菊花离体再生及根癌农杆菌介导CBF1基因遗传转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊花是中国的十大传统名花之一,世界重要盆栽、切花及地被花卉。但低温、干旱条件严重限制了菊花在我国北方城市绿化中大面积应用。植物转录因子不仅在植物的生长发育、形态建成、代谢调控等方面,而且也在抗旱、抗寒、耐盐碱等方面起重要作用。本研究在建立菊花‘小金黄’品种离体再生体系的基础上将拟南芥诱导转录因子CBF1基因转入菊花中,从而为实现菊花品种抗寒、抗旱性状改良奠定基础。
     利用器官发生途径以‘小金黄’为试验材料,研究生长调节物质对菊花离体不定芽再生的影响。结果表明:菊花叶片在添加1.0 mg/L6-BA的MS培养基中的再生频率为27.1%,显著高于在MS中添加TDZ或KT;在MS+ 1.0 mg/L 6-BA中添加不同浓度生长素,菊花叶片再生频率存在显著差异,其中以MS+ 1.0 mg/L 6-BA+ 0.6 mg/LNAA的叶片不定芽再生频率最高,即为96.9%,高于2,4-D和IBA。菊花‘小金黄’品种最适宜的生根培养基为MS+ NAA 0.4 mg/L。
     利用根癌农杆菌介导法对菊花‘小金黄’品种的叶片进行遗传转化,研究影响菊花转化的若干因素,建立一套高效的遗传转化体系。结果表明:2天的预培养,OD600值约为0.5的农杆菌菌液添加50 mg/L乙酰丁香酮,侵染时间3 min,2天的共培养,从分化培养基获得的再生不定芽在生根培养基MS + 0.4 mg/L NAA+ 10 mg/L Km+ 100 mg/L Cef上进行延迟筛选,有利于获得较高的转化效率,共获得49个Km抗性株系。
     通过根癌农杆菌介导的叶盘法将CaMV35S驱动的CBF1基因导入菊花中,对49个Km抗性株系进行PCR检测,有18个株系扩增出的特异条带与阳性质粒扩增出的特异条带一致,阴性对照没有扩增出任何条带,说明CBF1基因已经整合到菊花‘小金黄’品种的基因组中,而抗性株系的PCR阳性率为36.7%。
Dendranthema morifolium is one of the traditional famous flowers in China, an economically important ornamental crop for cut flower, pot plant and ground flower in many parts of the world. Cold and drought stresses play an important role in the application of ornamental plants in northern China. Transcription factors of plant play an important role not only in growth and development but also in cold, salt and drought stresses. Regeneration system of Dendranthema morifolium was obtained and transcription factors CBF1 was transformed for the regulation of cold and drought stresses responsive genes of Denranthema morifolium.
     Establishing an efficient regeneration system is a fundamental to the transgenic study. The effects of growth regulators on the generation of adventitious shoots were studied for Dendranthema morifolium Tzvel. cv.‘Xiaojinhuang’. The results showed that 1.0 mg/L 6-BA was more favorable to shoot formation than TDZ or KT, and its regeneration rate was 27.1%. Whereas the combination of 6-BA 1.0 mg/L and NAA 0.6 mg/L on regeneration frequency was much more efficient than others with 96.9%. The optimal rooting medium was MS+ NAA 0.4 mg/L.
     In order to establish an efficient genetic transformation system with leaves of Dendranthema morifolium Tzvel. cv.‘Xiaojinhuang’, several factors affected genetic transformation mediated by Agrobacterium tumefacien was studied. The results showed that the highest transformation was obtained through the following transformation procedure: after preculture for 2 d, the explants were infected 3 minutes with 50 mg/L acetosyringone and OD600=0.5 Agrobacterium tumefacien culture liquid, and then co-cultivated for 2 d. Resistant shoots from leaf discs were screened on MS+ 0.4 mg/L NAA+ 100 mg/L Cef medium supplement with 10 mg/L Km. Finally, there were 49 resistant shoots alive in the rooting medium with 10 mg/L Km.
     An inducible transcription factor CBF1 from Arabidopsis thaliana was genetically transformed by using leaf disc method via Agrobacterium tumefacien into the experimental material Dendranthema morifolium Tzvel. cv.‘Xiaojinhuang’, trying to strengthen cold and drought resistance of Dendranthema. Results of polymerase chain reaction(PCR) proved that the CBF1 gene was integrated into the genome of transgenic plants, and eighteen transgenic lines were obtained, the transformation rate was 36.7%。
引文
[1]栗茂腾,余龙江,王丽梅,等.菊花花色遗传及花色嵌合体发现[J].遗传, 2005, 27(6):948~952.
    [2]李鸿渐,邵键文.中国菊花品种资源的调查收集与分类[J].南京农业大学学报, 1990, 13(1):30~36.
    [3] Hill G P. Shoot formation in tissue culture of Chrysanthemum‘Bronze Pride’[J]. Physiol Plant, 1968, 2:386~389.
    [4] Lemieux C. Transformation of Chrysanthemum cultivars with Agrobacterium tumefacien [J]. Horticulture Biotechnology Symposium, 1989:21~23.
    [5]傅荣昭,刘敏,梁红健,等.通过根癌农杆菌介导法获得菊花转化植株[J].植物生理学报, 1998, 24(1): 72~76.
    [6] Takatsu Y, Nishizawa Y, Hibi T, et al. Transgenic Chrysanthemum expressing a rice chitinase gene shows enhanced resistance to gray mold [J]. Sci Hort, 1999, 82: 113~123.
    [7] Ledger S E, Deroles S C, Given N K. Regeneration and Agrobacterium-mediated transformation of Chrysanthemum[M]. Plant Cell Report,1991,10:195~199.
    [8] Kaul V, Miller R M, Hutchinson J F, et al. Shoot regeneration from stem and leaf explants of Dedranthema grandiflora Tzvelev [M]. Plant Cell, Tissue and Organ culture, 1990, 21: 21~30.
    [9] Yepes L M, Veronica M, Pang S Z, et al. Biolistic transformation of Chrysanthemum with the nucleocapsid gene of tomato spotted wilt virus [M]. Plant Cell Reports, 1995, 14: 694~698.
    [10] Shinoyama H, Kazuma T, Komano M. An Efficient transformation System in Chrysanthemum [Dendranthema grandiflorum (Ramat.) Kitamura] for Stable and Non-chimeric Expression of Foreign Genes [J]. Plant Biotechnology, 2002, 19(5): 335~343.
    [11] May R A, Triginano R N. Somatic Embryogenesis and Plant Regeneration from Leaves of Dendranthema grandiflora [J]. America Socity Horticulture Science, 1991, 116 (2): 366~371.
    [12] Sherman J M, Moyer J W, Daub M E. A regeneration and Agrobacterium-mediated Transformation System for Genetically Diverse Chrysanthemum Cultivars [J].Journal America Socity Horticulture Science, 1998a, 123 (2): 189~194.
    [13] Pavingerova D, Dostal J, Biskovaa R, et al. Somatic embryogenesis and Agrobacterium mediated transformation of Chrysanthemum [J]. Plant Science,1994, 97:95~101.
    [14] Tanaka K, Kanno Y, Kudo S, et al. Somatic embryogenesis and plant regeneration in Chry- santhemum (Dendranthema grandiflorum Kitamura) [M]. Plant Cell Reports, 2000,19: 946~953.
    [15]戚贤军.利用菊花花蕾诱发胚状体发生的快繁体系研究[J].浙江林业科技,2003,23(4): 12~13.
    [16]李名扬,陈薇.菊花花瓣愈伤组织原生质体培养再生植株[J].农业生物技术学报,1996,4(3): 243~248.
    [17] Boase M.R., Butler R.C., Borst N.K.. Chrysanthemum cultivar Agrobacterium interactions revealed by GUS expression time course experiments [J].Scientia Horticulturae, 1998, 77: 89~107.
    [18] Kaul V, Miller R M,Hutchinson J F, et al. Shoot regeneration from stem and leaf explants of Dendranthema grandiflora Tzvelev[M].Plant Cell, Tissue and Organ culture,1990,21:21~30.
    [19]李辛雷,陈发棣,王红,等.菊花外植体再生体系的研究[J].上海农业学报,20(2) :13~16.
    [20]洪亚辉,朱兆海,赵燕,等.菊花组织培养与辐射诱变的研究[J].湖南农业大学学报(自然科学版), 2003, 29(6): 457~461.
    [21]李英,刘德祥,李长恭,等.菊花花蕾的组织培养[J].河南职业技术师范学院学报, 1992, 24(4): 59~60.
    [22]王康才,张雪琼,茅毓英.抗菊花花瓣组织培养[J].中草药, 2000, 31(8): 628~630.
    [23]毛洪玉,李晓辉,刘志刚,等.地被菊幼嫩花瓣组织培养研究[J].沈阳农业大学学报, 2005, 36(1): 68~71.
    [24]侯喜林.菊花花瓣培养不定芽的形成及植株再生[J].南京农业大学学报, 1990, 13(2): 42~47.
    [25]陈云志,何小弟,陆志新,等.菊花品种的过氧化物酶同功酶分析[J].江苏农学院学报, 1989, 10(4): 29~34.
    [26]李招文,陈诗林,黄敏铃.延缓黄虾花试管苗退化因素的探讨[J].园艺学报, 1989, 16(3): 233~236.
    [27] Van Wordragen M.F., de Jong J., Huitema H.B.M., et al. Transformation of chrysanthemum using wild type Agrobacterium strains; strain and cultivar specificity [M]. Plant Cell Rep, 1991, 9: 505~508.
    [28] De Jong J., Rademaker W., Van Wordragen M.F. Restoring adventitious shoot formation on chrysanthemum leaf explants following co-cultivation with Agrobacterium tumefacien [M]. Plant Cell,Tissue and Organ Culture, 1993, 32: 263~270.
    [29] Urban L.A., Sherman J.M., Moyer J.W., et al. High frequency shoot regeneration and Agro- bacterium-mediated transformation of chrysanthemum [J]. Plant Science,1994, 98: 69~79.
    [30]薛建平,张爱民,常玮.安徽药菊叶片直接再生植株技术的研究[J].中国中药杂志,2004, 29(2): 132~135.
    [31]谷瑞升,蒋湘宁,郭促琛.植物离体培养中器官发生调控机制的研究进展[J].植物学通报, 1999, 16(3): 238~244.
    [32]刘鹏,刘金,赵艳红,等.菊花的组织培养、脱毒与快繁技术研究[J].内蒙古民族大学学报(自然科学版),2005,20 (4):141~413.
    [33]余义和,李桂荣,王新娟.菊花离体培养体系的优化[J].陕西农业科学, 2006(4) : 36~38.
    [34]高亦珂,赵勃,丁国勋,等.菊花茎叶外植体再生体系的研究.[J]北京林业大学学报, 2001, 23(1): 32~33.
    [35]司怀军,戴朝曦,于品华,等.菊花幼嫩花瓣愈伤组织的诱导和植株再生[J].甘肃农业大学学报, 1998, 33(2): 175~177.
    [36]李力艺,侯志钢.菊花组织培养技术初探[J].细胞生物学杂志, 2001, 23(3): 130~135.
    [37]梁机,杨振德.切花菊‘黄秀凤’的组织培养和快速繁殖[J].广西热作科技, 1998, (4): 37~39.
    [38]张晓军,郭长虹.千头菊组织离体培养及快繁技术的研究[J].中国林副特产, 2006, (1): 5~7.
    [39]周瑞玲,吴雨龙.菊花的组织培养及移栽拉技术初探[J].江苏林业科技, 2001, 28(2): 23~24.
    [40] Lchibashi S, Kako S. Studies on clonal propagation of cattleya through tissue culture method: Browning of cattleya [M]. J Jap Soc Hort Sci, 1977, 46: 325~330.
    [41] Lshii M, Uemoto S, Fujieda K. Studies on tissue culture in cattleya speciesⅡPreventive methods for the browning of explanted tissue [M]. J Jap Soc Hort Sci, 1979, 48: 199~204.
    [42] Maier V, Metzlier D M. Quantitative changes in date polyphenols and their relation to browning [M]. Journal of Food Science, 1965, 30: 80~84.
    [43] Zaid A. In vitro browning of tissues and media with special emphasis to date palm cultures A review [M]. Acta Hortculture, 1987, 212:561~566.
    [44] Loomis W D, Battaile J. Plant phenolic compounds and the isolation of plant enzyme [M]. Phytochemistry, 1966, 5: 423~438.
    [45] Marks T R, Simpson S E. Reduced phenolic oxidation at culture initiation in vitro following the exposure of field-grown stock plants to darkness or low level of irradiance [M]. J Hort Sci, 1990, 65: 103~111.
    [46]高国训.植物组织培养中的褐变问题[J].植物生理学通讯, 1999, 35(6): 501~505.
    [47] Pareek A, Kothari S L. Adventitious shoot regeneration from leaf explants in ornamental species of Dianthus [J]. Journal of the Indian Botanical Society, 2002, 81: 339~343.
    [48] Hidebrandt V, Harney P M. Factors affecting the release of phenolic exudates from explants of Pelargonium hortorum Baley sprinter scarlet [J], Journal Horticultural Science, 1998, 73(4):651~657.
    [49] Koroch H R, Juliani J, Kapteyn J. In vitro regeneration of Echinacea purpurea from leaf explants [M]. Plant Cell, Tissue and Organ Culture, 2002, 69(1): 205~212.
    [50]张宏志,唐前瑞,周朴华.观赏植物试管苗玻璃化现象及防治研究进展[J].湖南农业大学学报, 2000, 26(4): 318~322.
    [51]赵剑,杨文杰.梨芽离体快繁过程中琉璃化现象苗的发生与氧自由基胁迫的关系[J].西北植物学报, 1998, 18(2): 183~189.
    [52]李瑶,王利华,徐要娣.影响香石竹试管苗玻璃化的因素[J].植物生理学通讯, 1997, 33(4):256~258.
    [53] Zupan J R, Zambryski P. Transfer of T-DNA from Agrobacterium to the plant cell [M]. Plant Physiol,1995, 107: 1041~1047.
    [54] Hooykaas P JJ, Schilperoort RA. Agrobacterium and plant genetic engineering [J]. Plant Mol Biol, 1992, 19:15~38.
    [55] Nam J, Mysore K S, Zheng C, et al. Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium [J]. Mol Gen Genet, 1999, 261: 429~438.
    [56] Mysore K S, Bassumer B, Deng X B, Darbinian N S, et al. Role of the Agrobacterium tumefacien VirD2 protein in T-DNA transfer and integration [J]. Mol. Plant-Microbe Interact, 1998, 11: 668~683.
    [57] Narasimhulu S B, Deng X B, Sarria R, et al. Early transcription of Agrobacterium T-DNA genes in tobacco and maize [M]. Plant Cell, 1996, 8: 873~876.
    [58] Nam J, Matthysse A G, Gelvin S B. Differences in susceptibility of Arabidopsis ecotype to crown gall disease may result from a deficiency in T-DNA integration [M]. Plant Cell, 1997, 9: 317~333.
    [59] Tinland B. The integration of T-DNA into plant genomes [J]. Trends Plant Sci, 1996, 1: 178~184.
    [60] Horsch R R, Fry J E, Hoffmann N, et al. A simple and general method for transferring genes into plants [J]. Science, 1985, 227: 1229~1231.
    [61] Gutterson N C, Napoli C, Lemieux C. Modification of flower color in florist’s Chysanthemum: production of a white-genetics [J]. Bio Technology, 1994(12): 268~271.
    [62] Mitiouchkina T Y, Ivanova E P, Taran S A, et al. Chalcone synthase gene from antirrhinum majus in antisense orientation successfully suppressed the petals pigmentation of chrysanthemum [J]. Acta Hort, 2000, 508: 215~218.
    [63] Boase M R, Borst N K, Bradley J M. Genetic transformation mediated by Agrobacterium tumefacien of florists’Chrysanthemum cultivar‘Peach Margaret’In vitro Cellular and Development Biol [J]. Ogy Plant, 1998, 34(1):46~51.
    [64] Mitiouchkina T Y, Dolgov S V. Modification of Chrysanthemum plant and flower architecture by rolC gene from Agrobacterium rhizogenes introduction [J]. Acta Horticulture, 2000, 508: 163~169.
    [65]蒋细旺,包满珠,吴家和,等.农杆菌介导CryAc基因转化菊花[J].园艺学报, 2005, 32(1): 65~69.
    [66]洪波,仝征,李邱华,等.地被菊花Fall Color体细胞胚途径再生、遗传转化及转基因植株的抗寒性检测[J].中国农业科学, 2006, 29(7): 1443~1450.
    [67]高亦珂,张启翔,刘容薇,等.农杆菌介导的菊花转基因研究[J].中南林学院学报, 2003, 23(5):1~4.
    [68]王关林,刘彦泓,郭绍华,等.雪花莲凝集素基因转化菊花及转基因植株的抗蚜性研究.遗传学报[J], 2004, 31(12): 1434~1438.
    [69]吕晋慧.根癌农杆菌介导的AP1基因转化菊花的研究[D].北京林业大学, 2005,12.
    [70]任永霞,季静,王萍,等.农杆菌介导类胡萝卜素合成酶基因LycB转化菊花的研究[J].吉林农业大学学报, 2005, 27(3): 255~258.
    [71]龚学臣,季静,王罡,等.应用农杆菌介导法进行菊花的遗传转化[J].北方园艺,2005 (2):66~67.
    [72] Van Wordragen M F, De Jong J, Shornagel M J, et al. Rapid screening for host-bacterium interaction in Agrobacterium mediated gene transfer to Chrysanthemum by using the GUS-intron gene [J]. Plant science, 1992, 81: 207~214.
    [73] Lowe J M, Davey M R, Power J B, et al. A study of some factors affecting Agrobacterium transformation and plant regeneration of Dendranthema grandiflora Tzvelev [M]. Plant Cell, Tissue and Organ Culture, 1993, 33: 171~180.
    [74] Sherman J M, Moyer J W, Daub M E. Tomato Spotted Wilt Virus Resistance in Chrysanthemum expression the viral nucleocapsid [J]. Gene Plant Disease, 1998b, 82(4):407~414.
    [75] Bush A L, Pueppke S G. Regeneration and Agrobacterium-mediated transformation of chry- santhemum [M]. Plant Cell Report, 1991, 10(4):195~199.
    [76] Dolgov S V, Mityshkina T U, Rukavtsova E B, et al. Production of transgenic plants of chrysanthemum morifolium ramat with gene of B. thuringiensis delta-endotoxin [J]. Acta hortic, 1995, 420:46~47.
    [77] Renou P, Brochard P, Jalouzot R. Recovery of transgenic Chrysanthemum after hygromycin resistance selection [J]. Plant Science, 1993, 89: 185~197.
    [78] de Jong J, Mertens M J. Rademaker W. Stable expression of the GUS reporter gene in Chrysanthemum depends on binary plasmid T-DNA [M]. Plant Cell Rep, 1994, 14:59~64.
    [79]张常青.地被月季、菊花再生和抗旱遗传转化体系建立及其抗旱性快速评价方法研究[D].中国农业大学,2004.
    [80]郑丽.根癌农杆菌介导SAG12-ipt和3DN-iaaL基因转化切花菊及抗早衰研究[D].西南农业大学,2003.
    [81]蒋细旺,包潢珠.菊花转基因研究进展[J].华中农业大学学报, 2003, 22(6): 618~623.
    [82] De Block M. Genotype independent leaf disc transformation of potato suing Agrobacterium tumefacien [M], Theor Appl Genet, 1988, 76: 767~774.
    [83]金万梅.葡萄再生和转化体系的建立及超表达DREB1b的研究[D].中国农业大学, 2008: 5~6.
    [84]刘强,赵南明. DREB转录因子在提高植物抗逆性中的作用[J].科学通报, 2000,45(1): 11~16.
    [85]王少峡,王振英,彭永康. DREB转录因子及其在植物抗逆中的作用[J].植物生理学通讯, 2004, 40(1): 7~13.
    [86] Zou M J, Guan Y C, Ren H B, et al. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance [J]. Plant Molecular Biology, 2008, 66: 675~683.
    [87] Boter M, Ruiz R O, Abdeen A, et al. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis [J]. Genes and Development, 2004, 18: 1577~1591.
    [88] Lee T G, Jang C S, Kim J Y, et al. A Myb transcription factor(TaMyb1) from wheat roots is expressed during hypoxia: roles in response to the oxygen concentration in root environment and abiotic stresses [J]. Physiologia plantarum, 2007, 129: 375~385.
    [89] Hernadez-Hernandez T, Martinez-Castilla L P, Alvarez-Buylla E R. Functional Diversification of B MADS-Box Homeotic Regulators of Flower Development: Adaptive Evolution in Protein-Protein Interaction Domains after Major Gene Duplication Events [J]. Molecular Biology and Evolution, 2007, 24:465~481.
    [90] Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transcription pathways in drought and low temperature responsive gene expression, respectively in Arabidopsis [M]. Plant Cell, 1998, 10: 1391~1406.
    [91] Yang T W, Zhang L J, Zhang T G, et al. Transcriptional regulation network of cold-responsive genes in higher plants [J]. Plant Science, 2005, 169: 987~995.
    [92] Allen M D, Yamasaki K, Ohme-Takagi M, et al. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA [J]. EMBO J., 1998, 17(18): 5484~5496
    [93] Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: a regulator of cold-induced transcription and freezing tolerance in Arabidopsis [J]. Gene Development, 2003, 17: 1043~1054.
    [94] Zarka D G, Vogel J T, Cook D, et al. Cold induction of Arabidopsis CBF genes involves multiple ICE promoter elements and a cold-regulatory circuit that is desensitized by low temperature [M]. Plant Physiol, 2003, 133: 910~918.
    [95] Busk P K, Pages M. Regulation of abscisic acid-induced transcription [J]. Plant Mol Biol, 1998, 37: 425~435.
    [96]曹云飞.水稻新型CBF转录因子基因OsCBF1的克隆、表达和遗传转化[D].河北农业大学, 2007: 2~3.
    [97] Yamaguchi K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene in involved in responsiveness to drought, low-temperature, or high-salt stress [J]. Plant Cell, 1994, 6: 251~264.
    [98] Thomashow M F. Molecular genetics of cold acclimation in higher plants [J]. Adv Genet, 1990, 28: 99~131.
    [99] Gilmour S J, Zarka D G, Stockinger E J, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression [J]. Plant Journal, 1998, 16(4): 433~442.
    [100] Jiang C, Lu B, Singh J. Requirement of a CCCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus [J]. Plant Mol Biol, 1996, 30: 679~684.
    [101] Qeullet F, Vazquez A, Sarhan F. The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species [J]. FEBS lett, 1998, 423: 324~328.
    [102] Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the c-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit [J]. Proceeding of the National Academy of Science of the United States of America, 1997, 94: 1035~1040.
    [103] Medina J, Bargues M, Terol J, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration [M]. Plant Physiol, 1999, 199: 463~470.
    [104] Liu J, Gilmour S J, Thomashow M F, et al. Cold signaling associated with vernalization in Arabidopsis thaliana does not involve CBF1 or absicisic acid [J]. Physiol Plant, 2002, 114, 125~134.
    [105] Lin C, Thomashow M F. DNA Sequence Analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and Characterization of cor15 polypeptide [M]. Plant Physiol, 1992,99:519~525.
    [106] Yamaguchi K, Shinozaki K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants [J]. Mol Gen Genet, 1993, 236: 331~340.
    [107] Hsieh T H, Lee J T, Yang P T, et al. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stress in transgenic tomato [M]. Plant Physiol, 2002, 129: 1086~1094.
    [108] Shinwari Z K, Nakashima K, Mitura S, et al. An Arabidopsis gene family encoding DRE/ CRT binding proteins involved in low-temperature-responsive gene expression [J]. Biochem Biophys Res Commum, 1998, 250(1): 161~170.
    [109] Jaglo K R, Zhang X, Thomashow M F, et al. Components of the Arabidopsis C-repeat/dehydration responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species [M]. Plant Physiol, 2001, 127(3) 910~917.
    [110] Jaglo K R, Gilmour S J, Thomashow M F, et al. Arabidopsis CBF1 over-expression induces COR genes and enhances freezing tolerance [J]. Science, 1998, 280:104~106.
    [111] Kasuga M, Lin Q, Yamaguchi K, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor [J]. Nat Biotechnol, 1999, 17: 287~291.
    [112] Gilmour S J, Sebolt A M, Salazar M P, et al. Over-expression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation [M]. Plant Physiology, 2000, 124, 1854~1865.
    [113]金建凤,高强,陈勇,等.转移拟南芥CBF1基因引起水稻植株脯氨酸含量提高[J].细胞生物学杂志, 2005,27: 73~76.
    [114] Yoshiba Y, Kiyosue T, Nakashima K, et al. Regulation of levels of praline as osmolyte in plants under water stress [J]. Plant Cell Physiology, 1997, 38: 1095~1102.
    [115] Xin Z, Browse J. Eskimol mutants of Arabidopsis are constitutively freezing-tolerant [J]. Proceeding of the National Academy of Sciences of the United States of America, 1998, 95: 7799~7804.
    [116] Winter H, Huber S C. Regulation of sucrose metabolism higher plants: localization and regulation of activity of key enzymes [J]. Critical Reviews in Plant Science, 2000, 19: 31~67.
    [117] Strand A, Hurry V, Gustafsson P, et al. Development of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates [J]. Plant Journal, 1997, 12: 605~614.
    [118] Kanaya E, Nakajima N, Morikawa K, et al. Characterization of the transcriptional activator CBF1 from Arabidopsis thaliana: evidence for cold denaturation in regions outside of the DNA binding domain [M]. Biol Chem, 1999, 274(23): 16068~16076.
    [119] Artus N N, Uemura M, Steponkus P L, et al. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene effects both chloroplast and protoplast freezing tolerance [J]. Proc Natl Acad Sci USA, 1996, 93: 13404~13409.
    [120] Thomashow M F. Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance [M]. NY: Cold Spring Harbor Laboratory Press, 1994: 807~834.
    [121] Yamaguchi K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress [J]. Plant Cell, 1994, 6: 251~264.
    [122] Kim H J, Kim Y K, Park J Y, et al. Light signaling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element in Arabidopsis [J]. The Plant Journal, 2002, 29(6): 693~704.
    [123] Fowler S G, Cook D, Thomashow M F. Low temperature induction of Arabidopsis CBF1,2 and 3 is gated by the circadian clock [J]. Plant Physiology, 2005, 137:961~968.
    [124]甄伟,陈溪,孙思洋,等.冷诱导基因的转录因子CBF1转化油菜和烟草及抗寒性鉴定[J].自然科学进展, 2000, 10(12): 1104~1108.
    [125]邓小燕,张兴国,井鑫,等.冷诱导转录因子基因CBF3转化黄瓜的研究[J].西南农业大学学报, 2004, 26(5): 603~605.
    [126] Thomashow M F, Gilmour S J, Stockinger E J, et al. Role of the Arabidopsis CBF transcriptional activators in cold acclimation [J]. Physiologia plantarum, 2001, 112, 171~175.
    [127]曹孜义,刘国民.植物组织培养教程[M].兰州:甘肃科学技术出版社,1996: 9~12.
    [128]黄丽云.非洲菊高效再生体系的建立与双抗虫基因转化的研究[D].华南热带农业大学,2006.
    [129]刘军,赵兰勇,丰震,等.菊花叶片离体高效再生体系的建立[J].山东农业大学学报,2004,35(2):177~182.
    [130] Huetteman C A, Preece J E. Thidiazuron: a potent cytokinin for wood plant tissue culture [J]. Plant Cell Tiss Org Cult, 1993, 33:105~119.
    [131]张志宏,景士西,王关林. TDZ对苹果叶片离体再生不定芽的效应[J].植物生理学通讯,1997,33(6):420~423.
    [132]王华,卢江,马春花,等.葡萄基因工程研究进展[J].西北植物学报, 2004, 24(9): 1751~1759.
    [133]张国裕,王岩,程智慧,等.农杆菌介导的菜心遗传转化体系的建立[J].西北农林科技大学学报, 2006, 34(9): 61-64.
    [134]郭丽.大岩桐遗传转化体系的建立与LEA蛋白基因的导入[D].重庆:西南大学,2008.
    [135] Metter I J. A simple and rapid method for mini-preparation of DNA from tissue-cultured plants cells [J]. Plant Mol Biol Rep, 1987, 5:346~349.
    [136]王关林,方宏筠.植物基因工程[M].科学出版社, 2002: 738~745.
    [137] Feng J X, Liu D, Pan Y, Gong W, et al. An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family [J]. Plant Molecular Biology, 2005, 59: 853~868.
    [138] Owens C L, Thomashow M F, Hancock J F, et al. CBF1 orthologs in sour cherry and strawberry and the heterologous expression of CBF1 In strawberry [J]. Journal America Society Horticultural Science, 2002, 127(4): 489~494.
    [139] Zhang X, Fowler S G, Cheng H M, et al. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis [J]. The Plant Journal, 2004, 39: 905~919.
    [140] Pino M T, Skinner J S, Park E J, et al. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield [J]. Plant Biotechnology Journal, 2007, 5: 591~604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700