Shkbp1等几种基因工程小鼠纯合品系的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:
     当前,利用遗传工程方法制作人类疾病的基因工程小鼠已成为研究人类重大疾病(包括传染病、肿瘤、心血管疾病、代谢性疾病、老年性疾病、精神性疾病及遗传病等)的重要方法和手段。与普通实验小鼠相比,基因工程小鼠具有无法比拟的巨大优势,它能够模拟人类疾病在体内的自然发生过程,更有利于临床治疗研究和药物开发,同时它又能够将疾病的机理研究推进到分子水平,更有利于新的药物靶点的发现。
     用基因工程小鼠与自发疾病小鼠模型杂交,来研究目的基因在疾病中的作用,是目前人类重大疾病功能基因研究中最先进的技术。为了更准确的研究上述基因在炎症、肿瘤等疾病中的功能,充分利用基因工程小鼠模型在生命科学研究的巨大优势,本实验室依据研究方向构建了4种基因工程小鼠,分别是Shkbp1基因剔除小鼠,SGTa基因剔除小鼠,pVA-hCD2-Nef基因剔除小鼠和胰岛过表达Slit2蛋白的Rip-hSlit2小鼠,并用遗传学方法获得具有稳定遗传背景的纯合子小鼠,希望通过与ApoE KO, Rip1-Tag2, ApcMin, TRAMP和MMTV-PvMT等疾病小鼠杂交,发现相关基因在炎症、肿瘤和血管疾病中的作用。
     方法:
     1基因工程小鼠的饲养
     各品系基因工程小鼠饲养于SPF级环境下,根据需要进行配种,将哺乳期结束的幼鼠及时分笼,为纯合子小鼠的筛选做好准备。
     2稳定遗传的基因工程小鼠品系的建立与纯合子的筛选采用经典遗传学中的孟德尔定律将转基因小鼠进行一定方式的交配,结合PCR方法检测目的基因。
     3 Shkbp1基因对小鼠肿瘤生长的影响
     利用Shkbp1基因剔除纯合子小鼠为实验组,野生型129小鼠作为对照组,建立B16黑色素瘤皮下移植瘤模型,通过测量肿瘤体积、肿瘤重量,初步探讨Shkbp1敲除后对小鼠肿瘤生长和转移的影响。
     结果:
     1通过129小鼠与F2代阳性小鼠测交,检测子代小鼠的基因型,筛选出1只雄性、3只雌性Shkbp1小鼠,其子代基因鉴定结果阳性率为100%;筛选出2只雄性、1只雌性SGTa小鼠,其子代基因鉴定结果阳性率为100%; pVA-hCD2-Nef小鼠,Rip-hSlit2小鼠筛选仍在进行中。
     2 Shkbp1敲除对小鼠B16皮下移植瘤具有抑制趋势,但是统计结果没有显著性差异。
     结论
     1成功构建了Shkbp1基因剔除的纯合子小鼠,并初步验证了Shkbp1基因在肿瘤生长和转移中的作用
     2成功构建了SGTa基因的纯合子小鼠模型。获得了F2代pVA-hCD2-Nef小鼠和F1代Rip-hSlit2小鼠。
Background & Objective
     Currently, genetically engineered mice of human diseases model produced in genetic engineering have become an important method and means to study human diseases (including communicable diseases, cancer, cardiovascular diseases, metabolic diseases, age-related diseases, mental diseases and genetic diseases etc.). Compared with normal mice, genetically engineered mice have the un-compared dominance that can simulate the naturally occurring process of human disease in vivo and is more conducive to clinical research and pharmaprojects. It also can carry on studying the mechanism of the disease to the molecular level and is more conducive to the discovery of new drug targets.
     Crossing genetically engineered mice with spontaneous disease mouse model to study the role of genes in disease, is the most advanced technology used to study the functional genes of human major diseases. In order to study the functions of refered genes in inflammation, cancer and other diseases more accurately, make full use of the great advantages of genetically engineered mouse models in life science research, four strains of genetically engineered mice were constructed by our laboratory, Shkbp1 knockout mice, SGTαknockout mouse, nef1 knockout mouse and overexpression of Slit2 protein Rip-hSlit2 pancreatic mice respectively. Genetic methods were used to obtain a stable genetic background homozygous mice, hopefully to find the roles of other genes related to inflammation, cancer and the role of vascular disease by crossing to ApoE KO, Rip1-Tag2, ApcMin, TRAMP and MMTV-PvMT mice and other diseased mice model.
     Method
     1 Breeding genetic engineering mice
     Genetically engineered mice were housed in SPF-class environment, according to the need for breeding, allocating mice timely after lactation, to make preparation for the screening of homozygous mice.
     2 The establishment of stable genetically engineered mice and screening of homozygous
     Applied classic Mendelian laws in genetics to breed the transgenic mice, and combined with PCR to detect the target genes.
     3 Shkbp1 gene on tumor growth
     Making Shkbp1 homozygous knockout mice as the experimental group, wild-type 129 mice as the control group to establish subcutaneous B16 melanoma tumor model Measuring the tumor volume, tumor weight,to further investigate the effect of Shkbp1 knockout mice on tumor growth and metastasis.
     Results
     1 129 generation mice cross with F2 positive mice to detect the genotypes of their offspring. when one male and three female Shkbp1 mice have been selected, the offspring gene identification results was 100%; when two male and one female SGTαmice have been selected, the offspring gene identification results was 100%; when one male and one female pVA-hCD2-Nef in mice have been selected, the offspring gene identification result was 100 %. Rip-hSlit2 mouse filter is still in progress.
     2 Shkbp1 in subcutaneous tumor and metastatic tumor mice model (the results are in statistics)
     Conclusion
     1 Shkbp1 homozygous knockout mice were successfully constructed, and it is verified the effect of Shkbp1 gene in tumor growth and preliminary metastasis.
     2 SGTa homozygous knockout mice were successfully constructed. Generation F2 pVA-hCD2-Nef and generation F1 Rip-hSlit2 TG mice were constructed.
引文
[1] Blake JA, Richardson JE, Bult CJ, et al. MGD: the Mouse Genome Database . Nucl Acids Res, 2003, 31(1): 193-195.
    [2] Bult CJ, Blake JA, Richardson JE, et al. The Mouse Genome Database (MGD): integrating biology with the genome. Nucl Acids Res, 2004, 32: D476-D481.
    [3] Waterston RH, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the mouse genome . Nature, 2002, 420(6915): 520-562.
    [4] Gitton Y, Dahmane N, Baik S, et al. A gene expression map of human chromosome 21 orthologues in the mouse. Nature, 2002, 420(6915):586-590.
    [5] Dragani TA. 10 years of mouse cancer modifier loci: human relevance. Cancer Res, 2003, 63(12): 3011-3018.
    [6] Silver LM. Mouse Genetics. Oxford: Oxford University Press, 1995:17-19.
    [7] Gordon JW, Scangos GA, Plotkin DJ, et al. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA, 1980, 77(12): 7380-7384.
    [8] Koller BH, Hagemann LJ, Doetschman T, et al. Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells . Proc Natl Acad Sci USA, 1989, 86(22): 8927-8931.
    [9] Wakayama T, Perry AC, Zuccotti M, et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 1998, 394(6691): 369-374.
    [10] Tiscornia G, Singer O, Ikawa M, et al. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA, 2003, 100(4): 1844-1848.
    [11] Naf D, Krupke DM, Sundberg JP, et al. The mouse Tumor Biology Database: a public resource for cancer genetics and pathology of the mouse. Cancer Res, 2002, 62(5):1235-1240.
    [12] Macleod KF,Jacks T. Insights into cancer from transgenic mouse models. J Pathol, 1999, 187(1): 43-60.
    [13] Marx J. Building better mouse models for studying cancer. Science, 2003, 299(5615):1972-1975.
    [14] Van Dyke T, Jacks T. Cancer modeling in the modern era: progress and challenges. Cell, 2002, 108(2): 135-144.
    [15] Tuveson DA, Jacks T. Technologically advanced cancer modeling in mice. Curr Opin Genet Dev, 2002, 12(1): 105-110.
    [16] Storer RD,French JE,Donehower LA, et al. Transgenic tumor models for carcinogen identification : the heterozygous Trp53-deficient and RasH2 mouse lines. Mutat Res,2003,540:165-176.
    [17] Zhou ZQ, Manguino D, Kewitt K, et al. Spontaneous hepatocellular carcinoma is reduced in transgenic mice overexpressing human O6-methyguanine-DNA methytransferase. Proc. Natl Acad Sci USA, 2001, 98(22): 12566-12571.
    [18] Baron U, Bujard H.Tet repressor-based system for regulated gene expression in eukaryotic cell: Principles and advances. Methods Enzymol, 2000, 327: 401-421.
    [19] Chin L, Tam A, Ponerantz J, et al.Essential role for oncogenic Ras in tumor maintenance. Nature, 1999, 400: 468-472.
    [20] Felsher DW, Bishop JM. Reversible tumorigenesis by Myc in hematopoie lineages. Mol Cell, 1999, 4: 199-207.
    [21] Huettner CS, Zhang P, Van Etten RA,et al. Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet, 2000, 24: 57-60.
    [22] LaMont JT, O’Gorman TA.Experimental colon cancer.Gastroenterology, 1978, 75: 1157-1169.
    [23]胡以平,曾溢滔.后基因组时代的基因工程小鼠.第二军医大学学报,2003,24(2):117-119
    [24]施新猷.现代遗传实验动物学,人民军医出版社, 2000:570-571
    [25] Kristiansen G, Schluns K, Yongwei Y, et al.CD24 is an independent prognostic marker of survival in nonsmall cell lung cancer.Br J Cancer, 2003, 88(2):231-6.
    [1]徐立春,陈牧,孙振华等.莲必治对肿瘤细胞直接杀伤与协同作用的研究.中国实用临床医药学,成都:四川科技出版社,1999:457.
    [2]孙振华.莲必治促进人淋巴细胞生长的实验研究.中国现代实用医药,成都:成都科技大学出版社,1999:108.
    [3]王新杨,徐浩,吴晓明,黄文龙,周金培.异穿心莲内酯衍生物的合成及其抗肿瘤活性.中国药学大学学报,2005,36:504.
    [4] Rajagopal S,Kumar RA, Deevi DS, Satyanarayana C, Rajagopalan R. Andrographolide, a potential cancer therapeutic agent isolated from andrographis paniculata.J Exp Ther Oncol, 2003, 3:147.
    [5] Kim TG, Hwi KK, Hung CS.Morphological and biochemical changes of andrographolide-induced cell death in human prostatic adenocarcinoma PC-3 cells.In Vivo,2005,19:551.
    [6] Kumar RA, Sridevi K, Nanduri S, et al. Anticancer and immunostimulatory compounds from andrographis paniculata.BMC Cancer, 2004, 18:26.
    [7] Matsuda T, Kuroyangagi M, Sugigama S,et al.Cell differentiation inducing diterpenes from andrographis paniculata Nees.Chem Pharm Bull,1994,42:1216.
    [8]孙振华,陈振林,徐立春,王山喜,王树槐.莲必治并用生物、化学疗法抑制体内肿瘤生长的实验研究.浙江中西医结合杂志,2001,11:88.
    [9] Sheeja K, Kuttan G. Ameliorating effects of Andrographis paniculata extract against cyclophosphamide-induced toxicity in mice. Asian Pac J Cancer Prev,2006,7:609
    [10] Sheeja K, Guruvayoorappan C, Kuttan G. Antiangiogenic activity of Andrographis paniculata extract and andrographolide. Int Immunopharmacol, 2007, 7:211.
    [11] Jiang C G, Li J B, Liu F R, et al. Andrographolide inhibits the adhesion of gastric cancer cells to endothelial cells by blocking E-selectin expression. Anticancer Res, 2007, 27:2439.
    [12] Verma N, Vinayak M. Antioxidant action of Andrographis paniculata on lymphoma. Mol Biol Rep, 2008, 35:535.
    [13] Yang L, Wu D, Luo K, et al.Andrographolide enhances 5-fluorouracil-induced apoptosis viacaspase-8-dependent mitochondrial pathway involving p53 participation in hepatocellular carcinoma (SMMC-7721) cells. Cancer Lett, 2009, 276:180.
    [14] Xia Y F, Ye B Q, Li Y D. et al. Andrographolide attenuates inflammation by inhibition of NF-kappa B activation through covalent modification of reduced cysteine 62 of p50. J Immunol, 2004, 6: 4207.
    [15]葛迎春,李晨燕,任慧君,等.人参皂甙Rh2注射液对荷肝癌(H22)小鼠免疫功能的影响.特产研究,2002,24(3):4-7.
    [16] Zhou DB, Hu CP, Liang S, et al. Effect of ginsenoside Rh2on immunocompetence of alveolar macrophages in patientswith non-small cell lung cancer. Zhong Nan Da Xue XueBao Yi Xue Ban.2007,32(5):868-872.
    [17]吴歌,杨世杰.人参皂苷单体Rh2对小鼠前胃癌MFC细胞的增殖抑制作用.吉林大学学报(医学版),2008,34(1):101-104.
    [18]陶丽华,刘红岩,韩锐.人参皂苷Rh2抗B16-BL6黑色素瘤转移的作用[J].辽宁中医杂志,2006,33(11):1505-1506.
    [19] Wang Z, Zheng Q, Liu K, et al. Ginsenoside Rh2 enhancesantitumour activity and decreases genotoxic effect of cyclophosphamide. Basic Clin Pharmacol Toxicol,2006,98(4):411-415.
    [20]焦玉莲,王强修,李建峰,等.人参皂苷Rh增强紫杉醇诱导Hela细胞的凋亡.中华肿瘤防治杂志2006,13(21):623-1626.
    [1] Ullrich, A., et al., Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature, 1984. 309(5967): p. 418-25.
    [2] Coussens, L., et al., Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science, 1985. 230(4730): p. 1132-9.
    [3] Kraus, M.H., et al., Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci U S A, 1989. 86(23): p. 9193-7.
    [4] Thorne, B.A. and G.D. Plowman, The heparin-binding domain of amphiregulin necessitates the precursor pro-region for growth factor secretion. Mol Cell Biol, 1994. 14(3): p. 1635-46.
    [5] Ullrich, A. and J. Schlessinger, Signal transduction by receptors with tyrosine kinase activity. Cell, 1990. 61(2): p. 203-12.
    [6] Heldin, C.H., Dimerization of cell surface receptors in signal transduction. Cell, 1995. 80(2):p. 213-23.
    [7] Alroy, I. and Y. Yarden, The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett, 1997. 410(1): p. 83-6.
    [8] Scaltriti, M. and J. Baselga, The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res, 2006. 12(18): p. 5268-72.
    [9] Hynes, N.E. and H.A. Lane, ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer, 2005. 5(5): p. 341-54.
    [10] Lenferink, A.E., et al., Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J, 1998. 17(12): p. 3385-97.
    [11] Blume-Jensen, P. and T. Hunter, Oncogenic kinase signalling. Nature, 2001. 411(6835): p. 355-65.
    [12] Zhang, D., et al., Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4. Proc Natl Acad Sci U S A, 1997. 94(18): p. 9562-7.
    [13] Harari, D., et al., Neuregulin-4: a novel growth factor that acts through the ErbB-4 receptor tyrosine kinase. Oncogene, 1999. 18(17): p. 2681-9.
    [14] Bjorge, J.D., et al., Activated type I phosphatidylinositol kinase is associated with the epidermal growth factor (EGF) receptor following EGF stimulation. Proc Natl Acad Sci U S A, 1990. 87(10): p. 3816-20.
    [15] Wilde, A., et al., EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell, 1999. 96(5): p. 677-87.
    [16] Grant, S., L. Qiao, and P. Dent, Roles of ERBB family receptor tyrosine kinases, and downstream signaling pathways, in the control of cell growth and survival. Front Biosci, 2002. 7: p. d376-89.
    [17] Miyamoto, S., et al., Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol, 1996. 135(6 Pt 1): p. 1633-42.
    [18] Sieg, D.J., et al., FAK integrates growth-factor and integrin signals to promote cell migration.Nat Cell Biol, 2000. 2(5): p. 249-56.
    [19] Zwick, E., C. Wallasch, and A. Ullrich, HER2/neu: a target for breast cancer therapy. Breast Dis, 2000. 11: p. 7-18.
    [20] Rachid, Z., et al., Design and synthesis of new stabilized combi-triazenes for targeting solid tumors expressing the epidermal growth factor receptor (EGFR) or its closest homologue HER2. Bioorg Med Chem Lett, 2009. 19(18): p. 5505-9.
    [21] Rocha-Lima, C.M., et al., EGFR targeting of solid tumors. Cancer Control, 2007. 14(3): p. 295-304.
    [22] Kim, Y.T., S.W. Park, and J.W. Kim, Correlation between expression of EGFR and the prognosis of patients with cervical carcinoma. Gynecol Oncol, 2002. 87(1): p. 84-9.
    [23] Ekstrand, A.J., et al., Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci U S A, 1992. 89(10): p. 4309-13.
    [24] Garcia de Palazzo, I.E., et al., Expression of mutated epidermal growth factor receptor by non-small cell lung carcinomas. Cancer Res, 1993. 53(14): p. 3217-20.
    [25] Lorimer, I.A., et al., Immunotoxins that target an oncogenic mutant epidermal growth factor receptor expressed in human tumors. Clin Cancer Res, 1995. 1(8): p. 859-64.
    [26] Moscatello, D.K., et al., Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res, 1995. 55(23): p. 5536-9.
    [27] Papewalis, J., A. Nikitin, and M.F. Rajewsky, G to A polymorphism at amino acid codon 655 of the human erbB-2/HER2 gene. Nucleic Acids Res, 1991. 19(19): p. 5452.
    [28] Xie, D., et al., Population-based, case-control study of HER2 genetic polymorphism and breast cancer risk. J Natl Cancer Inst, 2000. 92(5): p. 412-7.
    [29] Seth, D., et al., Complex post-transcriptional regulation of EGF-receptor expression by EGF and TGF-alpha in human prostate cancer cells. Br J Cancer, 1999. 80(5-6): p. 657-69.
    [30] Umekita, Y., et al., Co-expression of epidermal growth factor receptor and transforming growth factor-alpha predicts worse prognosis in breast-cancer patients. Int J Cancer, 2000. 89(6): p. 484-7.
    [31] Hsieh, E.T., F.A. Shepherd, and M.S. Tsao, Co-expression of epidermal growth factor receptorand transforming growth factor-alpha is independent of ras mutations in lung adenocarcinoma. Lung Cancer, 2000. 29(2): p. 151-7.
    [32] Lee-Hoeflich, S.T., et al., A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res, 2008. 68(14): p. 5878-87.
    [33] Yang, X.D., et al., Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol, 2001. 38(1): p. 17-23.
    [34] Zhang, D., et al., Activity of lapatinib is independent of EGFR expression level in HER2-overexpressing breast cancer cells. Mol Cancer Ther, 2008. 7(7): p. 1846-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700