WC-Co硬质合金的C/V/Cr离子注入表面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬质合金因具有高熔点、高硬度、化学稳定性好、热膨胀系数低的优点,广泛应用于刀具、模具等方面。为了改善硬质合金的表面性能,本文采用金属蒸汽真空弧离子源(MEVVA)离子注入技术在YG8硬质合金基体表面进行了6种不同的离子注入工艺:离子注入C、V、Cr、C+V、C+Cr、C+V+Cr,并且讨论了不同的注入剂量对试样表面性能的影响。
     本文利用X射线衍射仪(XRD)对表面物相结构进行了检测;应用X射线光电子能谱仪(XPS)分析了注入层各元素的价态和含量随深度的分布状况;利用拉曼光谱分析仪对类金刚石(DLC)相进行了检测分析;应用维氏硬度计、摩擦系数试验机和电化学腐蚀平台分别对改性层显微硬度、摩擦磨损性能和抗腐蚀性能进行了测试和分析。
     测试和分析结果表明,用40KV的引出电压对YG8硬质合金进行V离子注入可以达到约800纳米的注入深度;离子注入能提高试样的表面硬度,最大剂量三离子注入样品的维氏显微硬度(HV)可以达到2692,相对于基体增加了约60.8%;离子注入能降低硬质合金表面的摩擦系数,小剂量的多离子注入就能很显著的降低材料表面摩擦系数;拉曼光谱分析结果表明,通过MEVVA源对硬质合金进行大剂量的C离子注入也可以形成类金刚石相,C+V+Cr三离子注入后更容易发现DLC特征;电化学腐蚀测试结果表明,离子注入后腐蚀电位无明显改善,但腐蚀电流和腐蚀速率都有大幅度降低,小剂量的离子注入就能很明显的降低硬质合金的电化学腐蚀速率,其中Cr、C+Cr、C+V+Cr离子注入样品降低腐蚀速率效果较为明显。由此可见,我们可以选用适当的注入元素和注入剂量来得到所需的性能。
Due to the high melting point, high hardness, high chemical stability, and low coefficient of heat expansion, hard alloy are widely applied to cuts and moulds. Six experimental procedures (implantation of C, V, Cr, C+V, C+Cr, C+V+Cr ions) are employed to treat the YG8 hard alloys in order to enhance their surface properties by Metal Vapor Vacuum Arc (MEVVA) source implantor. The influence of different implantation dose is discussed.
     In this thesis, X-ray diffraction (XRD) was used to detect the phase structure of the implanted region. In order to measure the proportion of each element in the surface, X-ray Photoelectron Spectroscopy (XPS) was utilized to study the chemical state and elements depth profile of the modified layer. Raman spectrometer is used to test the formation of DLC. Microhardness, coefficient of friction, and corrosion resistance of the samples surface are measured by Vickers hardness tester, frictionometer, and electrochemical corrosion system, respectively.
     It was found that the depth of the V ion implanting layer is greater than 800nm with outlet voltage 40KV. Ion implanting can reduce the friction coefficient, even under the condition of using small dose. Results of Raman spectrum show that DLC can be obtained by C ions implanting with large dose, and the DLC feature is more obvious by C+V+Cr ions. The microhardness of the sample surface is increased by ion implanting and the biggest one is HV2692, which is of 60.8% increment compared with the bulk material. The corrosion potential is not changed visibly, but the corrosion current and the corrosion rate are greatly reduced even under the condition of using small dose. The corrosion resistance of Cr, C+Cr, C+V+Cr ions implanted samples are remarkable. In conclusion, we can achieve the predesigned performance by choosing proper species and dose of implanting ions.
引文
1余米香,范洪远,熊计.离子注入在硬质合金刀具中的应用.工具技术. 2008,42(6):48~50
    2薛卫东,任晓东.金属离子注入技术及应用.机械管理开发. 2004,5:39~40
    3张志强.离子注入技术与金属表面改性强化.机械工程师. 2005,11:81~83
    4张文毓.硬质合金涂层刀具研究进展.稀有金属与硬质合金. 2008,36(1):59~63
    5朱丽慧,马学鸣等.纳米硬质合金的研究进展.稀有金属材料与工程. 2004,33(4):349~353
    6 T.Wierzchon, et al. Properties of surface layers on Titanium Alloy Produced by Thermo chemical Treatment sunder Glow Discharge Conditions. Surface and Coating Technology. 1997,96(2):205~209
    7 Sakamoto Yukihiro, Takaya Matsufumi. Fabrication of nitrogen included carbon materials using microwave plasma CVD. Surface and Coatings Technology. 2003,(169):321~323
    8 X.H.Liu. Recent advance in surface treatment and its applications in China. Surface and Coating Technology. 2000,(131):261~266
    9 R.K.Y. Fua, et al. Surface modification of cemented carbide using plasma nitriding and metal ion implantation. Surface & Coatings Technology. 2005,(196):150~154
    10 L.F. Xia, J.X. Liao. Tribological behavior of gradient modified layer on 2024 aluminum alloy modified by plasma-based ion implantation. Wear. 2004,(256):840~845
    11张通和,吴瑜光.离子注入表面优化技术.冶金工业出版社, 1993:11
    12 Z. Werner, et al. The effect of ion implantation on the wear of Co-Cr-Mo alloy. Vacuum. 2007,81:1191~1194
    13 J.I. Onate, F. Alonsoet. Improvement of tribological properties by ion implantation. Thin Solid Films. 1998,(317):471~476
    14陈江红,陈阳,李爱成.离子注入技术的发展及其应用.电子工业专用设备. 2004,(112):64~66
    15曾照明,汤宝寅,朱剑豪等.金属等离子体浸没离子注入改善9Cr18轴承钢表面耐磨性的研究.真空科学与技术. 2000,20(2):77~80
    16王茜,蒙大桥等.多能碳离子注入纯铁研究.材料保护. 2007,40(5):13~16
    17廖家轩,田忠等.等离子体基离子注入电压对碳薄膜结构及摩擦学性能的影响.哈尔滨工业大学学报. 2006,38:91~94
    18 T. H. Zhang, Y. Huan. Nanoindentation and nanoscratch behaviors of DLC coatings on different steel substrates. Composites Science and Technology. 2005,(65):1409~1413
    19曾照明,汤宝寅等. 9Cr18轴承钢氮等离子体浸没离子注入表面改性工艺及机理的研究.材料科学与工艺. 1999,7(3):26~29
    20王钧石. 45钢等离子体浸没式离子注入层的组织与性能.材料开发与应用. 2005,20(6):21~23
    21李永良,李维超等. C+Ti双离子注入H13钢抗腐蚀结构的分析.核技术. 2001,24(1):33~38
    22薛建明,赵渭江等. Mo+C双离子高剂量注入H13钢的耐腐蚀性能研究.核技术. 1997,20(9):513~516
    23汤宝寅,张更伟.氮、氧及金属离子注入铝合金表面改性层摩擦磨损性能研究.摩擦学学报. 2003,23(4):287~290
    24 L.D. Yua, et al. Vilaithong. Friction modification of WC-Co by ion implantation. Surface and Coatings Technology. 2000,(128):404~409
    25 M. UedaT, et al. Application of Plasma Immersion Ion Implantation for improved performance of tools and industrial components. Surface & Coatings Technology. 2005,(200):517~520
    26 J. Chen, J.R. Conrad, R.A. Dodd. Methane plasma source ion implantation (PSII) for improvement of tribological and corrosion properties. Journal of Materials Processing Technology. 1995,(49):115~124
    27李中岳,王平,杨树贞.金属离子注入技术的研究及其应用.真空电子技术. 2000,(6):50~51
    28史维东,何飞舟. MEVVA离子源及其应用.核技术. 1996,19(4):249~256
    29 A.Oztarhan, et al. Metal vapour vacuum arc ion implantation facility in Turkey. Surface & Coatings Technology. 2005,(196):327~332
    30 Andreas N. Panckow, et al. Low-temperature metal ion implantation assisted deposition of hard coatings. Surface & Coatings Technology.2004,(188):214~219
    31张涛,宋教花,张荟星等.强流金属离子注入.微细加工技术. 2001,1:22~25
    32 Ko-Wei Weng, Tai-Nan Lin, Da-Yung Wang. Tribological property enhancement of CrN films by metal vapor vacuum arc implantation of Vanadium and Carbon ions. Thin Solid Films. 2008,(516):1012~1019
    33苏颖,林文廉. WC-Co硬质合金的MEVVA源离子注入表面改性研究.北京师范大学学报. 1997,33(1):79~82
    34易仲珍,徐飞,张通和等. V+C共注入对不锈钢表面机械性能改善的研究.核技术. 2001,24(8):648~654
    35李宁,邱友绪等.超细晶硬质合金中VC/Cr3C2对晶粒长大的抑制作用及机理研究.稀有金属材料与工程. 2007,36(10):1763~1766
    36胡道平,何宝山,孔德会. Cr含量对WC基硬质合金耐腐蚀性能的影响.腐蚀与防护. 2006,27(8):382~386
    37孔德会,何宝山,胡道平. Cr含量对WC基硬质合金组织和性能的影响.上海有色金属. 2005,26(2):53~56
    38史晓亮,邵刚勤等.超细硬质合金晶粒生长抑制剂VC、Cr3C2作用机理的研究.硬质合金. 2006,23(4):193~197
    39 Yu.V. Milman, S. Luyckx. Influence of temperature, grain size and cobalt content on the hardness of WC-Co alloys. International Journal of Refractory Metals & Hard Materials. 1999,(17):39~44
    40 J. Robertson. Amorphous carbon thin films. Material science and engineering. 2002,(37):129~281
    41 A. Erdemir, G.R. Fenske. Effect of source gas and deposition method on friction and wear performance of diamondlike carbon films. Surface and Coating Technolgy. 1997,(94):525~530
    42代明江,林松盛等.用离子源技术制备类金刚石膜研究.中国表面工程. 2005,18(5):16~19
    43弗里德曼.金属机械性能.孙希太等,机械工业出版社. 1982:20~40
    44崔风洲. WC-Co硬质合金复合改性工艺实验研究.哈尔滨工业大学硕士论文. 2006:25~26
    45 W.L. Lina, et al. Microchemical and microstructural changes of Co cemented WC induced by ion implantation. Nuclear Instruments and Methods in Physics Research. 2002,(188):201~204
    46 A. Shokouhy, et al. Microstructural and corrosivity changes induced by nitrogen ion implantation on chromium films. Thin Solid Films. 2006,(515):571~575
    47 J F Moulder, W F Stickle, P E Sobol. Handbook of X-ray photoelectron spectroscopy. Physical Electronics. 1995,(138):57~62
    48 B. Mednikarov, G. Spasov. Optical properties of diamond-like carbon and nanocrystalline diamond films. Journal of Optoelectronics and Advanced Materials. 2005,7:1407~1413
    49 L. Popov, W. Kulish, S. Boycheva, Strctural investigation of nanocrystalline diamond/amorphous carbon cornposite films. Diamond Relat Mater. 2004,13:2071~2075
    50 Liu Z H, Zhao J F, Mclaughlin J. A study of microstructural and electrochemical properties of ultra-thin DLC coatings on AlTiC substrates deposited using the ion beam technique. Diamond and Related Materials. 1999,8(1):56~63
    51 Shu wen Jiang, et al. Friction and wear study of diamond-like carbon gradient coatings on Ti6Al4V substrate prepared by plasma source ion implant-ion beam enhanced deposition. Applied Surface Science. 2004,(236):285~291
    52 J.Chen, et al. Structure and wear properties of carbon implanted 304 stainless steel using plasma source ion implantation. Surface and Coatings Technology. 1992(53):267~275
    53 V. V. Uglov, et al. Wear-resistant metal-carbon composite coating. Surface and Coatings Technology. 2000,(128):150~155
    54 Miao Yu, et al. Metal vapor vacuum-arc ion implantation effects on the adhesion and hardness of ion-beam deposited Cr/Cu films. Applied Surface Science. 2007,(253):3276~3283
    55 Shi WD, et al. Study of surface modification of WC-Co alloy by nitrogen implantation. Nucl Intr. and Meth. 1993,81:229~232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700