人神经胶质瘤细胞全基因组拷贝数变异的单核苷酸多态性芯片分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拷贝数变异(copy number variations,CNVs)是指人类基因组中存在的长度为1kb-100kb的DNA片段插入、缺失或扩增,及其互相组合形成的复杂结构变异的现象。CNVs广泛存在于基因组DNA,其变化和复杂疾病及疾病的易感性相关。CNVs可通过改变基因结构和影响基因的表达或者远距离调控其它基因的表达来影响疾病的发生。从人基因组CNVs的角度来研究人脑胶质瘤的发病机理是很好的切入点。
     采用美国Illumina公司CNV检测用Illumina370SNP芯片,对采集到的18位中国汉族人脑胶质瘤及患者的外周血标本进行了全基因组CNV分析。结果表明:1、脑胶质瘤患者的胶质瘤和外周血基因组中有一致性的CNV遗传改变;2、高分化人脑胶质瘤基因组中有非遗传性CNV的一致性变化;3、脑胶质瘤细胞的分化级别与发生了CNV的基因的种类和数量相关;4、CNV也可发生在脑胶质瘤细胞基因组的非编码区;5、脑胶质瘤发生CNV的基因所涉及的细胞信号传导通路及这些基因所涉及的重要细胞生命过程与其分化级别相关。
     该工作提示:1、人脑胶质瘤基因组遗传性的UGT2B17基因纯合性缺失可能与脑胶质瘤易感性有关;2、高分化脑胶质瘤基因组非遗传性的拷贝数扩增的锌脂蛋白(Zinc finger protein)家族基因和MIR663基因可能与脑胶质瘤的发生相关;3、MAPK信号传导通路的激活可能与脑胶质瘤的发生与增殖相关;4、钙离子信号传导通路激活可能增加了低分化脑胶质瘤细胞病理恶性程度的趋势。
     该项工作可为人脑胶质瘤的分子分型、遗传易感性、治疗药物的研发提供重要的实验基础。
Glioma is a malignant tumor of the central nerves system (CNS), which developsfrom neural ectoderm. As the most prevalent malignant tumor of the central nervessystem (occurrence3-10/100000), And it accounts for about46%of the encephalictumors. So far, surgery or surgery plus radiotherapy and chemotherapy is the maintreatment for glioma. After surgery, the mean survival time span become only8-11months with the recurrence rate of nearly100%. Once recurred, the mean survivaltime span decreases to only3-5months.
     Genetic research on glioma has undergone courses from studying largechromosomal segments change to genetic change and from studying single genefunction to multiple gene function. Comparative genomics hybridization (CGH) is oneof the conventional technologies which can detect deletions and duplications at thechromosomal level. However, it has a relatively low resolution in the range of1to5Mb. Fluorescence in situ hybridization (FISH) was better with a resolution of0.5to1Mb, but it can only detect the effect of a single gene. In addition, the above methodsshow a high false positive rate and are experimentally laborious. Therefore, it’snecessary to find a new way to observe and detect the genome-wide changes inglioma, as well as the effects of multiple interacting genes.
     With the help of genome-wide technologies, many researches have performed onshort tandem repeats (STR), single nucleotide polymorphism (SNP) and copy numbervariations (CNV) which broadly exist in human genes. STRs or microsatellite DNAscontain a repeat unit of2-6bp and the repeat number varies between10-60times,forming a segment of100-300bp. Using STR as markers, researchers can investigatethe loss of the loss of heterozygosity in glioma cells can be investigated. But theresolution is only1Mb and STRs are not very stable (with high mutation rate).
     Single nucleotide polymorphism (SNP) is caused by mutation of single basewidely spread in the genome, and covers more than90%of the genomepolymorphism. SNPs are widely spread in the genome with a total number of3millions or more, with an average of1SNP every500-1000bp. SNPs are proved to beassociated with many diseases and thought as the third generation molecular markerfor detecting copy number variation thanks to its high resolution and stability.
     The role of copy number variation (CNV) in glioma has gained more and moreattention with the development of genomics. CNVs were first comprehensivelyreported by Iafrate and Sebat et al. in2004(Iafrate A J, Sebat J et al.,2004) andinclude insertion, deletion, duplication and complex structural changes that span1kb-100kb. In2006, Redon et al. observed1447CNV regions that cover about12%of the human genome, and generated the human CNV map in which many CNVsreside in disease related loci. Since then, many researchers reported the prevalenceand importance of CNV (Iafrate et al.2004, Sebat et al.2004, Tuzun et al.2005, conradet al.2006, McCarroll et al.2006, Lei et al.2006). In general, CNVs involve incomplex diseases through two mechanisms: change of gene structure and dosageeffect. Furthermore, these CNVs may also alert long-region regulatory control. Thus,it is reasonable to use CNV as a breakthrough point in research on glioma.
     After the generation of first human CNV map in2006(Redon etal.,2006), apaper in Nature reported a great improvement in high-throughput genomictechonology and pointed out that it was feasible to perform cancer genome project,and both CNV and DNA methylation had important effect in glioma (L. chin and M.Meyerson. et al.2008). Subsequently, some researchers reported duplications onchromosomes1,2,3,4,7,8and12(Chan, J Y.,2011) and deletions on chromosomes1,3,5,7,9.10and17(Chi A S et al.,2012). These authors adopted genome-wideSNP microarray technology which has a higher resolution and better accuracycompared with earlier methods and can simultaneously analyze the CNV of manyspecific loci in the genome. So far, there is no report on Chinese glioma genomicchanges, especially on the CNV in different stages of glioma in brain.
     In this study, we analyzed human glioma sample pairs from18Han Chinesepatients with Illumina human370microarray in order to understand the geneticbackground of Han Chinese glioma, particularly the association between CNV anddifferent stages of glioma. The Illumina370chip contains370000probes in total,with52000CNV specific proves and a minimum and average distance of5kb and7.7Kb, respectively. In this experiment, we detected4types of CNVs: loss ofhomozygosity, loss of heterozygosity (with or without copy number change), andsegmental duplication. We use the software from illumine to get SNP genotypes andCNV bodundaries. The association of genes localized in the identified CNV reigionwith different stage of glioma was calculated and the data based on KEGG and GOdatabases are further analyzed to find specific changes and provide new insights intoglioma etiology.
     And this disertation will show that18Chinses glioma patiens can be divided into2subtypes: concordant subtype with concordant CNV between glioma and bloodDNA; and disconcordant subtype for which the glioma CNV and blood CNV aredifferent. We found that the differential stage of glioma was associated with the totalnumber of CNV and the types of genes in these CNV, and CNVs also occurred innoncoding regions. In highly differentiated glioma cells,10genes in MARK signalingpathway were all duplicated. In low differentiated glioma cells,4genes in calcium signaltransduction pathway were duplicated. In total, there are442CNV genes in highlydifferentiated glioma, mainly enriched in organelle organization, transcription regulation,translation regulation, cell metabolism etc. Moreover, there are112CNV genes in lowdifferentiated gilima, mainly enrich in signal transmission, neuronal synapsis, catalyticactivity, metabolism, DNA repair, reproduction regulation and so on.
     Results are as follows:
     Part1. Comparison between glioma genome and blood PBMC genome
     1.11of12brain glioma patients showed concordant CNVs between glioma genomeand blood PBMC genome, which was a loss of homozygosity on chromosome3qbetween the noncoding regions163-165Mb. Thirteen brain glioma patients showed same CNVs between glioma genome andblood PBMC genome, which was a loss of homozygosity on chromosome4qbetween69.8-69Mb. There are3functional genes in this region: UGT2B17(NCBI Reference Sequence: NM_001077.3), YTHDC1(YT521B, transcriptvariant1NCBI Reference Sequence: NM_001031732.2)and TMPRSS11E(NCBIReference Sequence: NM_014058.3).
     These results suggested that:
     1、 The CNVs on chromosomes3q and4q are associated with the genesis of glioma.
     2、 The CNV on chromosome3q is noncoding.
     3、 The CNV on chromosome3q is in coding region.
     4、 The gene UGT2B17in4q region is a member of the UGT gene family. Thehomozygosity loss of UGT2B17is associated with susceptibility to prostatecancer and lung cancer.
     5、 The TMPRSS11E in4q region encodes a protein that belongs to type II serineprotease family, the homozygosity loss of which is associated with squamous cellcarcinoma of the head and neck.
     2. Of the18sample pairs, we also found some occasional CNVs. However,there is no evidence to show these changes correlated with giloma.
     The concordant CNVs between glioma genome and blood PBMC genomesuggested that there might be some CNVs with genetic susceptibility to gliomaand the genes in these CNVs may be candidate genes for glioma.
     Part2. Comparison of somatic CNVs between high and low differentiatedglioma genome.
     In addition to the concordant CNVs in both glioma and blood genomes, wefound some somatic CNVs that only exist in glioma but not in the blood geneme. Wecompared these somatic CNVs between high and low differentiated glioma genomeand found the following results:
     1、 There are hybrid loss of heterozygosity with copy number losses in both highand low differentiated glioma genomes. They spanned cross the genome on chromosomes1q,2q,5q,6q,13q and19q.
     2、 There are also loss of heterozygosity without copy number change both highand low differentiated glioma genomes, They spanned cross the genomeexcept the regions on chromosomes13p,14p,15p,19p,21p and22p.
     3、 Somatic duplications are also found in both high and low differentiatedglioma genomes. The regions with occasional somatic duplications include2p,2q,3p,3q,4p,8p,9q,11q,12p,12q,13q,16q,18p,18q,19p,19q,20pand20q.
     4、 Somatic amplification is also found in both high and low differentiatedglioma genomes.
     Of the9highly differentiated glioma patients,5showed CNV amplicaiton. Oneof the amplification was on chromosome1(187.85-187.8Mb), another was onchromosome19(62.7-6335Mb), including Zinc finger proteins, the last one was onchromosome20(25.6-26.2Mb), including4functional genes: MIR663,FAM182A,C20orf191and FAM182B.
     The above results suggested that:
     1. The CNVs on chromosomes1q,19q and20may be associated with thesomatic changes in glioma.
     2. The CNV on chromosome1q is noncoding.
     3. The CNVs on chromosomes19q and20p are in coding region.
     4. The Zinc finger protein gene in19may encode a protein that functions as atranscript factor to regulate the expression of its target gene.
     5. The MIR663code in20p encodes a micro-RNA, this kind of RNA isassociated with gastric cancer.
     6. By far, there is no report on the function of proteins encoded by FAM182A,C20orf191and FAM182B.
     Part3. The pathway of cell singnaling involved in the genes of CNV relevantto brain glioma
     In total, there are442CNV genes in highly differentiated glioma and112CNVgenes in low differentiated glioma.
     1.442CNV genes in highly differentiated glioma were enriched in15signalingpathways, for example, mitogen-activated pro-teinkinase (MAPK) pathway, in which10genes were significantly duplicated, suggesting association with glioma.
     2.112CNV genes in low differentiated glioma were enriched in8signalingpathways, for example, the calcium ion signaling pathway, in which4genes weresignificantly duplicated, suggesting association with glioma cancerization.
     Part4.Glioma CNV genes that involved in cell biology
     GO analysis of442and112CNV genes in high and low differentiated gliomasrevealed that:
     1.442CNV genes in highly differentiated glioma were summarized into18gene clusters. Encoding proteins includes important physical andpathologic processes such as organelle organization, transcriptionregulation, translation regulation and cell metabolism.
     2.112CNV genes in low differentiated gilima, mainly enriched in29geneclusters including signal transmission, neuronal synapsis, catalytic activity,metabolism, DNA repair, reproduction regulation and so on.
     the Following conclusions drawn from results above:
     1. Loss of homozygosity, including UGT2B17, YTHDC (YT521B) andTMPRSS11E (DESC1) genes, were found in both glioma and blood gemome,suggesting susceptibility to glioma.
     2. The zinc finger protein gene, MIR663,FAM182A,C20orf191and FAM182Bthat were significantly amplicated in highly differentiated glioma may be associatedwith glioma genesis while the function of amplication in noncoding reging on1q needfurther investigation.
     3. The genomes of low differentiated glioma showed complex, violent,disordered and variable CNVs, which are suitable for genetic research.
     4. The functional analysis based on KEGG suggested that highly differentiatedglioma was associated with MAPK signaling pathway while low differentiated gliomamight be associated with calcium ion signaling pathway.
     In summary, we analyzed the CNV of18tumor-blood sample pairs usingIllumina human370microarray, and found that homozygous deletions in ChineseCNVs may be associated with susceptibility of glioma. We also found that highdifferential glioma non-genetic zinc lipoprotein family gene and the amplification ofMIR663copys may caused by the mutation under the pressure of externalenvironment. The study and exploration of the phenomenon of human genome CNVhelp identify susceptibility genes in glioma and human cell genome gene mutationoccurred in the role of external risk factors. Further exploration can be made in theimpact of the gene mutation as well as the mechanism of the synergistic effect of themulti-gene in multi-channel.
引文
[1] Abadie C, Gauthier-Villars M, Sirvent N, Coupier I.Genetic predisposition tochildhood cancer Arch Pediatr.2012Aug;19(8):863-75. Epub2012Jul15.
    [2] Arul M. Chinnaiyan, Uttara Prasad, et al.Combined effect of tumor necrosisfactor-related apoptosis-inducing ligand and ionizing radiation in breast cancertherapy,Medical Sciences,Published online2000February4. Proc Natl Acad SciU S A.2000February15;97(4):1754–1759.
    [3] Alexandru O, Dragutescu L, et al.Helianthin induces antiproliferative effect onhuman glioblastoma cells in vitro.J Neurooncol.2011Mar;102(1):9-18. Epub2010Jul16.
    [4] Bolt HM, Golka K.1,3-Propane sultone as an extremely potent human carcinogen:description of an exposed cohort in Germany.J Toxicol Environ Health A.2012;75(8-10):544-50.
    [5] Bellefroid EJ, Marine JC, et al.Emergence of the ZNF91Krüppel-associatedbox-containing zinc finger gene family in the last common ancestor ofanthropoidea.Proc Natl Acad Sci U S A.1995Nov7;92(23):10757-61.
    [6] Braganza MZ, Kitahara CM et al.Ionizing radiation and the risk of brain andcentral nervous system tumors: a systematic review.Neuro Oncol.2012Sep5.
    [Epub ahead of print]
    [7] Benjamin Purow and David Schiff,et al.Advances in the genetics of glioblastoma:are we reaching critical mass? Nat Rev Neurol.2009August;5(8):419–426.
    [8] Bailey H.The Abdominal Crises of Pernicious Anaemia.Br Med J.1926.2(3429):554.
    [9] Romero J R,Preis S R,Beiser A S et al.Lipoprotein Phospholipase A2andCerebral Microbleeds in the Framingham Heart Study.Stroke.2012.10.1161/STROKE AHA.112.656744
    [10]Barnea I,Ben-Yosef, R,Karaush, V et al.Targeting EGFR-positive cancer cellswith cetuximab-ZZ-PE38:Results of in vitro and in vivo studies.HeadNeck.2012.10.1002/hed.23093.
    [11]Baradaran-Heravi A.PIK3CA,a hotspot for postzygotic mutations innonhereditary y overgrowth syndromes.Clin Genet.2012.
    [12]Bhargava A,Fuentes F F.Mutational dynamics of microsatellites.Mol Biotechnol.2010.44(3):250-66.
    [13]Chen Z,Li J,Song X et al.Use of a novel sonosensitizer in sonodynamic therapy ofU251glioma cells in vitro.Exp Ther Med.2012.3(2):273-278.
    [14]Collins F S,BarkerA D.Mapping the cancer genome. Pinpointing the genesinvolved in cancer will help chart a new course across the complex landscape ofhuman malignancies.Sci Am.2012.296(3):50-7.
    [15]陈忠平.重视胶质瘤的化学治疗.中国神经肿瘤杂志.2003,1(2):65-68.
    [16]Chan J Y.A clinical overview of centrosome amplification in human cancers.Int JBiol Sci.2011.7(8):1122-44.
    [17]Chi A S,Batchelor T T,Dias-Santagata,D et al.Prospective,high-throughputmolecular profiling of human gliomas.J Neurooncol.2012.110(1):89-98.
    [18]CBTRUS(2008).Statistical Report: Primary Brain Tumors in the UnitedStates,2000-2004.Published by the central Brain Tumor Registry of the UnitedStates
    [19]CBTRUS. Statistical Report: Primary Brain and Central Nervous System TumorsDiagnosed in the United States in2004–2006. Central Brain Tumor Registry ofthe United States.2010.
    [20]Cancer Genome Atlas Research Network.Comprehensive genomic characterizationdefines human glioblastoma genes and core pathways.Nature.2008Oct23;455(7216):1061-8. Epub2008Sep4.
    [21]Dea N, Fournier-Gosselin MP, et al.Does extent of resection impact survival inpatients bearing glioblastoma?Can J Neurol Sci.2012Sep;39(5):632-7.
    [22]Di Rocco C, Chieffo D,et al.Preoperative and postoperative neurological,neuropsychological and behavioral impairment in children with posterior cranialfossa astrocytomas and medulloblastomas: the role of the tumor and the impact ofthe surgical treatment.Childs Nerv Syst.2010Sep;26(9):1173-88. Epub2010Jun16.
    [23]Dunning MJ, Barbosa-Morais NL,et al.Statistical issues in the analysis ofIllumina data.BMC Bioinformatics.2008Feb6;9:85.
    [24]Dunning MJ, Smith ML, Ritchie ME, Tavaré S.beadarray: R classes and methodsfor Illumina bead-based data.Bioinformatics.2007Aug15;23(16):2183-4. Epub2007Jun22.
    [25]段和平,段国升.超选择性动脉内化疗治疗神经胶质瘤的临床研究.中华神经外科杂志.1990,4:244-247.
    [26]杜玮南,方福德.单核苷酸多态性的研究进展.中国医学科学院学报,2000.
    [27]董军,兰青.后基因组时代的胶质瘤分子生物学研究.中国肿瘤,2005.14(2):89-91.
    [28]段国升.脑胶质瘤临床治疗的进展.中华神经外科杂志.2004.2(3):85-87.
    [29]Dietmar Krex, Barbara Klink, et al.Long-term survival with glioblastomamultiforme,Brain (2007)130(10):2596-2606.
    [30]Fauri J,Ricardi F,Diehl E et al.P16protein expression in primary cutaneousmelanoma with positive and negative lymph node biopsies: Particular aspects of astudy performed at the Hospital de Clinicas de Porto Alegre, Brazil.Can J PlastSurg.2004.19(3):77-81.
    [31]Freije W A,Castro-VargasF E,Fang Z et al.Gene expression profiling of gliomasstrongly predicts survival.Cancer Res.2004.64(18):6503-10.
    [32]Fangusaro J.Pediatric high grade glioma: a review and update on tumor clinicalcharacteristics and biology.Front Oncol.2012.vol2:105.
    [33]Grant R,Collie D,Counsell C et al.The incidence of cerebral glioma in theworking population: a forgotten cancer?Br J Cancer.2012.73(2):252-4.
    [34] Gentili PL,et al.Static and dynamic interaction of a naturally occurringphotochromic molecule with bovine serum albumin studied by UV-visibleabsorption and fluorescence spectroscopy.J Phys Chem B.2008Dec25;112(51):16793-801.
    [35]Gonzalez,, Martinez· Campa, Mediavilla MD, Alonso,et al. GonzalezSanchez-Barcelona EJ,Pharmacological doses of melatonin inhibition ofaromatase activity and expression in rat glioma cells.BR digestion, September17,2007,97(6):755-60.
    [36]Hattermann K, Mentlein R, Held-Feindt J.CXCL12mediates apoptosis resistancein rat C6glioma cells.Oncol Rep.2012May;27(5):1348-52.
    [37]Hottinger AF, Homicsko K, Negretti L, Lhermitte B, Stupp R.Decision makingand management of gliomas: practical considerations.Ann Oncol.2012Sep;23Suppl10:x33-x40.
    [38]Huguet E L,McMahon J A,McMahon A P et al.Differential expression of humanWnt genes2,3,4, and7B in human breast cell lines and normal and diseasestates of human breast tissue.Cancer Res.1994.54(10):2615-21.
    [39]HS haumburg,A C Ludolph.Experimental and clinical neurotoxicology.2000.
    [40]Hirose,Noguchi E,Sakamoto H,Hirota T.Genome-wide association studyidentifies HLA-DP as a susceptibility gene for pediatric asthma in Asianpopulations.PLoS Genet.2011.7(7).
    [41]Huffman L S,O'Connell LA,Kenkel CD et al.Distribution of nonapeptide systemsin the forebrain of an African cichlid fish, Astatotilapia burtoni.J ChemNeuroanat.2012.44(2):86-97.
    [42]Hill D A,Inskip P D,Shapiro W R e al.Cancer in first-degree relatives and risk ofglioma in adults.Cancer Epidemiol Biomarkers.2003,Prev.12(2):1443-8.
    [43]Iwami K,Natsume A,Wakabayashi T et al.Gene therapy for high-gradeglioma.Neurol Med Chir (Tokyo).2012,50(9):727-36.
    [44] Ingraham F D,et al.Neurosurg of infancy and childhood.Springfield.1954:221-340.
    [45]Iafrate A J,Feuk L,Rivera M N.et al.Detection of large-scale variation in thehuman genome.2004.Nat Genet.36(9):949-51.
    [46]Idbaih A, Crinière E, Ligon KL, Delattre O, Delattre JY.Array-based genomics inglioma research.Brain Pathol.2010Jan;20(1):28-38. Epub2009Mar3.
    [47]ILLUMINA PROPRIETARY Catalog WG-901-6101Part11322427Rev. B(Pre-Print)
    [48] Iwamoto FM,et al. Clinical relevance of1p and19q deletion for patients withWHO grade2and3gliomas.J Neurooncol.2008Jul;88(3):293-8. Epub2008Mar15.
    [49]Jha P, Sarkar C, et al.Detection of allelic status of1p and19q bymicrosatellite-based PCR versus FISH: limitations and advantages in applicationto patient management.Diagn Mol Pathol.2011Mar;20(1):40-7.
    [50]Janisch W,Schneider M,Gerlach H et al.Role of genetic factors in thepathogenesis of optic nerve glioma.Zentralbl Neurochir.1976.37(3):169-76.
    [51]J.L. Phillips, N.P. Singh, H. Lai, Electromagnetic fields and DNA damage,Patho-648physiology16(2009)79–88.649
    [52]Keller A, Harz C, Matzas M, Meder B, Katus HA, Ludwig N, Fischer U, MeeseE.Identification of novel SNPs in glioblastoma using targeted resequencing.PLoSOne.2011;6(6):e18158. Epub2011Jun10.
    [53]Kim YA, Wuchty S, Przytycka TM.Identifying causal genes and dysregulatedpathways in complex diseases.PLoS Comput Biol.2011Mar;7(3):e1001095.Epub2011Mar3.
    [54] Klug A.The discovery of zinc fingers and their applications in gene regulationand genome manipulation.Annu Rev Biochem.2010;79:213-31.
    [55]Kuipers SE, Kafiluddin E, et al.Incidence and Treatment of Central NervousSystem Tumors in Suriname.World Neurosurg.2012Apr2.[Epub ahead of print]
    [56]Li Y, Zhao Y,et al.A functional polymorphism in the epidermal growth factor geneis associated with risk for glioma in a Chinese population.Genet Test MolBiomarkers.2012May;16(5):449-52. Epub2011Nov22.
    [57]Li G, Jin TB, et al.Selected polymorphisms of GSTP1and TERT were associatedwith glioma risk in Han Chinese.Cancer Epidemiol.2012Jul12.[Epub ahead ofprint]
    [58]Luchetti G, Johnston R, et al.Bulbispermine: a crinine-type Amaryllidaceaealkaloid exhibiting cytostatic activity toward apoptosis-resistant gliomacells.ChemMedChem.2012May;7(5):815-22. doi:10.1002/cmdc.201100608.Epub2012Mar2.
    [59]Lassman AB, Iwamoto FM, Cloughesy TF, et al. International retrospective studyof over1000adults with anaplastic oligodendroglial tumors. Neuro-Oncol. Jun2011;13(6):649–59.
    [60]Li B, Senbabaoglu Y, Peng W,et al.Genomic Estimates of Aneuploid Content inGlioblastoma Multiforme and Improved Classification.Clin Cancer Res.2012Sep11.[Epub ahead of print]
    [61]Louis DN,Ohgaki H,Wiestler OD,et al.WHO classification of tumor of thecentral nervous system (4th edition).IARC,Lyon,2007.
    [62]L. chin and M. Meyerson Comprehensive genomic characterization defineshuman glioblastoma genes and core pathways Cancer Genome Atlas ResearchNetwork455,1061to68October (2008) DOI:10.1038/nature07385; ReceivedJuly28, September2008, published online on September4,2008correctionSeptember17,2008
    [63]Lin L T,Chiou S H,Lee T W et al.A Comparative Study of Primary and RecurrentHuman Glioblastoma Multiforme Using the Small Animal Imaging andMolecular Expressive Profiles.Mol Imaging Biol.1999.10.1007/s11307-012-0591-x
    [64]Ohgaki H,Kleihues P.Epidemiology and etiology of gliomas.Acta Neuropathol.2005.109(1):93-108.
    [65]LI Jun-rong,LI Sheng-hua,CHEN Lai-ming.小儿颅内肿瘤的临床特点与诊断.2005.
    [66] Liu ZY,et al.MicroRNA-663targets TGFB1and regulates lung cancerproliferation.Asian Pac J Cancer Prev.2011;12(11):2819-23.
    [67]罗世祺,李德泽,李立.小儿颅内肿瘤1534例分析.中华神经外科杂志.1985,1(3):146-50.
    [68]Liu ZY, Zhang GL, et al.MicroRNA-663targets TGFB1and regulates lungcancer proliferation.Asian Pac J Cancer Prev.2011;12(11):2819-23.
    [69]Li S,Jin T,Zhang J,et al.Polymorphisms of TREH, IL4R and CCDC26genesassociated with risk of glioma.2012.36(3):283-7.
    [70]林连捷.应用高密度单核苷酸多态性芯片分析人类胰腺癌基因组异常.2007.
    [71]李南云,张泰和.神经节细胞胶质瘤的临床与病理观察.中华病理学杂志.1993.4(5):214-217.
    [72]Minwegen R.A new theory of tumours and tumorigenesis.Eur J CancerPrev.2004.13(3):231-3.
    [73]Muthusamy KA,Lian LH,Vairavan N et al.Genetic polymorphisms of EGF5'-UTR and NAT2857G/A associated with glioma in a case control study ofMalaysian patients.Genet Mol Res,2012,10.4238/2012.June.15.7
    [74]Magee J A,Ikenoue T,Nakada D et al.Temporal Changes in PTEN and mTORC2Regulation of Hematopoietic Stem Cell Self-Renewal and LeukemiaSuppression.Cell.Stem Cell.2012.11(3):415-28.
    [75]Murata, M., Warren, EH Riddle,2003SR.. A minor histocompatibility antigendifferentially expressed gene deletion. J. exposure. Medicine.197::1279-1289.
    [76]Mizuno M, Yoshida J.Perspectives on postgenome medicine: Gene therapy forbrain tumors,Nihon Rinsho.2001Jan;59(1):76-80.
    [77]Melin B.Genetic causes of glioma: new leads in the labyrinth.Curr Opin Oncol.2011Nov;23(6):643-7.
    [78]Margareto J, Leis O, Larrarte E, et al.DNA copy number variation and geneexpression analyses reveal the implication of specific oncogenes and genes inGBM.Cancer Invest.2009Jun;27(5):541-8.
    [79]Mizoguchi M, Yoshimoto K,et al.Molecular characteristics of glioblastoma with1p/19q co-deletion.Brain Tumor Pathol.2012Jul;29(3):148-53. Epub2012Jun27.
    [80] Machorro-Lazo MV,et al.Analysis of the association of preeclampsia withpolymorphisms of the INS, INSR and IRS1genes in Mexican women.GynecolObstet Invest.2009;67(1):14-9. Epub2008Aug21.
    [81]Nagane M.Genetic alterations and biomarkers for glioma,Brain Nerve.2012May;64(5):537-48.
    [82]Neuro-oncol:Abstracts from the Seventh Congress of the European Associationfor Neuro-Oncology (EANO): September14–17,2006, Vienna, Austria.2006October;8(4):293–372. doi:10.1215/15228517-2006-019
    [83]Nicolaidis S.Personalized medicine in neurosurgery.Metabolism.2012Sep24. pii:S0026-0495(12)00326-5. doi:10.1016/j.metabol.2012.08.022.[Epub ahead ofprint]
    [84]Okajima K, Ohta Y.Diagnostic Imaging of High-grade Astrocytoma: Heterogeneityof Clinical Manifestation, Image Characteristics, and Histopathological Findings.Brain Nerve.2012Oct;64(10):1151-7.
    [85]Ohgaki H, Kleihues P.Epidemiology and etiology of gliomas.Acta Neuropathol.2005Jan;109(1):93-108. Epub2005Feb1.
    [86]Ohgaki H,Epidemiology of brain tumors.Methods Mol Biol.2009;472:323-42.
    [87]Parney IF, Goerss SJ, et al.Awake craniotomy, electrophysiologic mapping, andtumor resection with high-field intraoperative MRI.World Neurosurg.2010May;73(5):547-51.
    [88]Paul I, Ahmed SF,et al.The ubiquitin ligase CHIP regulates c-Myc stability andtranscriptional activity.Oncogene.2012Apr30. doi:10.1038/onc.2012.144.
    [Epub ahead of print]
    [89]Patel M, Vogelbaum MA, Barnett GH, Jalali R, Ahluwalia MS.Molecular targetedtherapy in recurrent glioblastoma: current challenges and future directions.ExpertOpin Investig Drugs.2012Sep;21(9):1247-66. Epub2012Jun25.
    [90]Purow BW, Schiff D.Glioblastoma genetics: in rapid flux.Discov Med.2010Feb;9(45):125-31.
    [91]Pollo B,Pathological classification of brain tumors.Q J Nucl Med Mol Imaging.2012Apr;56(2):103-11.
    [92]Pertuiset B C.Handbook of clinical neurology.2012.18:531-70.
    [93]Pu P,Zhang,Z,Kang, C,Jiang, R,Jia, Z,Wang,G,Jiang, H,Down regulation of Wnt2and beta-catenin by siRNA suppresses malignant glioma cell growth.Cancer GeneTher.2012.16(4):351-61.
    [94]Rolle CE, Sengupta S, Lesniak MS.Mechanisms of immune evasion bygliomas.Adv Exp Med Biol.2012;746:53-76.
    [95]Randolph TR.Chronic myelocytic leukemia--Part I: History, clinical presentation,and molecular biology.Clin Lab Sci.2005Winter;18(1):38-48.
    [96]Redon R,Ishikawa, S,Fitch, K R et al.Global variation in copy number in thehuman genome.Nature.2006.444(7118):444-54.
    [97]Rajaraman P, Melin BS, et al.Genome-wide association study of glioma andmeta-analysis.Hum Genet.2012Aug11.[Epub ahead of print]
    [98]Rapaport F, Leslie C.Determining frequent patterns of copy number alterations incancer.PLoS One.2010Aug12;5(8):e12028.
    [99]Rajaraman P, Stewart PA, et al.Lead, genetic susceptibility, and risk of adult braintumors.Cancer Epidemiol Biomarkers Prev.2006Dec;15(12):2514-20.
    [100] Samanic CM, De Roos AJ,et al.Occupational exposure to pesticides and riskof adult brain tumors.Am J Epidemiol.2008Apr15;167(8):976-85. Epub2008Feb24.
    [101] Shen L, Yin ZH,et al.Association between ATM polymorphisms and cancerrisk: a meta-analysis.Mol Biol Rep.2012May;39(5):5719-25. Epub2011Dec28.
    [102] Staaf J, Vallon-Christersson J, et al.Normalization of Illumina Infiniumwhole-genome SNP data improves copy number estimates and allelic intensityratios.BMC Bioinformatics.2008Oct2;9:409.
    [103] Smits M, Wurdinger T, et al.Myc-associated zinc finger protein (MAZ) isregulated by miR-125b and mediates VEGF-induced angiogenesis inglioblastoma.FASEB J.2012Jun;26(6):2639-47. Epub2012Mar13.
    [104] Shete S, Lau CC, Houlston RS, et al.Genome-wide high-density SNP linkagesearch for glioma susceptibility loci: results from the Gliogene Consortium.Cancer Res.2011Dec15;71(24):7568-75. Epub2011Oct28.
    [105] Simon M, Hosking FJ, et al.Genetic risk profiles identify different molecularetiologies for glioma.Clin Cancer Res.2010Nov1;16(21):5252-9. Epub2010Sep16.
    [106] S. Lixia, K. Yao, W. Kaijun, L. Deqiang, H. Huajun, G. Xiangwei, W. Baohong,832Z. Wei, L. Jianling, W. Wei, Effects of1.8GHz radiofrequency field onDNA833damage and expression of heat shock protein70in human lensepithelial834cells, Mutat. Res.602(2006)135–142.835
    [107] Seba J,Lakshmi, B,Troge, J et al.Large-scale copy number polymorphism in thehuman genome.2004.30(5):525-8.
    [108] S Wilhelm, C Carter, M Lynch.索拉非尼的发现和研制:治疗肿瘤的多激酶抑制剂.Nature Review Drug Discovery.2006,Vol5:835-844.
    [109]邵惠训.冠状病毒与相关疾病.临床和实验医学杂志.2003.2(4):250-55.
    [110]Sareddy GR,Challa,S,Panigrahi,M,Babu,PP.Wnt/beta-catenin/Tcf signaling pathwayactivation in malignant progression of rat gliomas induced by transplacentalN-ethyl-N-nitrosourea exposure.Neurochem Res.2009.34(7):1278-88.
    [111] Sato T,Shimoda A,Takahashi T et al.Congenital anaplastic ependymoma: a casereport of familial glioma.Childs Brain.1984.11(5):342-8.
    [112] Sereno M,Aguayo C,Guillen et al.Gastric tumours in hereditary cancersyndromes: clinical features, molecular biology and strategies forprevention.Clin Transl Oncol,2012,13(9):599-610.
    [113] Sun Y J,Yu SZ,Sun CY.Detection of chromosomal DNA imbalance inmedulloblastoma by comparative genomic hybridization.Zhonghua Bing Li XueZa Zhi.2002.39(9):606-10.
    [114] Sanoudou D,Ferguson-Smith M A et al.Analysis of pilocytic astrocytoma bycomparative genomic hybridization.Br J Cancer.2000.82(6):1218-22.
    [115] Sun X,Vengoechea J,Elston,R et l.A variable age of onset segregation model forlinkage analysis,with correction for ascertainment, applied to glioma.CancerEpidemiol Biomarkers Prev.2012.10.1158/1055-9965.EPI-12-0703.
    [116] Sun X,Vengoechea, J,Elston, R et al.A variable age of onset segregation modelfor linkage analysis, with correction for ascertainment, applied to glioma.CancerEpidemiol Biomarkers Prev.2012.10.1158/1055-99.
    [117] Toda M.Glioma antigen.Adv Exp Med Biol.2012;746:77-84.
    [118] Tonn JC, Thon N, Schnell O, Kreth FW.Personalized surgical therapy.AnnOncol.2012Sep;23Suppl10:x28-x32.
    [119] Trainor C, Butterworth KT, et al.Cell survival responses after exposure tomodulated radiation fields.Radiat Res.2012Jan;177(1):44-51. Epub2011Oct26.
    [120] Tirado CA,Chen W,Garcia R et al.Genomic profiling using array comparativegenomic hybridization define distinct subtypes of diffuse large b-cell lymphoma:a review of the literature.Nature genetics.2012.5(1):54.
    [121] Tomida T, et al. The Temporal Pattern of Stimulation Determines the Extentand Duration of MAPK Activation in a Caenorhabditis elegans Sensory Neuron.Sci Signal.2012Oct16;5(246):ra76. doi:10.1126/scisignal.2002983.
    [122] Utsuki S, Oka H, Kijima C,et al.Subependymal giant cell astrocytoma withoncocytic change.Brain Tumor Pathol.2011Feb;28(1):53-7. Epub2011Jan6.
    [123] Uringa E J,Lisaingo K,Pickett H A et al.RTEL1contributes to DNA replicationand repair and telomere maintenance.2012.23(14):2782-92.
    [124] Vranic A.New developments in surgery of malignant gliomas.Radiol Oncol.2011Sep;45(3):159-65. Epub2011Jul20.
    [125] Wiens AL, Cheng L, et al.Polysomy of chromosomes1and/or19is commonand associated with less favorable clinical outcome in oligodendrogliomas:fluorescent in situ hybridization analysis of84consecutive cases.J NeuropatholExp Neurol.2012Jul;71(7):618-24.
    [126]王米渠.中西合璧vs十大癌症看中医如何配合手术放化治疗.2002.
    [127] Wang Y,Wang Z,Joshi B H et al.The tumor suppressor Caliban regulates DNAdamage-induced apoptosis through p53-dependent and-independentactivity.Oncogene.10.1038/onc.2012.395.
    [128] Wiencke J K,Aldape, K,McMillan, A et al.Molecular features of adult gliomaassociated with patient race/ethnicity, age, and a polymorphism inO6-methylguanine-DNA-methyltransferase.Cancer Epidemiol BiomarkersPrev.2012.14(7):1774-83.
    [129] Iafrate A J,Feuk L,Rivera M N.et al.Detection of large-scale variation in thehuman genome.2004.Nat Genet.36(9):949-51.
    [130] Wu X,Sandhu S, Nabi Z et al.Generation of a mouse model for studying the roleof upregulated RTEL1activity in tumorigenesis.2012.21(5):1109-15.
    [131] Takada S,Stark K L,Shea M J,Wnt-3a regulates somite and tailbud formation inthe mouse embryo.Genes Dev.2011.8(2):174-89.
    [132] Ward SJ, Karakoula K, Phipps KP, et al.Cytogenetic analysis of paediatricastrocytoma using comparative genomichybridisation and fluorescence in-situhybridisation.J Neurooncol.2010Jul;98(3):305-18. Epub2010Jan6.
    [133] Wiens AL, Cheng L, et al.Polysomy of chromosomes1and/or19is commonand associated with less favorable clinical outcome in oligodendrogliomas:fluorescent in situ hybridizationanalysis of84consecutive cases.J NeuropatholExp Neurol.2012Jul;71(7):618-24
    [134]武珊珊,刘吉福,王明荣.采用比较基因组杂交方法分析原发性食管癌染色体异常.癌症,2007,26(2):132-136.
    [135]韦建宝,陈利生,高枫.散发性结直肠癌组织中抑癌基因ING1的突变,杂合性缺失及表达.癌症.2005.24(2):141-144.
    [136] Xi R, Hadjipanayis AG,et al.Copy number variation detection in whole-genomesequencing data using the Bayesian information criterion.Proc Natl Acad Sci US A.2011Nov15;108(46):E1128-36. Epub2011Nov7.
    [137]徐忠立,周慕英.中晚期肿瘤治疗观念的转变与治疗近况(续).实用医学杂志.2002,18(8)904-911.
    [138] Xue H,Wu X,Yan P et al.Application of microsatellite DNA in molecularecology and strategies for loci isolation.Ying Yong Sheng Tai XueBao.2005.16(2):38-59.
    [139] Yu Y,Feng J,Zong X e al.Knockdown of vascular endothelial cell growth factorexpression sensitizes U251glioma cells to liposomal paclitaxel and radiationtreatment in vitro.Exp Ther Med.2012.3(2):181-186.
    [140]于耀宇,马廉亭,秦尚振,李安民,脑胶质瘤术后超选介入化疗联合放疗临床分析.中华神经外科疾病研究杂志.2006,2:124-26.
    [141] Yokoyama E,e al.Emergence of enterohemorrhagic Escherichia coli serovarO157strains in clade8with highly similar pulsed-field gel electrophoresispatterns.J Food Prot.2011Aug;74(8):1324-7.
    [142]赵世光.胶质瘤治疗的进展.黑龙江医学.2004.9(3):649-651.
    [143]朱辉雄.神经胶质瘤中微卫星DNA不稳定性研究进展.国外医学.神经病学神经外科学分册.1996.
    [144]张玄,高丽,史锡文.儿童脑胶质瘤53例.实用儿科临床杂志.2008.23(11):831-832.
    [145] Zhou YH, Hess KR, Raj VR, et al. Establishment of prognostic models forastrocytic and oligodendroglial brain tumors with standardized quantification ofmarker gene expression and clinical variables. Biomarker Insights.2010;5:153–168.
    [146] Zong H, Verhaak RG, Canolk P.The cellular origin for malignant glioma andprospects for clinical advancements.Expert Rev Mol Diagn.2012May;12(4):383-94.
    [147] Zaphiropoulos PG.Genetic variations and alternative splicing: the Gliomaassociated oncogene1, GLI1.Front Genet.2012;3:119. Epub2012Jul6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700