪,倪吾钟,超累积植物吸收重金属的生理及分子机制,植物营养与肥料学报.2002,8(1):8-15.
    [133]杨肖娥,龙新宪,倪吾钟等,东南景天(Sedum alfredii H)-一种新的锌超积累植物.科学通报,2002,47(13):1003-1006.
    [134]杨肖娥,杨明杰.镉从农业土壤向人类食物链的迁移.广东微量元素科学. 1996,3(7):1-13.
    [135]于方明,汤叶涛,周小勇.镉在圆锥南芥(Arabis paniculata Franch.)中的亚细胞分布及其化学形态.中山大学学报(自然科学版),2007,46(6):88-92
    [136]于方明,仇荣亮,汤叶涛等.镉对小白菜生长及氮素代谢的影响研究[J].环境科学,2008,29(2):506~511
    [137]曾咏梅,毛昆明,李永梅.土壤中镉污染的危害及其防治对策[J].云南农业大学学报. 2005,20(3):361-365.
    [138]张金彪,黄维南.镉对植物的生理生态效应的研究进展.生态学报. 2000,20 (3) : 514-523.
    [139]张玲,王焕校.镉胁迫下小麦根系分泌物的变化[J].生态学报,2002,22(4):496~502
    [140]张乃明,邢承玉,贾润山等.太原污灌区土壤重金属污染研究[J].农业环境保护,1996,15(l):21~23.
    [141]张亚丽,沈其荣,姜洋.有机肥料对锡污染土壤的改良效应[J].土壤学报,2001,86(2):514-519.
    [142]张义贤.重金属对大麦(Hordeum vulgare)毒性的研究.环境科学学报. 1997,17(2):199-204.
    [143]张玉秀,于飞,张媛雅等.植物对重金属镉的吸收转运和累积机制.中国生态农业学报. 2008,16(5):1317-1321.
    [144]周启星等.污染生态学[M].北京:科学出版社,2001.
    [145]周小勇,仇荣亮,应蓉蓉等.锌对长柔毛委陵菜体内的镉的亚细胞分布和化学形态的影响[J].农业环境科学学报,2008,27(3):1066-1071.
    [146]朱艳霞,魏幼璋,叶正钱等.有机酸在超积累植物重金属解毒机制中的作用[J].西北农林科技大学学报(自然科学版),2006, 34(7): 121~126.
    [147]朱永官.珠江三角洲地区土壤重金属污染控制与修复研究的若干思考[J].环境科学学报.2005,25(12):1575-1579
    [148]祖艳群,李元, L.BOCK等.重金属与植物N素营养之间的交互作用及其生态学效应[J].农业环境科学学报, 2008, 27(1): 0007–001.
    [149]祖艳群,李元,陈海燕等.蔬菜中铅镉铜锌含量的影响因素研究[J].农业环境科学学报,2003,22(3):289~292.
    [150]祖艳群,李元.土壤重金属污染的植物修复技术.云南环境科学[J].2003,22(3):58~61
    [151]林匡飞.苎麻吸镉特性及镉土改良试验.农业环境保护[J].199615(1):1~4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700