肿瘤的多药耐药及新型耐药逆转剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤的多药耐药(multidrug resistance, MDR)是在肿瘤病人接受化疗时常会发生的,经某一种药物诱发,同时对其他多种结构和作用机制完全不同的抗癌药物产生交叉耐药的一种现象。这主要是由于药物外排蛋白P-糖蛋白(P-gp)在肿瘤细胞中过表达导致的。针对P-gp靶点已经开发了很多抑制剂,但是由于诸多的副作用的存在,目前还有没有一个抑制剂能够成功上市。因此设计和开发新型的有选择性的高效低毒的抑制剂依然任重而道远。
     小分子化合物抑制P-gp主要是通过配体受体的结合而产生作用。我们实验室的新型化合物1-(2,6-dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino) propane hydrochloride (phenoprolamine hydrochloride,1416)是P-gp经典抑制剂维拉帕米(verapamil, VER)的结构类似物,并且其钙拮抗的作用弱于VER。我们以VER为阳性对照,对1416的体内外逆转MDR活性进行了研究。MTT实验表明1416能够明显增强硫酸长春碱(vinblastin,VBL)在耐药细胞K562/ADM知KBV中的细胞毒性,而对相应的母本细胞没有影响。流式细胞术,激光共聚焦技术发现1416能增加细胞内P-gp的底物罗丹明123(Rh123)的含量,进一步验证了1416对MDR的调节。体内荷瘤裸鼠模型表明1416在体内对VBL抗肿瘤活性的增强。所以1416是很有应用前景的能够逆转MDR的小分子化合物。
     表观遗传学是在不改变基因序列的前提下对基因表达的调节,并且该调节是可逆的。研究表明肿瘤的多药耐药表型的诱发与表观遗传学的调节有关,我们将白血病细胞株的母本型K562细胞经阿霉素诱导得到K562/ADM细胞,通过RT-PCR和流式细胞术检测了耐药诱导以后的K562/ADM的MDR1基因和P-gp的表达上调,并且MTT实验和Rh123的积累外排实验表明了K562/ADM对P-gp底物的外排增加,验证了MDR表型的成立。随后我们对耐药细胞的表观遗传改变进行了初步探索:发现DNA甲基化在基因组水平和MDR1基因的启动子部位都发生了下调,染色质结构更为松散,小RNA的表达谱也发生了改变,这些发现为肿瘤多药耐药的表观遗传学分子诊断和逆转策略提供了重要的信息。
     随着非编码小RNA成为科学家们研究的热点,越来越多的关于microRNA对MDR1基因的表达调节被报道。我们运用先进的高通量测序(high-throughput sequencing)技术在全基因组(genome-wide)水平上比较了K562细胞和K562/ADM细胞的microRNA表达,结合计算机靶点预测,筛选了具有潜在调节MDR1表达的候选microRNAs,miR-381和miR-495。通过核转染进microRNA的类似物或者抑制剂,改变候选microRNAs的细胞内的水平,发现miR-381或者miR-495的类似物转染能够抑制MDR1/P-gp的表达并进而抑制其对底物的外排功能,证明了候选microRNAs对MDR1的负性调节功能,为逆转肿瘤多药耐药提供了新的思路和可能性。我们还发现了耐药细胞中位于14号染色体上一个microRNA簇全部发生了下调,提示这个染色体区域的不稳定可能与肿瘤多药耐药的形成有关。
Multidrug resistance (MDR) frequently develops in cancer patients exposed to chemotherapeutic agents and is usually accomplished by over-expression of P-glycoprotein (P-gp), a MDR1gene encoded protein. P-gp acts as a drug efflux pump to reduce the intracellular concentration of the drug(s). Inhibiting the transport function of P-gp is an effective way of reversing MDR, against this target, three generations of P-gp inhibitors has been developed but none of them has been successful on the market due to severe side effect. Therefore, it is necessary to develop some agents which can effectively reverse MDR with low or no pharmacology defects.
     1-(2,6-dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino) propane hydrochloride (phenoprolamine hydrochloride,1416) is a new verapamil analogue with a higher IC50for blocking calcium channel currents than verapamil. We examined the inhibition effect of1416on P-gp both in vitro and in vivo.1416significantly enhanced cytotoxicity of vinblastine in P-gp overexpressed human multidrug-resistant K562/ADM and KBV cells, but had no such effect on the parent K562and KB cells. The MDR-modulating function of1416was further confirmed by increasing intracellular Rhodanmine123content in MDR cells. Human K562/ADM xenograft-nude mice model verified that1416potentiate the antitumor activity of vinblastine in vivo. RT-PCR and FACS analysis demonstrated that the expression of MDR1/P-gp was not affected by1416treatment. All these observations suggested that1416would be a promising agent for overcoming MDR in cancer chemotherapy.
     Epigenetics is the study of epigenetic inheritance, a set of reversible heritable changes in gene function or other cell phenotype that occur without a change in DNA sequence (genotype). Many studies have shown that the MDR phenotype is associated with epigenetic regulation. We established a MDR cell line (K562/ADM) from human leukemia cell K562by stepwise increase adriamycine concentration in culture medium and then MDR phenotype (MDR1gene upregulation, P-gp overexpression and increased substrate efflux) was confirmed in K562/ADM as compared to parental K562cells. Thereafter, we investigated the epigenetic variation in K562/ADM cells: DNA methylation level was decreased in whole genome as well as in the promoter region of MDR1; Chromatin structure became more decompacting; Small RNA expression profiles were dysregulated. These findings may help us to discover epigenetic biomarkers for the molecular diagnosis of MDR and may constitute potentially novel targets for therapy.
     Small non-coding RNAs have now become the hot spot in medical research and were reported to paly critical roles in gene regulation. Here we present evidence that microRNAs can regulate the expression of the MDR1gene. Using high-throughput sequencing and bioinformatics prediction, we identified and validated two candidate microRNAs, miR-381and miR-495, that were strongly down-regulated in MDR cell lines. Functional analysis indicated that restoring expression of candidate miRNAs in K562/ADM cells led to reduced expression of MDR1/P-gp and increased drug uptake by the cells. We also discovered a microRNA cluster on a potentially unstable chromosomal region which may have a close relationship to the development of multidrug resistance.
引文
1. Velingkar, V.S. and V.D. Dandekar, Modulation of P-Glycoprotein Mediated Multidrug Resistance (Mdr) in Cancer Using Chemosensitizers. International Journal of Pharma Sciences and Research,2010.1(2):p.104-111.
    2. Szakacs, G, et al., Targeting multidrug resistance in cancer. Nat Rev Drug Discov,2006.5(3):p.219-34.
    3. Gerlach, J.H., et al., Multidrug resistance. Cancer Surv,1986.5(1):p.25-46.
    4. Biedler, J.L. and H. Riehm, Cellular resistance to actinomycin D in Chinese hamster cells in vitro:cross-resistance, radioautographic, and cytogenetic studies. Cancer Res,1970.30(4):p.1174-84.
    5. Dano, K., Cross resistance between vinca alkaloids and anthracyclines in Ehrlich ascites tumor in vivo. Cancer Chemother Rep,1972.56(6):p.701-8.
    6. Juliano, R.L. and V. Ling, A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta, 1976.455(1):p.152-62.
    7. Nobili, S., et al., Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Med Res Rev.
    8. Correnti, M., et al., Expression of the multidrug-resistance (MDR) gene in breast cancer. J Chemother,1995.7(5):p.449-51.
    9. Gillet, J.P. and M.M. Gottesman, Mechanisms of multidrug resistance in cancer. Methods Mol Biol.596:p.47-76.
    10. Perry, R.R., Y. Kang, and B. Greaves, Biochemical characterization of a mitomycin C resistant colon cancer cell line variant. Biochem Pharmacol, 1993.46(11):p.1999-2005.
    11. Schneider, E., Y.H. Hsiang, and L.F. Liu, DNA topoisomerases as anticancer drug targets. Adv Pharmacol,1990.21:p.149-83.
    12. van Brussel, J.P., et al., Identification of multidrug resistance-associated protein 1 and glutathione as multidrug resistance mechanisms in human prostate cancer cells:chemosensitization with leukotriene D4 antagonists and buthionine sulfoximine. BJU Int,2004.93(9):p.1333-8.
    13. Leonard, G.D., T. Fojo, and S.E. Bates, The role of ABC transporters in clinical practice. Oncologist,2003.8(5):p.411-24.
    14. Hu, Y.P. and J. Robert, Inhibition of protein kinase C in multidrug-resistant cells by modulators of multidrug resistance. J Cancer Res Clin Oncol,1997. 123(4):p.201-10.
    15. Han, Y., et al., Expression and function of classical protein kinase C isoenzymes in gastric cancer cell line and its drug-resistant sublines. World J Gastroenterol,2002.8(3):p.441-5.
    16. Baron, J.M., et al., Expression of multiple cytochrome p450 enzymes and multidrug resistance-associated transport proteins in human skin keratinocytes. J Invest Dermatol,2001.116(4):p.541-8.
    17. Liu, Y., et al., GCS induces multidrug resistance by regulating apoptosis-related genes in K562/AO2 cell line. Cancer Chemother Pharmacol. 66(3):p.433-9.
    18. Davies, G.F., B.H. Juurlink, and T.A. Harkness, Troglitazone reverses the multiple drug resistance phenotype in cancer cells. Drug Des Devel Ther, 2009.3:p.79-88.
    19. Zhou, Y., et al., Sorcin, an important gene associated with multidrug-resistance in human leukemia cells. Leuk Res,2006.30(4):p. 469-76.
    20. Chin, K.V., et al., Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science,1992.255(5043):p.459-62.
    21. Endicott, J.A. and V. Ling, The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem,1989.58:p.137-71.
    22. Gottesman, M.M. and I. Pastan, Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem,1993.62:p. 385-427.
    23. Ruetz, S. and P. Gros, A mechanism for P-glycoprotein action in multidrug resistance:are we there yet? Trends Pharmacol Sci,1994.15(7):p.260-3.
    24. van den Heuvel-Eibrink, M.M., P. Sonneveld, and R. Pieters, The prognostic significance of membrane transport-associated multidrug resistance (MDR) proteins in leukemia. Int J Clin Pharmacol Ther,2000.38(3):p.94-110.
    25. Lee, C.H., Reversing agents for ATP-binding cassette drug transporters. Methods Mol Biol,2010.596:p.325-40.
    26. Wu, C.P., A.M. Calcagno, and S.V. Ambudkar, Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells:evaluation of current strategies. Curr Mol Pharmacol,2008.1(2):p.93-105.
    27. Sharom, F.J., The P-glycoprotein efflux pump:how does it transport drugs? J Membr Biol,1997.160(3):p.161-75.
    28. Sharom, F.J., ABC multidrug transporters:structure, function and role in chemoresistance. Pharmacogenomics,2008.9(1):p.105-27.
    29. Eckford, P.D. and F.J. Sharom, ABC efflux pump-based resistance to chemotherapy drugs. Chem Rev,2009.109(7):p.2989-3011.
    30. Hrycyna, C.A., Molecular genetic analysis and biochemical characterization of mammalian P-glycoproteins involved in multidrug resistance. Semin Cell Dev Biol,2001.12(3):p.247-56.
    31. Ambudkar, S.V., et al., P-glycoprotein:from genomics to mechanism. Oncogene,2003.22(47):p.7468-85.
    32. Stouch, T.R. and O. Gudmundsson, Progress in understanding the structure-activity relationships of P-glycoprotein. Adv Drug Deliv Rev,2002. 54(3):p.315-28.
    33. Dantzig, A.H., D.P. de Alwis, and M. Burgess, Considerations in the design and development of transport inhibitors as adjuncts to drug therapy. Adv Drug Deliv Rev,2003.55(1):p.133-50.
    34. Brinkmann, U., Functional polymorphisms of the human multidrug resistance (MDR1) gene:correlation with P glycoprotein expression and activity in vivo. Novartis Found Symp,2002.243:p.207-10; discussion 210-2,231-5.
    35. Kappelmayer, J., M. Udvardy, and P. Antal-Szalmas, Pgp and FLT3: identification and modulation of two proteins that lead to chemotherapy resistance in acute myeloid leukemia. Curr Med Chem,2007.14(5):p.519-30.
    36. Aller, S.G., et al., Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science,2009.323(5922):p.1718-22.
    37. Huls, M, F.G. Russel, and R. Masereeuw, The role of ATP binding cassette transporters in tissue defense and organ regeneration. J Pharmacol Exp Ther, 2009.328(1):p.3-9.
    38. Nooter, K. and H. Herweijer, Multidrug resistance (mdr) genes in human cancer. Br J Cancer,1991.63(5):p.663-9.
    39. Morschhauser, J., et al., The transcription factor Mrrlp controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog,2007.3(11):p. e164.
    40. Chen, G.K., et al., Preferential expression of a mutant allele of the amplified MDR1 (ABCB1) gene in drug-resistant variants of a human sarcoma. Genes Chromosomes Cancer,2002.34(4):p.372-83.
    41. Biedler, J.L., et al., Chromosomal organization of amplified genes in multidrug-resistant Chinese hamster cells. Cancer Res,1988.48(11):p. 3179-87.
    42. Baker, E.K. and A. El-Osta, MDR1, chemotherapy and chromatin remodeling. Cancer Biol Ther,2004.3(9):p.819-24.
    43. Baker, E.K., et al., Epigenetic changes to the MDR1 locus in response to chemotherapeutic drugs. Oncogene,2005.24(54):p.8061-75.
    44. Yague, E., et al., P-glycoprotein (MDR1) expression in leukemic cells is regulated at two distinct steps, mRNA stabilization and translational initiation. J Biol Chem,2003.278(12):p.10344-52.
    45. Humphreys, D.T., et al., MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly (A) tail function. Proc Natl Acad Sci U S A,2005.102(47):p.16961-6.
    46. Sukhai, M. and M. Piquette-Miller, Regulation of the multidrug resistance genes by stress signals. J Pharm Pharm Sci,2000.3(2):p.268-80.
    47. Bartkowiak, D., et al., Radiation-and chemoinduced multidrug resistance in colon carcinoma cells. Strahlenther Onkol,2009.185(12):p.815-20.
    48. Fritz, F., et al., Evidence for altered ion transport in Saccharomyces cerevisiae overexpressing human MDR 1 protein. Biochemistry,1999.38(13):p. 4214-26.
    49. Robinson, L.J., et al., Human MDR 1 protein overexpression delays the apoptotic cascade in Chinese hamster ovary fibroblasts. Biochemistry,1997. 36(37):p.11169-78.
    50. Johnstone, R.W., E. Cretney, and M.J. Smyth, P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood,1999.93(3):p.1075-85.
    51. Tsuruo, T., et al., Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res,1981.41(5):p.1967-72.
    52. Krishna, R. and L.D. Mayer, Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci,2000.11(4):p.265-83.
    53. Ferry, D.R., H. Traunecker, and D.J. Kerr, Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer,1996.32A(6):p.1070-81.
    54. Thomas, H. and H.M. Coley, Overcoming multidrug resistance in cancer:an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control, 2003.10(2):p.159-65.
    55. Sikic, B.I., et al., Modulation and prevention of multidrug resistance by inhibitors of P-glycoprotein. Cancer Chemother Pharmacol,1997.40 Suppl:p. S13-9.
    56. Keller, R.P., et al., SDZ PSC 833, a non-immunosuppressive cyclosporine:its potency in overcoming P-glycoprotein-mediated multidrug resistance of murine leukemia. Int J Cancer,1992.50(4):p.593-7.
    57. Tran, C.D., et al., Investigation of the coordinated functional activities of cytochrome P450 3A4 and P-glycoprotein in limiting the absorption of xenobiotics in Caco-2 cells. J Pharm Sci,2002.91(1):p.117-28.
    58. Yasuda, K., et al., Interaction of cytochrome P450 3A inhibitors with P-glycoprotein. J Pharmacol Exp Ther,2002.303(1):p.323-32.
    59. Fox, E. and S.E. Bates, Tariquidar (XR9576):a P-glycoprotein drug efflux pump inhibitor. Expert Rev Anticancer Ther,2007.7(4):p.447-59.
    60. Mistry, P., et al., In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576. Cancer Res,2001. 61(2):p.749-58.
    61. Shepard, R.L., et al., Modulation of P-glycoprotein but not MRP1-or BCRP-mediated drug resistance by LY335979. Int J Cancer,2003.103(1):p. 121-5.
    62. van Zuylen, L., et al., Disposition of docetaxel in the presence of P-glycoprotein inhibition by intravenous administration of R101933. Eur J Cancer,2002.38(8):p.1090-9.
    63. Mistry, P. and A. Folkes, ONT-093 (Ontogen). Curr Opin Investig Drugs,2002. 3(11):p.1666-71.
    64. Barraud de Lagerie, S., et al., Cerebral uptake of mefloquine enantiomers with and without the P-gp inhibitor elacridar (GF1210918) in mice. Br J Pharmacol,2004.141(7):p.1214-22.
    65. Pusztai, L., et al., Phase Ⅱ study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer,2005.104(4):p.682-91.
    66. Hoover, R.R., et al., Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood,2002.100(3):p.1068-71.
    67. Mahadevan, D. and A.F. List, Targeting the multidrug resistance-1 transporter in AML:molecular regulation and therapeutic strategies. Blood,2004.104(7): p.1940-51.
    68. Fletcher, J.I., et al., ABC transporters in cancer:more than just drug efflux pumps. Nat Rev Cancer,2010.10(2):p.147-56.
    69. Motomura, S., et al., Inhibition of P-glycoprotein and recovery of drug sensitivity of human acute leukemic blast cells by multidrug resistance gene (mdrl) antisense oligonucleotides. Blood,1998.91(9):p.3163-71.
    70. Kang, H., et al., Inhibition of MDR1 gene expression by chimeric HNA antisense oligonucleotides. Nucleic Acids Res,2004.32(14):p.4411-9.
    71. Gao, P., et al., Reversal MDR in breast carcinoma cells by transfection of ribozyme designed according the secondary structure of mdrl mRNA. Chin J Physiol,2006.49(2):p.96-103.
    72. Lu, S., et al., Reversal of multi-drug resistance by vector-based-ShRNA-Mdrl In Vitro and In Vivo. J Huazhong Univ Sci Technolog Med Sci,2009.29(5):p. 620-4.
    73. Stein, U., et al., Complete in vivo reversal of the multidrug resistance phenotype by jet-injection of anti-MDRl short hairpin RNA-encoding plasmid DNA. Mol Ther,2008.16(1):p.178-86.
    74. Sepp-Lorenzino, L. and M. Ruddy, Challenges and opportunities for local and systemic delivery of siRNA and antisense oligonucleotides. Clin Pharmacol Ther,2008.84(5):p.628-32.
    75. Marthinet, E., et al., Modulation of the typical multidrug resistance phenotype by targeting the MED-1 region of human MDR1 promoter. Gene Ther,2000. 7(14):p.1224-33.
    76. Park, S. and C.D. James, Lanthionine synthetase components C-like 2 increases cellular sensitivity to adriamycin by decreasing the expression of P-glycoprotein through a transcription-mediated mechanism. Cancer Res, 2003.63(3):p.723-7.
    77. Xu, D., et al., Selective inhibition of P-glycoprotein expression in multidrug-resistant tumor cells by a designed transcriptional regulator. J Pharmacol Exp Ther,2002.302(3):p.963-71.
    78. Nwankwo, J.O., Significant transcriptional down-regulation of the human MDR1 gene by beta-naphthoflavone:a proposed hypothesis linking potent CYP gene induction to MDR1 inhibition. Med Hypotheses,2007.68(3):p. 661-9.
    79. Jin, S., et al., Ecteinascidin 743, a transcription-targeted chemotherapeutic that inhibits MDR1 activation. Proc Natl Acad Sci U S A,2000.97(12):p. 6775-9.
    80. Tsuruo, T., et al., Inhibition of multidrug-resistant human tumor growth in athymic mice by anti-P-glycoprotein monoclonal antibodies. Jpn J Cancer Res, 1989.80(7):p.627-31.
    81. Watanabe, T., et al., Regression of established tumors expressing P-glycoprotein by combinations of adriamycin, cyclosporin derivatives, and MRK-16 antibodies. J Natl Cancer Inst,1997.89(7):p.512-8.
    82. Goda, K., et al., Complete inhibition of P-glycoprotein by simultaneous treatment with a distinct class of modulators and the UIC2 monoclonal antibody. J Pharmacol Exp Ther,2007.320(1):p.81-8.
    83. Madoulet, C., et al., [Anti-tumor immunotherapy against multidrug resistance]. Ann Pharm Fr,2006.64(2):p.87-96.
    84. Kobayashi, T., et al., Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int J Pharm,2007.329(1-2):p.94-102.
    85. Dong, X. and R.J. Mumper, Nanomedicinal strategies to treat multidrug-resistant tumors:current progress. Nanomedicine (Lond),2010. 5(4):p.597-615.
    86. Ozben, T., Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Lett,2006.580(12):p.2903-9.
    87. Blagosklonny, M.V., Targeting cancer cells by exploiting their resistance. Trends Mol Med,2003.9(7):p.307-12.
    88. Nobili, S., et al., Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Med Res Rev,2011.
    1. Fojo, A.T., et al., Intrinsic drug resistance in human kidney cancer is associated with expression of a human multidrug-resistance gene. J Clin Oncol,1987.5(12):p.1922-7.
    2. Mizuno, N., et al., Impact of drug transporter studies on drug discovery and development. Pharmacol Rev,2003.55(3):p.425-61.
    3. Brinkmann, U., Functional polymorphisms of the human multidrug resistance (MDR1) gene:correlation with P glycoprotein expression and activity in vivo. Novartis Found Symp,2002.243:p.207-10; discussion 210-2,231-5.
    4. Krishna, R. and L.D. Mayer, Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci,2000.11(4):p.265-83.
    5. Tan, B., D. Piwnica-Worms, and L. Ratner, Multidrug resistance transporters and modulation. Curr Opin Oncol,2000.12(5):p.450-8.
    6. Zamora, J.M., H.L. Pearce, and W.T. Beck, Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol Pharmacol,1988.33(4):p.454-62.
    7. Teodori, E., et al., Design, synthesis, and in vitro activity of catamphiphilic reverters of multidrug resistance:discovery of a selective, highly efficacious chemosensitizer with potency in the nanomolar range. J Med Chem,1999. 42(10):p.1687-97.
    8. Ramu, A., et al., Restoration of doxorubicin responsiveness in doxorubicin-resistant P388 murine leukaemia cells. Br J Cancer,1984.50(4): p.501-7.
    9. Ford, J.M. and W.N. Hait, Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev,1990.42(3):p.155-99.
    10. Ford, J.M., et al., Cellular and biochemical characterization of thioxanthenes for reversal of multidrug resistance in human and murine cell lines. Cancer Res,1990.50(6):p.1748-56.
    11. Smith, M.A., et al., Clinically relevant concentrations of verapamil do not enhance the sensitivity of human bone marrow CFU-GM to adriamycin and VP16. Br J Cancer,1988.57(6):p.576-8.
    12. Woodland, C., et al., Verapamil metabolites:potential P-glycoprotein-mediated multidrug resistance reversal agents. Can J Physiol Pharmacol,2003.81(8):p.800-5.
    13. Hu, X.D. and J.Q. Qian, DDPH inhibited L-type calcium current and sodium current in single ventricular myocyte of guinea pig. Acta Pharmacol Sin,2001. 22(5):p.415-9.
    14. Ambudkar, S.V., et al., Relation between the turnover number for vinblastine transport and for vinblastine-stimulated ATP hydrolysis by human P-glycoprotein. J Biol Chem,1997.272(34):p.21160-6.
    15. Perloff, M.D., et al., Rapid assessment of P-glycoprotein inhibition and induction in vitro. Pharm Res,2003.20(8):p.1177-83.
    16. Tsuruo, T., et al., Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine byverapamil. Cancer Res,1981.41(5):p.1967-72.
    17. Jin, J., et al., Reversal of multidrug resistance of cancer through inhibition of P-glycoprotein by 5-bromotetrandrine. Cancer Chemother Pharmacol,2005. 55(2):p.179-88.
    18. Stow, M.W. and J.R. Warr, Amplification and expression of mdr genes and flanking sequences in verapamil hypersensitive hamster cell lines. Biochim Biophys Acta,1991.1092(1):p.7-14.
    19. Hart, S.M., et al., Flow cytometric assessment of multidrug resistance (MDR) phenotype in acute myeloid leukaemia. Leuk Lymphoma,1993.11(3-4):p. 239-48.
    20. Gottesman, M.M. and I. Pastan, Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem,1993.62:p. 385-427.
    1. Cancer multidrug resistance. Nat Biotechnol,2000.18 Suppl:p. IT18-20.
    2. Calcagno, A.M. and S.V. Ambudkar, Molecular mechanisms of drug resistance in single-step and multi-step drug-selected cancer cells. Methods Mol Biol, 2010.596:p.77-93.
    3. Leonard, G.D., T. Fojo, and S.E. Bates, The role of ABC transporters in clinical practice. Oncologist,2003.8(5):p.411-24.
    4. Lozzio, C.B. and B.B. Lozzio, Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood,1975.45(3):p.321-34.
    5. Klein, E., et al., Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer,1976.18(4):p.421-31.
    6. Andersson, L.C., K. Nilsson, and C.G. Gahmberg, K562--a human erythroleukemic cell line. Int J Cancer,1979.23(2):p.143-7.
    7. Lozzio, B.B., et al., A multipotential leukemia cell line (K-562) of human origin. Proc Soc Exp Biol Med,1981.166(4):p.546-50.
    8. Lozzio, B.B. and C.B. Lozzio, Properties and usefulness of the original K-562 human myelogenous leukemia cell line. Leuk Res,1979.3(6):p.363-70.
    9. Yang, L.Y. and J.M. Trujillo, Biological characterization of multidrug-resistant human colon carcinoma sublines induced/selected by two methods. Cancer Res,1990.50(11):p.3218-25.
    10. Yang, C.Z., et al., Multidrug resistance in leukemic cell line K562/A02 induced by doxorubicin. Zhongguo Yao Li Xue Bao,1995.16(4):p.333-7.
    11. Perloff, M.D., et al., Rapid assessment of P-glycoprotein inhibition and induction in vitro. Pharm Res,2003.20(8):p.1177-83.
    12. Marsh, W., D. Sicheri, and M.S. Center, Isolation and characterization of adriamycin-resistant HL-60 cells which are not defective in the initial intracellular accumulation of drug. Cancer Res,1986.46(8):p.4053-7.
    13. Nunez, R., DNA measurement and cell cycle analysis by flow cytometry. Curr Issues Mol Biol,2001.3(3):p.67-70.
    14. Laska, D.A., et al., Characterization and application of a vinblastine-selected CACO-2 cell line for evaluation of p-glycoprotein. In Vitro Cell Dev Biol Anim,2002.38(7):p.401-10.
    15. Longhurst, T.J., et al., The anthracycline resistance-associated (ara) gene, a novel gene associated with multidrug resistance in a human leukaemia cell line. Br J Cancer,1996.74(9):p.1331-5.
    16. St Croix, B., et al., E-Cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27(KIP 1). J Cell Biol,1998.142(2):p. 557-71.
    1. Holliday, R., Epigenetics:a historical overview. Epigenetics,2006.1(2):p. 76-80.
    2. Bernstein, B.E., A. Meissner, and E.S. Lander, The mammalian epigenome. Cell,2007.128(4):p.669-81.
    3. Weber, M., et al., Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet,2007.39(4):p. 457-66.
    4. Berger, S.L., The complex language of chromatin regulation during transcription. Nature,2007.447(7143):p.407-12.
    5. Goldberg, A.D., C.D. Allis, and E. Bernstein, Epigenetics:a landscape takes shape. Cell,2007.128(4):p.635-8.
    6. Jenuwein, T. and C.D. Allis, Translating the histone code. Science,2001. 293(5532):p.1074-80.
    7. Mattick, J.S. and I.V. Makunin, Non-coding RNA. Hum Mol Genet,2006.15 Spec No 1:p. R17-29.
    8. Bird, A., DNA methylation patterns and epigenetic memory. Genes Dev,2002. 16(1):p.6-21.
    9. Goll, M.G. and T.H. Bestor, Eukaryotic cytosine methyltransferases. Annu Rev Biochem,2005.74:p.481-514.
    10. Crews, D. and J.A. McLachlan, Epigenetics, evolution, endocrine disruption, health, and disease. Endocrinology,2006.147(6 Suppl):p. S4-10.
    11. Straussman, R., et al., Developmental programming ofCpG island methylation profiles in the human genome. Nat Struct Mol Biol,2009.16(5):p.564-71.
    12. Ma, D.K., et al., DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle,2009.8(10).
    13. Bestor, T.H., The DNA methyltransf erases of mammals. Hum Mol Genet,2000. 9(16):p.2395-402.
    14. Siedlecki, P. and P. Zielenkiewicz, Mammalian DNA methyltransferases. Acta Biochim Pol,2006.53(2):p.245-56.
    15. Rai, K., et al., DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell,2008.135(7):p.1201-12.
    16. Ma, D.K., et al., Neuronal Activity-Induced Gadd45b Promotes Epigenetic DNA Demethylation and Adult Neurogenesis. Science,2009.323(5917):p. 1074-1077.
    17. Befort, K., et al., Selective up-regulation of the growth arrest DNA damage-inducible gene Gadd45 alpha in sensory and motor neurons after peripheral nerve injury. Eur J Neurosci,2003.18(4):p.911-22.
    18. Zhang, X., et al., Loss of expression of GADD45 gamma, a growth inhibitory gene, in human pituitary adenomas:implications for tumorigenesis. J Clin Endocrinol Metab,2002.87(3):p.1262-7.
    19. Tahiliani, M., et al., Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 2009.324(5929):p.930-5.
    20. Kriaucionis, S. and N. Heintz, The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 2009.324(5929):p.929-30.
    21. Ito, S., et al., Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature,2010.466(7310):p. 1129-33.
    22. Langemeijer, S.M., M.G. Aslanyan, and J.H. Jansen, TET proteins in malignant hematopoiesis. Cell Cycle,2009.8(24):p.4044-8.
    23. Berger, S.L., His tone modifications in transcriptional regulation. Curr Opin Genet Dev,2002.12(2):p.142-8.
    24. Kouzarides, T., Chromatin modifications and their function. Cell,2007.128(4): p.693-705.
    25. Buhler, M. and D. Moazed, Transcription and RNAi in heterochromatic gene silencing. Nat Struct Mol Biol,2007.14(11):p.1041-8.
    26. Mellor, J., P. Dudek, and D. Clynes, A glimpse into the epigenetic landscape of gene regulation. Curr Opin Genet Dev,2008.18(2):p.116-22.
    27. Cao, R. and Y. Zhang, The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev,2004.14(2):p.155-64.
    28. Reik, W., Stability and flexibility of epigenetic gene regulation in mammalian development. Nature,2007.447(7143):p.425-32.
    29. Tchurikov, N.A., Molecular mechanisms of epigenetics. Biochemistry (Mosc), 2005.70(4):p.406-23.
    30. Guttman, M., et al., Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature,2009.458(7235):p. 223-7.
    31. Amaral, P.P. and J.S. Mattick, Noncoding RNA in development. Mamm Genome,2008.19(7-8):p.454-92.
    32. Ghildiyal, M. and P.D. Zamore, Small silencing RNAs:an expanding universe. Nat Rev Genet,2009.10(2):p.94-108.
    33. Bernstein, E. and C.D. Allis, RNA meets chromatin. Genes Dev,2005.19(14): p.1635-55.
    34. Amaral, P.P., et al., The eukaryotic genome as an RNA machine. Science,2008. 319(5871):p.1787-9.
    35. Costa, F.F., Non-coding RNAs, epigenetics and complexity. Gene,2008.410(1): p.9-17.
    36. Bayne, E.H. and R.C. Allshire, RNA-directed transcriptional gene silencing in mammals. Trends Genet,2005.21(7):p.370-3.
    37. Kawasaki, H. and K. Taira, Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature,2004.431(7005):p.211-7.
    38. Morris, K.V., et al., Small interfering RNA-induced transcriptional gene silencing in human cells. Science,2004.305(5688):p.1289-92.
    39. Kawasaki, H., K. Taira, and K.V. Morris, siRNA induced transcriptional gene silencing in mammalian cells. Cell Cycle,2005.4(3):p.442-8.
    40. Moazed, D., Small RNAs in transcriptional gene silencing and genome defence. Nature,2009.457(7228):p.413-20.
    41. Siomi, H. and M.C. Siomi, On the road to reading the RNA-interference code. Nature,2009.457(7228):p.396-404.
    42. Zaratiegui, M., D.V. Irvine, and R.A. Martienssen, Noncoding RNAs and gene silencing. Cell,2007.128(4):p.763-76.
    43. Ponting, C.P., P.L. Oliver, and W. Reik, Evolution and functions of long noncoding RNAs. Cell,2009.136(4):p.629-41.
    44. Liu, B. and J.F. Wendel, Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol,2003.29(3):p.365-79.
    45. Reik, W. and J. Walter, Genomic imprinting:parental influence on the genome. Nat Rev Genet,2001.2(1):p.21-32.
    46. Li, E., C. Beard, and R. Jaenisch, Role for DNA methylation in genomic imprinting. Nature,1993.366(6453):p.362-5.
    47. Bourc'his, D., et al., Dnmt3L and the establishment of maternal genomic imprints. Science,2001.294(5551):p.2536-9.
    48. Lyon, M.F., Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature,1961.190:p.372-3.
    49. Penny, G.D., et al., Requirement for Xist in X chromosome inactivation. Nature, 1996.379(6561):p.131-7.
    50. Kalantry, S., et al., Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature,2009.460(7255):p.647-51.
    51. Chen, Z.J. and C.S. Pikaard, Transcriptional analysis of nucleolar dominance in polyploid plants:biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Natl Acad Sci U S A,1997.94(7): p.3442-7.
    52. Lawrence, R.J., et al., A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol Cell,2004.13(4):p.599-609.
    53. Feuillet, C. and B. Keller, Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot, 2002.89(1):p.3-10.
    54. Zhang, Z. and M.H. Saier, Jr., A novel mechanism of transposon-mediated gene activation. PLoS Genet,2009.5(10):p. e1000689.
    55. Covello, P.S. and M.W. Gray, RNA editing in plant mitochondria. Nature, 1989.341(6243):p.662-6.
    56. Gott, J.M. and R.B. Emeson, Functions and mechanisms of RNA editing. Annu Rev Genet,2000.34:p.499-531.
    57. Esteller, M., Cancer epigenomics:DNA methylomes and histone-modification maps. Nat Rev Genet,2007.8(4):p.286-98.
    58. Sharma, S., T.K. Kelly, and P.A. Jones, Epigenetics in cancer. Carcinogenesis, 2010.31(1):p.27-36.
    59. Goelz, S.E., et al., Hypomethylation of DNA from benign and malignant human colon neoplasms. Science,1985.228(4696):p.187-90.
    60. Gaudet, F., et al., Induction of tumors in mice by genomic hypomethylation. Science,2003.300(5618):p.489-92.
    61. Wilson, A.S., B.E. Power, and P.L. Molloy, DNA hypomethylation and human diseases. Biochim Biophys Acta,2007.1775(1):p.138-62.
    62. Li, M., et al., Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol,2009.27(9):p.858-63.
    63. Kelly, T.K., D.D. De Carvalho, and P.A. Jones, Epigenetic modifications as therapeutic targets. Nature Biotechnology,2010.28:p.10.
    64. Melo, S.A., et al., A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet,2009.41(3):p.365-70.
    65. Saito, Y., et al., Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell,2006.9(6):p.435-43.
    66. Li, B., M. Carey, and J.L. Workman, The role of chromatin during transcription. Cell,2007.128(4):p.707-19.
    67. Karlic, R., et al., Histone modification levels are predictive for gene expression. Proc Natl Acad Sci U S A,2010.107(7):p.2926-31.
    68. Fraga, M.F., et al., Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet,2005.37(4):p. 391-400.
    69. Zhu, P., et al., Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell,2004.5(5):p.455-63.
    70. Ropero, S., et al., A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet,2006.38(5):p.566-9.
    71. Noonan, E.J., et al., miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene,2009.28(14):p.1714-24.
    72. Jones, P.A. and S.B. Baylin, The epigenomics of cancer. Cell,2007.128(4):p. 683-92.
    73. Fouse, S.D. and J.F. Costello, Epigenetics of neurological cancers. Future Oncol,2009.5(10):p.1615-29.
    74. Villeneuve, L.M. and R. Natarajan, The role of epigenetics in the pathology of diabetic complications. Am J Physiol Renal Physiol,2010.299(1):p. F14-25.
    75. Javierre, B.M., et al., Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res,2010. 20(2):p.170-9.
    76. Adcock, I.M., K. Ito, and P.J. Barnes, Histone deacetylation:an important mechanism in inflammatory lung diseases. COPD,2005.2(4):p.445-55.
    77. Egger, G, et al., Epigenetics in human disease and prospects for epigenetic therapy. Nature,2004.429(6990):p.457-63.
    78. Urdinguio, R.G., J.V. Sanchez-Mut, and M. Esteller, Epigenetic mechanisms in neurological diseases:genes, syndromes, and therapies. Lancet Neurol,2009. 8(11):p.1056-72.
    79. Feng, J. and G. Fan, The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int Rev Neurobiol,2009.89:p.67-84.
    80. Falls, J.G., et al., Genomic imprinting:implications for human disease. Am J Pathol,1999.154(3):p.635-47.
    81. Nicholls, R.D., The impact of genomic imprinting for neurobehavioral and developmental disorders. J Clin Invest,2000.105(4):p.413-8.
    82. Andreu, N., et al., Wiskott-Aldrich syndrome in a female with skewed X-chromosome inactivation. Blood Cells Mol Dis,2003.31(3):p.332-7.
    83. Young, J.I. and H.Y. Zoghbi, X-chromosome inactivation patterns are unbalanced and affect the phenotypic outcome in a mouse model of rett syndrome. Am J Hum Genet,2004.74(3):p.511-20.
    84. Labialle, S., et al., Transcriptional regulators of the human multidrug resistance 1 gene:recent views. Biochem Pharmacol,2002.64(5-6):p.943-8.
    85. El-Osta, A., et al., Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation. Mol Cell Biol,2002.22(6):p.1844-57.
    86. Kusaba, H., et al., Association of 5'CpG demethylation and altered chromatin structure in the promoter region with transcriptional activation of the multidrug resistance 1 gene in human cancer cells. Eur J Biochem,1999. 262(3):p.924-32.
    87. Nakayama, M., et al., Hypomethylation status of CpG sites at the promoter region and overexpression of the human MDR1 gene in acute myeloid leukemias. Blood,1998.92(11):p.4296-307.
    88. Baker, E.K., et al., Epigenetic changes to the MDR1 locus in response to chemotherapeutic drugs. Oncogene,2005.24(54):p.8061-75.
    89. Nan, X., et al., Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature,1998.393(6683):p. 386-9.
    90. Fuks, R, et al., The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem,2003.278(6):p.4035-40.
    91. Jackson, J.P., et al., Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature,2002.416(6880):p.556-60.
    92. Tamaru, H. and E.U. Selker, A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature,2001.414(6861):p.277-83.
    93. Sutherland, E., L. Coe, and E.A. Raleigh, McrBC:a multisubunit GTP-dependent restriction endonuclease. J Mol Biol,1992.225(2):p.327-48.
    94. Irizarry, R.A., et al., Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res,2008.18(5):p.780-90.
    95. Hublarova, P., et al., Prediction of human papillomavirus 16 e6 gene expression and cervical intraepithelial neoplasia progression by methylation status. Int J Gynecol Cancer,2009.19(3):p.321-5.
    96. Thu, K.L., et al., Methylated DNA immunoprecipitation. J Vis Exp,2009(23).
    97. Zaret, K., Micrococcal nuclease analysis of chromatin structure. Curr Protoc Mol Biol,2005. Chapter 21:p. Unit 211.
    98. Hauswald, S., et al., Histone deacetylase inhibitors induce a very broad, pleiotropic anticancer drug resistance phenotype in acute myeloid leukemia cells by modulation of multiple ABC transporter genes. Clin Cancer Res,2009. 15(11):p.3705-15.
    99. Huang, C., P. Cao, and Z. Xie, Relation of promoter methylation of mdr-1 gene and his tone acetylation status with multidrug resistance in MCF-7/Adr cells. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2009.34(5):p.369-74.
    1. Mattick, J.S., Non-coding RNAs:the architects of eukaryotic complexity. EMBO Rep,2001.2(11):p.986-91.
    2. Erdmann, V.A., et al., The non-coding RNAs as riboregulators. Nucleic Acids Res,2001.29(1):p.189-93.
    3. Siomi, H. and E. Hara, [Role of non-coding RNAs in genome network]. Tanpakushitsu Kakusan Koso,2004.49(17 Suppl):p.2970-3.
    4. Royo, H. and J. Cavaille, Non-coding RNAs in imprinted gene clusters. Biol Cell,2008.100(3):p.149-66.
    5. Stefani, G. and F.J. Slack, Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol,2008.9(3):p.219-30.
    6. Kaikkonen, M.U., M.T. Lam, and C.K. Glass, Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res,2011.90(3):p.430-40.
    7. Mattick, J.S., et al., RNA regulation of epigenetic processes. Bioessays,2009. 31(1):p.51-9.
    8. Desperately seeking RNAs. Nat Struct Mol Biol,2004.11(9):p.799.
    9. Kawasaki, H., K. Taira, and K.V. Morris, siRNA induced transcriptional gene silencing in mammalian cells. Cell Cycle,2005.4(3):p.442-8.
    10. Aravin, A.A. and D. Bourc'his, Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes Dev,2008.22(8):p.970-5.
    11. Bernstein, E., et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001.409(6818):p.363-6.
    12. Elbashir, S.M., W. Lendeckel, and T. Tuschl, RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev,2001.15(2):p.188-200.
    13. Zamore, P.D., et al., RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell,2000.101(1):p. 25-33.
    14. Han, J., D. Kim, and K.V. Morris, Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc Natl Acad Sci U S A,2007.104(30):p.12422-7.
    15. Morris, K.V., et al., Small interfering RNA-induced transcriptional gene silencing in human cells. Science,2004.305(5688):p.1289-92.
    16. He, L. and G.J. Hannon, MicroRNAs:small RNAs with a big role in gene regulation. Nat Rev Genet,2004.5(7):p.522-31.
    17. Kim, V.N., MicroRNA biogenesis:coordinated cropping and dicing. Nat Rev Mol Cell Biol,2005.6(5):p.376-85.
    18. Sun, B.K. and H. Tsao, Small RNAs in development and disease. J Am Acad Dermatol,2008.59(5):p.725-37; quiz 738-40.
    19. Lim, L.P., et al., Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature,2005.433(7027):p. 769-73.
    20. Rajewsky, N., microRNA target predictions in animals. Nat Genet,2006.38 Suppl:p. S8-13.
    21. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell,2005.120(1):p.15-20.
    22. Czauderna, P., et al., Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic Acids Res,2003.31(21):p. e127.
    23. Vlassov, A.V., et al., shRNAs targeting hepatitis C:effects of sequence and structural features, and comparision with siRNA. Oligonucleotides,2007. 17(2):p.223-36.
    24. Zeng, Y., X. Cai, and B.R. Cullen, Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol,2005.392:p.371-80.
    25. Yi, R., et al., Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. Rna,2005.11(2):p.220-6.
    26. Lau, N.C., et al., Characterization of the piRNA complex from rat testes. Science,2006.313(5785):p.363-7.
    27. Kim, V.N., Small RNAs just got bigger:Piwi-inter acting RNAs (piRNAs) in mammalian testes. Genes Dev,2006.20(15):p.1993-7.
    28. Girard, A., et al., A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature,2006.442(7099):p.199-202.
    29. Grivna, S.T., et al., A novel class of small RNAs in mouse spermatogenic cells. Genes Dev,2006.20(13):p.1709-14.
    30. Lin, H.,piRNAs in the germ line. Science,2007.316(5823):p.397.
    31. Aravin, A.A., et al., A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell,2008.31(6):p.785-99.
    32. Bourc'his, D. and T.H. Bestor, Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature,2004.431(7004):p. 96-9.
    33. Carmell, M.A., et al., MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell,2007.12(4):p.503-14.
    34. Aravin, A.A., et al., Developmentally regulated piRNA clusters implicate MILI in transposon control Science,2007.316(5825):p.744-7.
    35. Kuramochi-Miyagawa, S., et al., DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev,2008.22(7):p.908-17.
    36. Maxwell, E.S. and M.J. Fournier, The small nucleolar RNAs. Annu Rev Biochem,1995.64:p.897-934.
    37. Smith, C.M. and J.A. Steitz, Sno storm in the nucleolus:new roles for myriad small RNPs. Cell,1997.89(5):p.669-72.
    38. Bachellerie, J.P., J. Cavaille, and A. Huttenhofer, The expanding snoRNA world. Biochimie,2002.84(8):p.775-90.
    39. Sahoo, T., et al., Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet,2008.40(6):p. 719-21.
    40. Cavaille, J., et al., Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. Hum Mol Genet,2002.11(13):p. 1527-38.
    41. Nakatani, J., et al., Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell,2009.137(7):p. 1235-46.
    42. Bolton, P.F., et al., Chromosome 15q11-13 abnormalities and other medical conditions in individuals with autism spectrum disorders. Psychiatr Genet, 2004.14(3):p.131-7.
    43. Ender, C, et al., A human snoRNA with microRNA-like functions. Mol Cell, 2008.32(4):p.519-28.
    44. Zhu, H., et al., Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol, 2008.76(5):p.582-8.
    45. Miller, T.E., et al., MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem,2008.283(44):p.29897-903.
    46. Kovalchuk, O., et al., Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Molecular Cancer Therapeutics,2008.7(7):p.2152-2159.
    47. Xin, F., et al., Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics,2009.25(4):p.430-4.
    48. Xia, L., et al., miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer,2008.123(2):p. 372-9.
    49. Lu, C., B.C. Meyers, and P.J. Green, Construction of small RNA cDNA libraries for deep sequencing. Methods,2007.43(2):p.110-7.
    50. Varkonyi-Gasic, E. and R.P. Hellens, Quantitative stem-loop RT-PCR for detection of microRNAs. Methods Mol Biol,2011.744:p.145-57.
    51. Chen, C., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research,2005.33(20):p. e179.
    52. Kim, V.N., Small RNAs:classification, biogenesis, and function. Mol Cells, 2005.19(1):p.1-15.
    53. Lee, Y., et al., The nuclear RNase Ⅲ Drosha initiates microRNA processing. Nature,2003.425(6956):p.415-419.
    54. Hutvagner, G., et al., A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science,2001. 293(5531):p.834-8.
    55. Suzuki, H., et al., The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet,2009.41(5): p.553-62.
    56. John, B., et al., Human MicroRNA targets. PLoS Biol,2004.2(11):p. e363.
    57. Zhu, H., et al., Role of MicroRNA miR-27a and miR-451 in the regulation of MDRl/P-glycoprotein expression in human cancer cells. Biochemical Pharmacology,2008.76(5):p.582-588.
    58. Pogribny, I.P., et al., Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int J Cancer.127(8):p.1785-94.
    59. Calin, G.A., et al., Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences,2002.99(24):p. 15524-15529.
    60. Bakhshi, A., et al., Cloning the chromosomal breakpoint of t(14;18) human lymphomas:clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell,1985.41(3):p.899-906.
    61. Kamada, N., et al., Chromosome abnormalities in adult T-cell leukemia/lymphoma:a karyotype review committee report. Cancer Res,1992. 52(6):p.1481-93.
    62. Su, X.-Y., et al., HOX11L2/TLX3 is transcriptionally activated through T-cell regulatory elements downstream of BCL11B as a result of the t(5;14)(q35;q32). Blood,2006.108(13):p.4198-4201.
    63. Egger, G., et al., Epigenetics in human disease and prospects for epigenetic therapy. Nature,2004.429(6990):p.457-63.
    64. Gatlik-Landwojtowicz, E., P. Aanismaa, and A. Seelig, Quantification and Characterization of P-Glycoprotein-Substrate Interactions. Biochemistry, 2006.45(9):p.3020-3032.
    65. Akinc, A., et al., A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol,2008.26(5):p.561-9.
    66. Song, E., et al., Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol,2005.23(6):p.709-17.
    67. Yang, X., et al., Transferrin receptor-targeted lipid nanoparticles for delivery of an antisense oligodeoxyribonucleotide against Bcl-2. Mol Pharm,2009. 6(1):p.221-30.
    68. Poy, M.N., et al., A pancreatic islet-specific microRNA regulates insulin secretion. Nature,2004.432(7014):p.226-30.
    69. Trajkovski, M., et al., MicroRNAs 103 and 107 regulate insulin sensitivity. Nature,2011.474(7353):p.649-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700