植物转录因子基因OsHOX12、OsHOX14和ABS2的克隆及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物中特有的同源异型域-亮氨酸拉链(Homeodomain-leucine-zipper,HD-Zip)转录因子具有由60或61个氨基酸残基组成的高度保守的同源异型域(HD结构域),其HD羧基末端与亮氨酸拉链(LZ)紧密相连。HD-Zip转录因子包含多个成员,在高等植物的生长、发育、形态建成,以及生物和非生物胁迫等逆境应答中起着重要的调控作用。大麦中的Vrs1基因编码一个HD-Zip I类蛋白,与大麦的六棱穗状花序有关。在二棱大麦中Vrs1参与侧部小穗的发育,其表达仅限于发育未成熟的侧部小穗原基中,Vrs1功能缺失突变导致二棱大麦未发育的侧部小穗表现出发育丰满多产的表型。序列比对结果表明水稻中的OsHOX12和OsHOX14与Vrs1的同源性较高。本研究的第一部分研究内容是从水稻数据库中搜索得到与Vrs1同源的HD-Zip I基因OsHOX12和OsHOX14。我们克隆得到这两个基因,并对其进行功能分析、表达模式分析、亚细胞定位分析及目标基因与DNA特异结合等方面进行研究,以期明确这2个基因在水稻生长发育过程中的功能。
     花瓣的发育主要与A类基因(AP1, AP2)、B类基因(AP3, PI)和E类基因(SEP)有关,其它一些基因(如PTL, RBE)等参与花瓣的发育。花瓣发育机理的研究具有重要的理论意义和广泛的应用前景。拟南芥花瓣发育突变体是研究花瓣发育分子机理的理想材料。本研究第二部分的研究工作是在前期利用激活标签载体pSKI015诱变的拟南芥突变体库中,筛选到一个拟南芥叶片发育突变体(abs2-1D)。通过对T-DNA插入位点的鉴定和分析,发现突变体的表型是由于At2g36080的表达量升高导致的,因此我们克隆得到ABS2基因,并对ABS2基因进行生物信息学分析、功能分析、组织表达分析及亚细胞定位等研究,以探索ABS2在拟南芥花瓣发育过程中的功能。
     通过上述两部分研究,获得了如下结果:
     (1)利用RT-PCR方法从水稻中分别得到HD-Zip转录因子家族成员OsHOX12及OsHOX14全长cDNA,序列分析和进化分析结果表明:OsHOX12和OsHOX14基因序列与大麦Vrs1基因序列同源,均属于HD-Zip家族的第一类基因,其编码蛋白都具有高度保守的HD结构域,OsHOX12和OsHOX14与Vrs1同属于一个亚类,在进化上亲缘关系较近,其中OsHOX14与Vrs1的同源性更高。
     (2)分别构建OsHOX12和OsHOX14的过表达载体,转化水稻与拟南芥并获得转基因植株。从DNA和RNA水平进行分子生物学检验以及遗传分析。结果表明,过表达的转基因植株均表现出生长受到抑制的表型。OsHOX12过表达植株出现分生组织上移,结实率降低等表型;转OsHOX12基因拟南芥表现为植株矮化,不能正常结实的表型;与OsHOX12过表达转基因水稻植株相比,OsHOX14过表达植株表型更为强烈,转基因植株出现包穗现象,不能结实。进一步的组织切片分析结果表明转基因植株的叶鞘和野生型有明显区别。
     (3)T-DNA插入失活突变体的研究表明,水稻oshox12突变体的表型与野生型相比,无明显变化;水稻oshox14突变体表现为成熟期提前等表型。
     (4)构建了OsHOX12和OsHOX14启动子与GUS基因的融合载体并转化水稻。GUS染色结果表明,pOsHOX12::GUS主要在成熟植株花药、内桴和颖壳中强烈表达;pOsHOX14::GUS主要在生殖器官,如花药、雌蕊等器官表达。
     (5)半定量RT-PCR组织特异性表达分析结果表明,OsHOX12和OsHOX14主要在开花后10天和15天的穗子中表达,在根和茎中也有表达。
     (6)亚细胞定位结果表明,OsHOX12和OsHOX14蛋白均定位于细胞核,符合转录因子的特性。
     (7)酵母单杂交和原生质体瞬时转化的结果表明,OsHOX12和OsHOX14蛋白均能与HD-Zip型转录因子的顺式作用元件DNA序列AH1(CAAT(A/T)ATTG)结合。
     (8)序列分析发现ABS2编码一个拟南芥B3家族转录因子,进化分析表明ABS2属于RAV亚家族,与参与拟南芥花器官发育的NGA基因亲缘关系较近。
     (9)构建了pBI111L::ABS2的过表达载体,转基因植物出现了与abs2-1D突变体类似的表型,并发现ABS2的过量表达导致植物花瓣缺失。
     (10)筛选获得了abs2T-DNA插入失活纯合突变体,突变体与野生型相比,表型上无明显变化。
     (11)不同组织半定量RT-PCR结果表明,ABS2在花中的表达量最高;其次是果荚和根,在其它组织中不表达。
     (12)亚细胞定位结果表明,ABS2蛋白定位于细胞核。
     (13)构建了pABS2::GUS融合载体,获得了转基因植物。
The plant specific HD-Zip transcription factors include a conserved60or61amino acidsequence, known as the homeodomain (HD) motif, and a Zip motif that is immediatelyadjacent to the C-terminus of the HD motif. The HD-Zip transcription factor family membersplay vital roles in plant development, morphogenesis and plant’s responses to biotic andabiotic stresses. In barley, a recessive mutation in Vrs1changes two-rowed barley tosix-rowed barley. The Vrs1(HvHox1) gene encodes a HD-Zip transcription factor. The spatialand temporal specificity of Vrs1gene expression suggests that VRS1is a transcription factorinvolved in the development (suppression) of lateral spikelets in two-rowed barley. Sequenceanalysis showed that rice genes OsHOX12and OsHOX14were homologous of Vrs1. In thisstudy, we isolated these2novel HD-Zip I genes from rice, OsHOX12and OsHOX14, andcarried out bioinformatics analysis, functional analysis, expression pattern analysis,subcellular localization analysis and DNA-binding activity analysis to investigated thefunction of these2new transcription factor.
     The petal identity is determined by class A (APETALA1(AP1), APETALA2(AP2)), class B(APETALA3(AP3), PISTILLATA (PI)) and class E (SEPALLATA(SEP)) genes. Some other factors, such asPETAL LOSS (PTL) and RABBIT EARS (RBE), have been reported to be involved in the initiation andgrowth of petal primordium. Research on the mechanism of petal development can contribute to the basictheory research as well as later application, but till now the molecular mechanisms about the petaldevelopment remain poorly understood. In our previous work, we isolated an Arabidopsis B3transcriptional factor member, ABS2. Using an activation-tagging method, we isolated a RAVtranscriptional factor member, abs2-1D (abnormal shoot2-1D). In this study we found thatthe phenotype of abs2-1D was caused by NGAL1(ABS2). We cloned the ABS2gene, andcarried out bioinformatics analysi, functional analysis, tissure expression analysis and ABS2sub-cellular localization, to provide data for exploring the functional mechanism of ABS2inthe petal development.
     The main results are as follows:
     (1)The full length cDNA of OsHOX12and OsHOX14were identified from rice by RT-PCR approach, sequence and phylogenetic analysis showed that OsHOX12and OsHOX14were homologous of Vrs1, belonging to the HD-Zip subfamily I and containing typical HDdomain. OsHOX12、OsHOX14and Vrs1were in the same clade. OsHOX14is more closelywith Vrs1than OsHOX12.
     (2) To investigate the functions of these HD-Zip proteins, we generated OsHOX12andOsHOX14over-expression transgenic plants. Transgenic plants were identified at RNA landDNA levels by Northern and Southern blotting. The result showed that the growth of thetransgenic plants was obviously suppressed compared to the non-transgenic ones.Over-expression of OsHOX12causes apical meristem up and low fertility. Over-expression ofOsHOX14causes the panicle couldn’t come out from the sheath, and sterility. Furtherhistological section showed there were differences in the structures of sheath betweenover-expression plants and the WT.
     (3) oshox12T-DNA insertion mutant plants exhibited no visible phenotypic alterationscompared with the WT; oshox14mutant causes early mature.
     (4) The promoter regions of the OsHOX12and OsHOX14gene were fused to GUSreporter gene in pCAMBIA1391Z vector, respectively and the constructs were transformedinto rice callus and Arabidopsis by Agrobacterium-mediated transformation and floral dippingmethod. Histochemical analysis of the GUS activities indicated that pOsHOX12::GUS washighly expressed in anther, glume and palea in mature plants; pOsHOX14::GUS was mainlyexpressed in reproductive organ, such as anther and pistil.
     (5) Tissue expression profiles revealed by semi quantitative RT-PCR showed thatOsHOX12and OsHOX14were highly expressed in10DAF and15DAF of young panicle.OsHOX12and OsHOX14were found to be expressed in roots and stems.
     (6) The subcellular localization results showed that the OsHOX12and OsHOX14proteins were both localized in the nucleus.
     (7) Yeast one hybrid and protoplast transformation results indicated that both OsHOX12and OsHOX14could bind AH1(CAAT(A/T)ATTG) DNA sequence.
     (8) Phylogenetic analysis showed that ABS2belongs to the RAV subfamily of B3transcription factor, and was closely related to NGA genes,which are involved in flower organdevelopment..
     (9) Overexpression of ABS2showed the same phenotypes as the abs2-1D, and alsocaused petal loss phenotype,
     (10) There were no obvious phenotypic differences between abs2T-DNA insertionmutant and the WT.
     (11) Tissue expression profiles revealed by semi quantitative RT-PCR showed that ABS2was highly expressed in the flower, and it also expressed in roots and siliques, but no signialwas found in other tissues examined.
     (12) The sub-cellular localization results showed that the ABS2proteins was localized inthe nucleus,
     (13) The promoter region of the ABS2gene was fused to GUS reporter gene in pCB308vector and the construct was transformed into Arabidopsis, T1transgenic plants wereobtained.
引文
丁伟乔,徐全乐,蒲帆,高清祥,王崇英(2008) Pttkn1基因异位表达对烟草叶片形态的影响.西北植物学报28:440~446.
    何水林(2004)参与植物次生代谢调控的转录因子及其在植物次生代谢遗传改良中的应用.热带亚热带植物学报12:374~380.
    黄泽军,黄荣峰,黄大昉(2002)植物转录因子功能分析方法.农业生物技术学报10:295~300.
    贾春平,曾溢滔(2002)增强子作用机制的研究进展.生命科学14:73~76.
    贾沛昕(2005)水稻第四号染色体特异DNA芯片的研制及水稻第四号染色体基因的表达谱和籼粳稻之间差异表达谱分析[D].中国科学院研究生院(上海生命科学研究院).
    刘强,赵南明, Yamaguch~Shinozaki K, Shinozaki K (2000a) DREB转录因子在提高植物抗逆性中的作用.科学通报45:11~16.
    刘强,张贵友,陈受宜(2000b)植物转录因子的结构与调控作用.科学通报45:1465~1474.
    罗赛男,杨国顺,石雪晖,卢向阳,徐萍(2005)转录因子在植物抗逆性上的应用研究.湖南农业大学学报(自然科学版)31:219~223.
    孟繁静(2000)植物花发育的分子生物学北京:中国农业出版社.
    宋平,高红胜,曹显祖,谢迎兰(1998)小同釉稻品种的矮生性与内源ABA水平及其结合蛋白的关系.西北植物学报18:380~385.
    王文洁,魏琦超,周岩(2008)苜蓿转录因子基因Mfhb1的生物学功能初探.河南农业科学11:50~54
    王希庆,陈柏君,印莉萍(2003)植物中的MYB转录因子.生物技术通报2:22~25.
    吴乃虎(2001)基因工程原理(下册).北京科学出版社:88~97
    Abe H, Urao T, Ito T, Seki M, Shinozaki K, et al.(2003a) Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell15:63~78.
    Abe M, Katsumata H, Komeda Y, Takahashi T (2003b) Regulation of shoot epidermal celldifferentiation by a pair of homeodomain proteins in Arabidopsis. Development130:635~643.
    Ahn S, and Tanksley SD (1993) Comparative linkage maps of rice and maize genomes. Proc Natl AcadSci USA90:7980~7984.
    Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation inArabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell9:841~857.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al.(1997) Gapped BLAST andPSI~BLAST: A new generation of protein database search programs. Nucl Acids Res25:3389~3402.
    Alvarez JP, Goldshmidt A, Efroni I, Bowman JL, Eshed Y (2009) The NGATHA distal organdevelopment genes are essential for style specification in Arabidopsis. Plant Cell21:1373~1393.
    Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, et al.(2000) Molecular and geneticanalyses of the silky1gene reveal conservation in floral organ specification between eudicots andmonocots. Mol Cell5:569~579.
    Angenent GC, Busscher M, Franken J, Mol JN, van Tunen AJ (1992) Differential expression of twoMADS box genes in wild~type and mutant petunia flowers. Plant Cell4:983~993.
    Aoyama T, Dong CH, Wu Y, Carabelli M, Sessa G, et al.(1995) Ectopic expression of the Arabidopsistranscriptional activator Athb-1alters leaf cell fate in tobacco.Plant Cell7:1773~1785
    Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plantArabidopsis thaliana. Nature408:796~815.
    Ariel FD, Manavella PA, Dezar CA, Chan RL (2007) The true story of the HD-zip family. Trends PlantSci12:419~426.
    Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci13:17~42.
    Aso K, Kato M, Banks JA, Hasebe M (1999) Characterization of homeodomain~leucine zipper genes inthe fern Ceratopteris richardii and the evolution of the homeodomain~leucine zipper gene family invascular plants. Mol Biol Evol16:544~552.
    Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, et al.(1995) The expression of the Athb~8homeoboxgene is restricted to provascular cells in Arabidopsis thaliana. Development121:4171~4182.
    Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, et al.(2001) The Arabidopsis ATHB-8HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. PlantPhysiol126:643~655.
    Baker CC, Sieber P, Wellmer F, Meyerowitz EM (2005) The early extra petals1mutant uncovers a rolefor microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol15:303~315.
    Baum DA, Whitlock BA (1999) Plant development: Genetic clues to petal evolution. Curr Biol15:R525~R527.
    Bellaoui M, Pidkowich MS, Samach A, Kushalappa K, Kohalmi SE, et al.(2001) The ArabidopsisBELL1and KNOX TALE Homeodomain proteins interact through a domain conserved betweenplants and animals. Plant Cell13:2455~2470.
    Belles-Boix E, Hamant O, Witiak SM, Morin H, Traas J, et al.(2006) KNAT6: An ArabidopsisHomeobox gene involved in meristem activity and organ separation. Plant Cell18:1900~1907.
    Bevan M, Bancroft I, Bent E, Love K, Goodman H, et al.(1998) Analysis of1.9Mb of contiguoussequence from chromosome4of Arabidopsis thaliana. Nature391:485~488.
    Bharathan G, Janssen BJ, Kellogg EA, Sinha N (1997) Did homeodomain proteins duplicate before theorigin of angiosperms, fungi, and metazoan?. Proc Natl Acad Sci USA94:13749~13753.
    Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis.Plant Cell1:37~52.
    Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes ofArabidopsis. Development112:1~20.
    Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993) Control of flower development inArabidopsis thaliana by APETALA1and interacting genes. Development119:721~743.
    Bray EA (1997) Plant responses to water deficit. Trends in Plant Sci2:48~54.
    Brewer PB, Howles PA, Dorian K, Griffith ME, Ishida T, et al.(2004) PETAL LOSS, a trihelixtranscription factor gene, regulates perianth architecture in the Arabidopsis flower. Development131:4035~4045.
    Broun P (2004) Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol7:202~209.
    Buzza GC (1983) The inheritance of an apetalous flower character in canola (Brassica napus).CruciferaeNewsletter8:11~12.
    Carabelli M, Sessa G, Baima S, Morelli G, Ruberti I (1993) The Arabidopsis Athb-2and-4genes arestrongly induced by far-red-rich light. Plant J4:469~479.
    Castillejo C, Pelaz S (2008) The Balance between CONSTANS and TEMPRANILLO ActivitiesDetermines FT expression to Trigger Flowering. Curr Biol18:1338~1343.
    Causier B, Castillo R, Zhou J, Ingram R, Xue Y, et al.(2005) Evolution in action: following function induplicated floral homeotic genes. Curr Biol15:1508~1512.
    Causier B, Schwarz-Sommer Z, Davies B (2010) Floral organ identity:20years of ABCs. Semi Cell DevBiol21:73~79.
    Chakrabarty R, Banerjee R, Chung S M, Fannan M, Citovsky V, et al.(2007) pSITE vectors forstable integration or transient expression of autofluorescent protein fusions in plants:probing Nicotiana benthamiana-virus interactions. Mol Plant Microbe Interact20:740~750.
    Chang CP, Jacobs Y, Nakamura T, Jenkins NA, Copeland NCB, et al.(1997) Meis proteins are majorin vivo DNA binding partners for wild-type but not chimeric Pbx proteins. Mol Cell Biol17:5679~5687.
    Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, et al.(1996) Engineered GFP as a vital reporter inplants. Curr Biol6:325~330.
    Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-standed RNAin Arabidopsis thaliana. Proc Natl Acad Sci USA97:4985~4990.
    Cole M. Nolte C, Werr W (2006) Nuclear import of the transcription factor SHOOT MERISTEMLESSdepends on hetero dimerization with BLH proteins expressed in discrete sub-domains of the shootapical meristem of Arabidopsis thaliana. Nucleic Acids Res34:1281~1292.
    Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, et al.(2003) A network of rice genesassociated with stress response and seed development. Proc Natl Acad Sci USA100:4945~4950.
    Chae E, Tan QK, Hill TA, Irish VF (2008).An Arabidopsis F-box protein acts as a transcriptionalco-factor to regulate floral development. Development135:1235~1245.
    Chen X, Wang Z, Wang X, Dong J, Ren J, Gao H (2009) Isolation and characterization of GoRAV, anovel gene encoding a RAV-type protein in Galegae orientalis. Genes Genet Syst84:101~109.
    Chuang CF, Running MP, Williams RW, Meyerowitz EM (1999) The PERIANTHIA gene encodes abZIP protein involved in the determination of florN organ number in Arabidopsis thaliana. Genes Dev13:334~344.
    Clark SE, Running MP, Meyerowitz EM (1993) CLAVATA1, a regulator of meristem and flowerdevelopment in Arabidopsis. Development119:397~418.
    Clark SE,Running MP and Meyerowitz EM (1995) CLAVATA3is a specific regulator of shoot andfloral meristem development affecting the same processes as CLAVATA1. Development121:2057~2067.
    Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flowerdevelopment. Nature353:31~37.
    Colombo L, Franken J, Koetje E, Went JV, Dons HJM, et al.(1995) The petunia MADS box geneFBP11determines ovule identity. Plant Cell7:1859~1868.
    Delarue M, Prinsen E, Onckelen HV, Caboche M, Bellini C (1998) sur2mutations of Arabidopsisthaliana define a new locus involved in the control of auxin homeostasis. Plant J14:603~611.
    Deng X, Phillips J, Meijer AH, Salamini F and Bartels D (2002) Characterization of five noveldehydration-responsive homeodomain lecine genes from the resurrection plant Craterostigmaplantagineum. Plant Mol Biol49:601~610.
    Derelle R, Lopez P, Guyader H, Manuel M (2007) Homeodomain proteins belong to the ancestralmolecular toolkit of eukaryotes. Evol Dev9:212~219.
    Dezar CA, Fedrigo GV, Chan RL (2005a) The promoter of the sunflower HD-zip protein gene Hahb4directs tissue-specific expression and is inducible by water. Plant Sci169:447~456.
    Dezar CA, Gago GM, Gonzalez DH, Chan RL (2005b) Hahb-4, a sunflower homeobox-leucine zippergene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants.Transgenic Res14:429~440.
    Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4gene of Arabidopsis thalianafunctions in floral organ and meristem identity. Curr Biol14:1935~1940.
    Durfee T, Roe JL, Sessions RA, Inouye C, Serikawa K, et al.(2003) The F-box-containing protein UFOand AGAMOUS participate in antagonistic pathways governing early petal development inArabidopsis. Proc Natl Acad Sci USA100:8571~8576.
    Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, et al.(2003) Radial patterning of Arabidopsisshoots by class III HD-zip and KANADI genes. Curr Biol13:1768~1774.
    Ernst HA, Olsen AN, Larsen S, leggio L (2004) Structure of the conserved domain of ANAC, a memberof the NAC family of transcription factors. EMBO Rep5:297~303.
    Fits LVD, Memelink J (2000) ORCA3, a Jasmonate-Responsive Transcriptional Regulator of PlantPrimary and Secondary Metabolism. Science289:295~297.
    Gago GM, Almoguera C, Jordano J, Gonzalez DH, Chan RL (2002) Hahb-4, a homeobox-leucinezipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower.Plant, Cell&Environment25:633~640.
    Gale MD, Devos KM (1998) Comparative Genetics in the Grasses. Proc Nati Acad Sci USA95:1971~1974.
    Gehring WJ, Affolter M, Bürglin T (1994) Homeodomain proteins. Annu Rev Biochem63:487~526.
    Goff SA, Klein TM, Roth BA, Fromm ME, Cone KC, et al.(1990) Transactivation of anthocyaninbiosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J9:2517-2522.
    Goff SA, Ricke D, Lan TH, et al.(2002) A Draft Sequence of the Rice Genome (Oryza sativ L.ssp.japonica). Science296:92~100.
    Gong W, Sun Y, Ma L, et al.(2004) Genome-wide ORF cloning and analysis of Arabidopsis transcriptionfactor genes. Plant Physiol135:773~782.
    Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic genePISTILLATA. Genes Dev8:1548~1560.
    Grand-Perret T, Bouillot A, Perrot A, et al.(2001) SCAP ligands are potent new lipid-lowering drugs.Nat Med7:1332~1338.
    Griffith ME, da Silva Concei o A, Smyth DR (1999) PETAL LOSS gene regulates initiation andorientation of second whorl organs in the Arabidopsis flower. Development126:5635~5644.
    Gustafson-Brown C, Savidge B, Yanofsky MF (1994) Regulation of the arabidopsis floral homeotic geneAPETALA1. Cell76:131~143.
    Gutierrez-Cortines ME, Davies B (2000) Beyond the ABCs: ternary complex formation in the control offloral organ identity. Trends Plant Sci5:471~476.
    Hake S, Smith HM, Holtan H, Magnanni E, Mele G, et al.(2004) The role of KNOX genes in plantdevelopment. Annu Rev Cell Dev Biol20:125~151
    Halford WP (1999) The essential prerequisites for quantitative RT-PCR. Nat Biotechnol17:835.
    Hanson J, Johannesson H, Engstr m P (2001) Sugar-dependent alterations in cotyledon and leaf
    development in transgenic plants expressing the HD-zip gene ATHB13. Plant Mol Biol45:247~262.
    Hartley JL, Temple GF, Srasch MA (2000) D1A cloning using in vitro site-specific recombination.Genome Res10:1788~1795.
    Haughn GW, Somerville CR (1988) Genetic control of morphogenesis in Arabidopsis. DevelopmentalGenetics9:73~89.
    Hay A, Jackson D, Ori N, Hake S (2003) Analysis of the competence to respond to KNOTED1activity in
    Aabidopsis leaves using a steroid induction system. Plant Physiol131:1671~1680.
    Heim MA, Jakoby M, Werber M, M.artin C, Weisshaar B, et al.(2003) The basic helix-loop-helixtranscription factor family in plants: a genome-wide study of protein structure and functional diversity.Mol Biol Evol20:735~747.
    Henriksson E, Olsson ASB, Johannesson H, et al.(2005) Homeodomain leucine zipper class I genes in
    Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiol139:509~518.
    Hiei Y, Ohta S, Koman T, Kumashiro T (1994) Efficient transformation of rice(Oryza sativa L.)mediatedby Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J6:271~282.
    Hill JP and Lord EM (1989) Floral development in Arabidopsis thaliana: a comparison of the wild typeand the homeoticpistillata mutant. Can J Bot67:2922~2936.
    Hill TA, Day CD, Zondlo SC, Thackeray AG, Irish VF (1998) Discrete spatial and temporal cis-actingelements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development125:1711~1721.
    Himmelbach A, Hoffmann T, Leube M, H hener B, Grill E (2002) Homeodomain protein ATHB6is atarget of the protein phosphatase ABI1and regulates hormone responses in Arabidopsis. EMBO J21:3029~3038.
    Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floralorgans. Nature409:525~529.
    Hu X,Wu QF, Xie YH, et al.(2005) Ectopic expression of the Pttkn1gene induces alterations in themorphology of the leaves and flowers in Petunia hybrida Vilm. J Integr. Plant Biol47:1153~1158.
    Hu YX, Wang YH, Liu XF, Li JY (2004) Arabidopsis RAV1is down-regulated by brassinosteroid andmay act as a negative regulator during plant development. Cell Res14:8~15.
    Huang H, Tudor M, Su T, Zhang Y, Hu Y, Ma H (1996) DNA binding properties of two ArabidopsisMADS domain proteins: binding consensus and dimer formation. Plant Cell8:81~94.
    Immink RG, Gadella TW Jr, Ferrario S, Busscher M, Angenent GC (2002) Analysis of MADS boxprotein-protein interactions in living plant cells. Proc Natl Acad Sci USA99:2416~2421.
    Ingram GC, Boisnard-Lorig C, Dumas C, Rogowsky PM (2000) Expression patterns of genes encodingHD-ZipIV homeo domain proteins define specific domains in maize embryos and meristems. Plant J22:401-414
    Ingram GC, Doyle S, Carpenter R, Schultz EA, Simon R, et al.(1997) Dual role for fimbriata inregulating floral homeotic genes and cell division in Antirrhinum. EMBO J16:6521~6534.
    Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids.Gene96:23~28.
    Irish VF (2008) The Arabidopsis petal: a model for plant organogenesis. Trends Plant Sci13:430~436
    Irish VF (2010) The flowering of Arabidopsis flower development. Plant J61:1014~1028.
    Izawa TR, Foster R, Nakajima M, Shimamoto K, Chua NH (1994) The Rice bZIP Transcriptionalactivator RITA-1is highly expressed during seed development. Plant Cell6:1277~1287.
    Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3of Arabidopsis thalianaencodes a MADS box and is expressed in petals and stamens. Cell68:683~697.
    Jack T, Fox GL, Meyerowitz EM (1994) Arabidopsis homeotic gene APETALA3ectopic expression:transcriptional and posttranscriptional regulation determine floral organ identity. Cell76:703~716.
    Jack T (2001) Relearning our ABCs:new twists on an old model. Trends Plant Sci6:310~316.
    Jack T (2004) Molecular and Genetic Mechanisms of Floral Control. Plant Cell16: S1~S17.
    Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, et al.(2002) bZIPtranscription factors in Arabidopsis. Trends Plant Sci7:106~111.
    Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive andversatile gene fusion marker in higher plants. EMBO J6:3901~3907.
    Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, et al.(2000) Transcriptional repression by AtMYB4controls production of UV-protecting sunscreens in Arabidopsis. EMBO J19:6150~6161.
    Jofuku KD, BGWd Boer, Montagu MV and Okamuro JK (1994) Control of Arabidopsis Flower andSeed Development by the Homeotic Gene APETALA2. Plant Cell6:1211~1225.
    Jouannic S, Collin M, Vidal B, Verdeil JL, Tregear JW (2007) A class I KNOX gene from the palmspecies Elaeis guineensis (Arecaceae) is associated with meristem function and a distinct mode of leafdissection. New Phytol174:551~568.
    Kalde M, Barth M, Somssich IE, Lippok B (2003) Members of the Arabidopsis WRKY group IIItranscription factors are part of different plant defense signaling pathways. Mol Plant Microbe Interact16:295~305.
    Kagaya Y, Hattori T (2009) Arabidopsis transcription factors, RAV1and RAV2, are regulated bytouch-related stimuli in a dose-dependent and biphasic manner. Genes Genet Syst84:95~99.
    Kagaya Y, Ohmiya K, Hattori T (1999) RAV1, a novel DNA-binding protein, binds to bipartiterecognition sequence through two distinct DNA-binding domains uniquely found in higher plant. NuclAcids Res27:470~478.
    Karimi M, Bleys A,Vanderhaeghen R, Hilson P (2007) Building blocks for plant gene assembly. PlantPhysiol145:1I83~1191.
    Katagiri F, Lam E, Chua NH (1989) Two tobacco DNA-binding proteins with homology to the nuclearfactor CREB. Nature340:727~730.
    Kapoor S, Kobayashi A, Takatsuji H (2002) Silencing of the tapetum-specific zinc finger gene TAZIcauses premature degeneration of tapetum and pollen abortion in Petunia. Plant Cell14:2353~2367.
    Kaufinann IC,Melzer l,Theissen G (2005) MIKC-type MADS-domain proteins:structure modularity,protein interactions and network evolution in land plants. Gene347:183~198。
    Kawahara R, Komamine A, Fukuda H (1995) Isolation and characterization of homeobox-containinggenes of carrot. Plant Mol Biol27:155~164.
    Kayes JM, Clark SE (1998) CLAVATA2, a regulator of meristem and organ development in Arabidopsis.Development125:3843~3851.
    Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, Hake S (1997) Loss-of-function mutations in themaize homeobox gene, knotted1, aredefective in shoot meristem maintenance. Development124:3045~3054.
    Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plan Mol Biol35:25~34.
    Kieffer M, Stern Y, Cook H, Clerici E, Maulbetsch C, et al.(2006) Analysis of the transcription factorWUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their rolesin meristem maintenance. Plant Cell18:560~573.
    Kim J, JuNG JH, Reyes JL, Kim YS, Kim SY, et al.(2005) microRNA-directed cleavage of ATHB15mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J42:84~94.
    Kim SY, Kim YC, Lee JH, Oh SK, Chung E, et al.(2005) Identification of a CaRAV1possessing anAP2/ERF and B3DNA-binding domain from pepper leaves infected with Xanthomonas axonopodispv. glycines8ra by differential display. Biochim Biophys Acta1729:141~1466.
    Kim YK, Son O, Kim MR, Nam KH, Kim GT, et al.(2007) ATHB23, an Arabidopsis class Ihomeodomain-leucine zipper gene, is expressed in the adaxial region of young leaves. Plant Cell Rep26:1179~1185.
    Kimura S, Koenig D, Kang J, Yoong FY, Sinha N (2008) Natural variation in leaf morphology resultsfrom mutation of a novel KNOX gene. Curr Biol18:672~677.
    Kobayashi M, Gaskin P, Spray CR, Phinney BO, MacMillan J (1994) The Metabolism of GibberellinA20to Gibberellin A1by Tall and Dwarf Mutants of Oryza sativa and Arabidopsis thaliana. PlantPhysiol106:1367~1372.
    Kramer EM, Irish VF (1999) Evolution of genetic mechanisms controlling petal development. Nature399:144~148.
    Krizek BA, Meyerowitz EM (1996) The Arabidopsis homeotic genes APETALA3and PISTILLATA aresufficient to provide the B class organ identity function. Development122:11~22.
    Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nature6:688~698.
    Krizek BA, Lewis MW, Fletcher JC (2006) RABBIT EARS is a second-whorl repressor of AGAMOUSthat maintains spatial boundaries in Arabidopsis flowers. Plant J45:369~383.
    Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, et al.(1999)ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development inArabidopsis. Plant Cell11:1217~1226.
    Kuijt SJ, Lamers GE, Rueb S, Scarpella E, Ouwerkerk PB, et al.(2004) Different subcellularlocalization and trafficking properties of KNOX class1homeodomain proteins from rice. Plant MolBiol55:781~796.
    Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK.(2001a) The Arabidopsis HOS1genenegatively regulats cold signal transduction and encodes a RING finger protein that displayscold-regulated nucle-cytoplasmic partitioning. Genes Dev15:912~924.
    Lee M M, Schiefelbein J (2001b) Developmentally distinct MYB genes encode functionally equivalentproteins in Arabidopsis. Development128:1539~1546.
    Lee I, Wolfe DS, Nilsson O, Weigel D (1997) A LEAFY co-regulator encoded by UNUSUAL FLORALORGANS. Curr Biol7:95~104.
    Leibfried A, To JP, Busch W, Stehling S, Kehle A, et al.(2005) WUSCHEL controls meristem functionby direct regulation of cytokinin-inducible response regulators. Nature438:1172~1175.
    Levin JZ, Meyerowitz EM (1995) UFO: An Arabidopsis Gene Involved in Both Floral Meristem andFloral Organ Development. Plant Cell7:529~548.
    Liu J, Wilson TE, Milbrandt J, Johnston M (1993) Identifying DNA-Binding Sites and AnalyzingDNA-Binding Domains Using a Yeast Selection System. Methods5:125~137.
    Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants. Eur JBiochem262:247~257.
    Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D (2008) A tomato HD-zip homeobox protein, LeHB-1,plays an important role in floral organogenesis and ripening. Plant J55:301~310.
    Liu Z, Mao F, Guo JT, Yan B, Wang P, et al.(2005) Quantitative evaluation of protein-DNA interactionsusing an optimized knowledge-based potential. Nucleic Acids Res33:546~558.
    Lohmann JU, Weigel D (2002) Building beauty: The genetic control of floral patterning. Dev Cell2:135~142.
    Luo D, Oppenheimer DG (2006) Genetic control of trichome branch number in Arabidopsis: the roles ofthe FURCA loci. Development126:5547~5557.
    Ma H, Pamphilis CD (2000) The ABCs of Floral Evolution. Cell101:5~8.
    ManaVella PA, Arce AL, Dezar CA, Bitton F, Renou JP, et al.(2006) Cross-talk between ethylene anddrought signalling pathways is mediated by the sunflower Hahb-4transcription factor. Plant J48:125~137.
    Marè C, Mazzucotelli E, Crosatti C, Francia E, Stanca AM, Cattivelli L (2004) Hv-WRKY38: a newtranscription factor involved in cold-and drought-response in barley. Plant Mol Biol55:399~416.
    Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vasculardevelopment. Plant Physiol131:1327~1339.
    McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M et al.(1991) The viviparous-1developmentalgene of maize encodes a novel transcriptional activator. Cell66:895~905.
    McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA andPHAVOLUTA in determining radial patterning in shoots. Nature411:709~713.
    McGonigle B, Bouhidel K, Irish VF (1996) Nuclear localization of the Arabidopsis APETALA3andPISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev10:1812~1821.
    Memelink J, Swords KMM, Staehelin LA, Hoge JHC (1994) Southern, Northern and Western analysis.In: Gelvin SB, Schilperoort RA (eds), Plant Molecular Biology Manual. Kluwer Academic Publishers,Dordrecht: F1~F23.
    Meshi T and Iwabuchi M (1995) Plant transcription factors. Plant Cell Physiol36:1405~1420.
    Meijer AH, Scarpella E, van Dijk EL, Qin L, Taal AJ, et al.(1997) Transcriptional repression byOsHOX1, a novel homeodomain leucine zipper protein from rice. Plant J11:263~276.
    Mele G, Ori N, Sato Y, Hake S (2003) The knotted1-like homeobox gene BREVIPEDICELLUS regulatescell differentiation by modulating metabolic pathways. Genes Dev17:2088~2093.
    Morelli G and Ruberti I (2000) Shade avoidance responses: Driving auxin along lateral routes. PlantPhysiol122:621~626.
    Morelli G, Ruberti I (2002) Light and shade in the photocontrol of Arabidopsis growth. Trends Plant Sci7:399~404.
    Muller CW (2001) Transcription factors: global and detailed views. Curr Opin Struct Biol11:26~32.
    Mukherjee K, Bürglin TR (2006) MEKHLA, a novel domain with similarity to PAS domains, is fused toplant homeodomainleucine zipper III proteins. Plant Physiol140:1142~1150.
    Mukherjee K, Brocchieri L, Burglin TR (2009) Comprehensive classification and evolutionary analysisof plant homeobox genes. Mol Biol Evol26:2775~2794.
    Nakamura M, Katsumata H, Abe M, Yabe N, Komeda Y, et al.(2006) Characterization of the class IVhomeodomain-leucine zipper gene family in Arabidopsis. Plant Physiol141:1363~1375.
    Nelson HCM.(1995) Structure and function of DNA-binding proteins. Curr Opin Genet Dev5:180-189.
    Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet2:186~195.
    Nikolov DB, Burley SK (1997) RNA polymerase II transcription initiation: A structural view. Proc NatlAcad Sci USA94:15~22.
    Ni M, Dehesh K, Tepperman JM, Quail PH (1996) In vivo transcriptional activation Activity andDefinition of Novel Twin DNA Binding Domains with Reciprocal Target Sequence Selectivity. PlantCell8:1041~1059.
    Nishitani C, Demura T, Fukuda H (2001) Primary phloem-specific expression of a Zinnia eleganshomeobox gene. Plant Cell Physiol42:1210~1218.
    Ohashi-Ito K,Demura T, Fukuda H (2002) Promotion of Transcript Accumulation of Novel ZinniaImmature Xylem-Specific HD-Zip III Homeobox Genes by Brassinosteroids Plant Cell Physiol l43:1146~1153.
    Olsen AN, Emst HA, Leggio LL, Skriver K (2005) NAC transcription factors: Structurally distinct,functionally diverse. Trends Plant Sci10:79~87.
    Olsson AS, Engstr m P, S derman E (2004) The homeobox genes ATHB12and ATHB7encode potentialregulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol55:663~677.
    Ohashi Y, Oka A, Rodrigues-Pousada R, Possenti M, Ruberti I, et al.(2003) Modulation ofphospholipid signaling by GLABRA2in root-hair pattern formation. Science300:1427~1430.
    Parcy F, Nilsson O, Busch MA, Lee I, Weigel D (1998) A genetic framework for floral patterning. Nature395:561~566.
    Parenicová L, de Folter S, Kieffer M, Horner DS, Favalli C, et al.(2003) Molecular and phylogeneticanalyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to theMADS world. Plant Cell15:1538~1551.
    Park J M, Park CJ, Lee SB, Ham Bk, Shin R, Paek KH (2001) Overexpression of the Tobacco Tsi1Gene Encoding an EREBP/AP2-Type Transcription Factor Enhances Resistance Against PathogenAttack and Osmotic Stress in Tobacco. Plant Cell13:1035~1046.
    Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functionsrequire SEPALLATA MADS-box genes. Nature405:200~203.
    Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF (2001) APETALA1andSEPALLATA3interact to promote flower development. Plant J26:385~394.
    Pelaz S, Tapia-López R, Alvarez-Buylla ER, Yanofsky MF (2001) Conversion of leaves into petals inArabidopsis. Curr Biol11:182~184.
    Pellegrini L, Tan S, Richmond TJ (1995) Structure of serum response factor core bound to DNA. Nature376:490~498
    Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory c1locus of Zea maysencodes a protein with homology to myb proto-oncogene products and with structural similarities totranscriptional activators. EMBO J6:3553~3558.
    Perazza D, Herzog M, HüIskamp M, Brown S, Dorne AM, Bonneville JM (1999) Trichome cell growthin Arabidopsis thaliana can be derepressed by mutations in at least five genes. Genetics152:461~476.
    Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, et al.(2003) Assessing the redundancy ofMADS-box genes during carpel and ovule development. Nature424:85~88.
    Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, Lifschitz E(1994) Isolation of the tomato AGAMOUSgene TAG1and analysis of its homeotic role in transgenic plants. Plant Cell6:163~173.
    Pourkheirandish M, He (2007) Six-rowed barley originated from a mutation in a homeodomain-leucinezipper I-class homeobox gene, Proc Natl Acad Sci USA104:1424~1429.
    Postma-Haarsma AD, Ira IGS Verwoert, Stronk OP, Koster J, Lamers Gerda EM, et al.(1999)Characteriza-tion of the KNOX class homeobox genes Oskn2and Oskn3identified in a collection ofcDNA libraries cover-ing the early stages of rice embryogenesis. Plant Mol Biol39:257~271.
    Prigge MJ, Otstuga D, Alonso JM, Ecker J, Drews GN, Clark SE (2005) Class IIIhomeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct rolesin Arabidopsis development. Plant Cell17:61~76.
    Prigge MJ, ClarkSE (2006) Evolution of the class III HD-zip gene family in land plants. Evol Dev8:350~361.
    Ramanujam S (1940) An Apetalous Mutation in Turnip (Brassica campestris L.). Nature145:552~553.
    Rehm BH (2001) Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genesand protein classification. Appl Microbiol Biotechnol57:579~592.
    Riechmann JL, Heard J, Martin G, Reuber L, et al.(2000) Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science290:2105~2110.
    Riechmann JL, Krizek BA, Meyerowitz EM (1996) Dimerization specificity of Arabidopsis MADSdomain homeotic proteins APETALA1,APETALA3, PISTILLATA and AGAMOUS. Proc Natl AcadSci USA93:4793~4798.
    Riechmann JL and Ratcliffe OJ (2000) A genomic perspective on plant transcription factors. Curr OpinPlant Biol3:423~434
    Riechmann JL (2002) Transcriptional regulation:a genomic overview. The Arabidopsis Book, AmericanSociety of Plant Biologists.(http://authors.library.caltech.edu/1288/1/RIEtab02.pdf).
    Romanowski MJ, Soccio RE, Breslow JL, Burley SK (2002) Crystal structure of the Mus musculuscholesterol-regulated START protein4(StarD4) containing a StAR-related lipid transfer domain. ProcNatl Acad Sci USA99:6949~6954.
    Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsisdevelopment. Plant Cell7:1259~1269.
    Rueda EC, Dezar CA, Gonzalez DH, Chan RL (2005) Hahb-10, a sunflower homeobox-leucine zippergene, is regulated by light quality and quantity, and promotes early flowering when expressed inArabidopsis. Plant Cell Physiol46:1954~1963.
    Rudolph C, Schreier PH, Uhrig JF (2003) Peptide-mediated broad-spectrum plant resistance totospoviruses. Proc Natl Acad Sci USA100:4429~4434.
    Running MP and Meyerowitz EM (1996) Mutations in the PERIANTHIA gene of Arabidopsisspecifically alter floral organ number and initiation pattern. Development122:1261~1269.
    Rupp HM, Frank M,Werner T, Strnad M, Schmülling T (1999) Increased steady state mRNA levels ofthe STM and KNAT1homeobox genes in cytokinin overproducing A rabidopsis thaliana indicate arole for cytokinins in the shoot apical meristem. Plant Cell18:557~563.
    Sakakibara K, Nishiyama T, Kato M, Hasebe M (2001) Isolation of homeodomain-leucine zipper genesfrom the moss Physcomitrella patens and the evolution of homeodomain leucine zipper genes in landplants. Mol Biol Evol18:491~502.
    Sakamoto A, Minami M, Huh GH, Iwabuchi M (1993) The putative zinc-finger protein WZF1interractswith a cis-acting element of wheat histone genes. Eur J Biochem217:1049~1056.
    Sakamoto H, Araki T, Meshi T, Iwabuchi M (2000) Expression of a subset of the ArabidopsisCys2/His2-type zinc-finger protein gene family under water stress. Gene248:23~32.
    Samach A, Kohalmi SE, Motte P, Datla R, Haughn GW (1997) Divergence of function and regulation ofclass B floral organ identity genes. Plant Cell9:559~570.
    Samach A, Klenz JE, Kohalmi SE, Risseeuw E, Haughn GW, et al.(1999) The UNUSUAL FLORALORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growthin the floral meristem. Plant J20:433~445.
    Sato Y, Tamaoki M, Murakami T, Yamamoto N, Kano-Murakami Y, Matsuoka M (1996) Abnormalcell divisions in leaf primordia caused the expression of the rice homeobox gene OSH1lead tomorphology of leaves in transgenic tobacco. Mol Gen Genet251:13~22.
    Sato Y, Sentoku N,Nagato Y, Matsuoke M (1998) Isolation and characterization of a rice homebox gene,OSH15. Plant Mol Biol38:983~998.
    Satoh R, FujitaNal Y, Cashima K, Shinozaki K, Yamaguchi-Shinozaki K (2004) A novel subgroup ofbZIP proteins functions transcriptional activators in hypoosmolarity-responsive expression of theproDH gene in Arabidopsis. Plant Cell Physiol45:309~317.
    Sawa S, Ohgishi M, Goda H, Higuchi K, Shimada Y, Yoshida S, Koshiba T (2002) The HAT2gene, amember of the HD-Zip gene family, isolated as an auxin inducible gene by DNA microarray screening,affects auxin response in Arabidopsis. Plant J32:1011~1022.
    Scarpella E, Boot KJ, Rueb S, Meijer AH (2002) The procambium specifcation gene OsHOXl promotespolar auxin transport capacity and reduces its sensitivity toward inhibition. Plant Physiol130:1349~1360.
    Scarpella E, Rueb S, Boot KJ, Hoge JH, Meijer AH (2000) A role for the rice homeobox gene OsHOX1in provascular cell fate commitment. Development127:3655~669.
    Schwechheimer C, Zourelidou M, Bevan MW (1998) Plant transcription factor studies. Annu Rev PlantPhysiol Plant Mol Biol49:127~150.
    Sessa G, Steindler C, Morelli G, Ruberti I (1998) The Arabidopsis Athb-8,-9and-14genes are membersof a small gene family coding for highly related HD-ZIP proteins. Plant Mol Biol38:609~622.
    Sessa G, Carabelli M, Sassi M, Ciolfi A, Possenti M, Mittempergher F, Becker J, Morelli G, Ruberti I(2005) A dynamic balance between gene activation and repression regulates the shade avoidanceresponse in Arabidopsis. Genes Dev19:2811~2815
    Sheen J (2002) A transient expression assay using Arabidopsis mesophyll protoplasts.Http://genetics.mgh.harvard.edu/sheeenweb/
    Shin D, Koo YD, Lee J, Lee HJ, Baek D, et al.(2004) Athb-12, a homeobox-leucine zipper domainprotein from Arabidopsis thaliana, increases salt tolerance in yeast by regulating sodium exclusion.Biochem Biophys Res Commun323:534~540.
    Siberil Y, Doireau P, Gantet P (2001) Plant bZIP G-box binding factors: modular structure and activationmechanisms. Eur J Biochem268:5655~5666.
    Singh KB (1998) Transcriptional regulation in plants: The importance of combinatorial control. PlantPhysiol118:1111~1120.
    Sinha N, Hake S (1990) Mutant characters of Knotted maize leaves are determined in the innermost tissuelayers. Dev Biol141:203~210.
    Smith LG, Greene B, Veit B, Hake S (1992) A dominant mutation in the maize homeobox gene, Knotted-1,causes its ectopic expression in leaf cells with altered fates. Development116:21~30.
    Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell2:755~767.
    Soderman E, Mattsson J, Engstrom P (1996) The Arabidopsis homeobox gene ATHB-7is induced bywater defccit and by abscisic acid. Plant J10:375~381.
    Soderman E, Hjellstrom M, Fahleson J, Engstrom P (1999) The HD-zip gene ATHB6in Arabidopsis isexpressed in developing leaves, roots and carpels and up-regulated by water deficit conditions. PlantMol Biol40:1073~1083.
    Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK (2006) Expression and functional roles of the pepperpathogen-induced transcription factor RAV1in bacterial disease resistance, and drought and salt stresstolerance. Plant Mol Biol61:897~915.
    Son O, Cho HY, Kim MR, Lee H, Lee MS, et al.(2005) Induction of a homeodomain-leucine zipper geneby auxin is inhibited by cytokinin in Arabidopsis roots. Biochem Biophys Res Commun326:203~209.
    Somerville C, Somerville S (1999) Plant functional genomics. Science285:380~383.
    Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, et al.(2003) Stress-responsive zinc finger geneZPT2-3plays a role in drought tolerance in petunia. Plant J36:830~841.
    T per R, Matzeit V, Gronenborn B, Schell J, Steinbiss H (1987) A set of plant expression vectors fortranscriptional and translational fusions. Nucl Acids Res15:58~90.
    Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, Jansson C (2003) A novel WRKYtranscription factor, SUSIBA2, participates in sugar signaling in barley by binding to thesugar-responsive elements of the isol promoter. Plant Cell15:2076~2092.
    Suzuki A, Suzuki T, Tanabe F, Toki S, Washida H et al.(1997) Cloning and expression offive-myb-related genes from rice seed. Gene198:393~398.
    Suzuki H, Koizumi N, Sano H (2001) Screening of cadmium-responsive genes in Arabidopsis thaliana.Plant Cell Environ24:1177~1188.
    Swaminathan K, Peterson K, Jack T (2008) The plant B3superfamily. Trends Plant Sci13:647~655.
    Takeda S, Matsumoto N, Okada K (2004) RABBIT EARS, encoding a SUPERMAN-like zinc fingerprotein, regulates petal development in Arabidopsis thaliana. Development131:425~434.
    Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, et al.(1998) The AmMYB308andAmMYB330transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesisin transgenic tobacco. Plant Cell10:135~154.
    Tan QK,Irish VF (2006) The Arabidopsis zinc finger-homeodomain genes encode proteins with uniquebiochemical properties that are coordinately expressed during floral development. Plant Physiol140:1095~1108.
    Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin PlantBiol4:75~85.
    Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature409:469~471.
    Tilly JJ, Allen DW, Jack T (1998) The CArG boxes in the promoter of the Arabidopsis floral organidentity gene APETALA3mediate diverse regulatory effects. Development125:1647~1657.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressivemultiple sequence alignment through sequence weighting, position-specific gap penalties and weightmatrix choice. Nucleic Acids Res22:4673~4680.
    Tornero P, Conejero V, Vera P (1996) Phloem-specific expression of a plant homeobox gene duringsecondary phases of vascular development. Plant J9:639-648.
    Trigueros M, Navarrete-Gómez M, Sato S, Christensen SK, Pelaz S, et al.(2009) The NGATHA genesdirect style development in the Arabidopsis gynoecium. Plant Cell21:1394~1409.
    Tron AE, Bertoncini CW, Chan RL, Gonzalez DH (2002) Redox regulation of plant homeodomaintranscription factors. J Biol Chem277:34800~34807.
    Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basicleucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathwayunder drought and high-salinity conditions. Proc Natl Acad Sci USA97:11632~11637.
    Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is inducedby dehydration stress and its gene product binds to the conserved MYB recognition sequence. PlantCell5:1529~1539.
    Veenstra GJ, Wolffe AP (2001) Gene-selective developmental roles of general transcription factors.Trends Biochem Sci26:665~671.
    Vollbrecht E, Vei B, Sinha N, et al.(1991) The developmental gene Knotted-1is a member of a maizehomeobox gene family. Nature350:241~243.
    Wagner D, Sablowski RW, Meyerowitz EM.(1999) Transcriptional activation of APETALA1by LEAFY.Science285:582~584.
    Walhout AJ, Sordella R, Lu X, et al.(2000) Protein interaction mapping in C.elegans using proteinsinvolved in vulval development. Science287:116~122.
    Waltner JK, Peterson FC, Lytle BL, Volkman BF (2005) Structure of the B3domain from Arabidopsisthaliana protein At1g16640. Protein Sci14:2478~2483.
    Wang X, Xu W, Ma L, et al.(2006) Requirement of KNAT/BP for the development of abscission zones inArabidopsis thaliana. J Integrative Plant Biol48:15~26.
    Wang YJ, Li YD, Luo GZ, Tian AG, Wang HW, Zhang JS, Chen SY (2005) Cloning andcharacterization of an HD-zip I gene GmHZI from soybean. Planta221:831~843.
    Wang Y, Henriksson E, S derman E, Henriksson KN, Sundberg E, Engstr m P (2003) TheArabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiodin Arabidopsis. Dev Biol264:228~39.
    Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell78:203~209.
    Williams-Carrier RE, Lie YS, Hake S, Lemaux PG (1997) Ectopic expression of the maize kn1genephenocopies the Hooded mutant of barley. Development124:3737~3745.
    Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apicalmeristem and lateral organ formation by microRNA miR166and its AtHD-zip target genes.Development132:3657~3668.
    Xie Q, Frugis G, Colgan D, Chua NH (2002) Arabidopsis NAC1transduces auxin signal downstream ofTIR1to promote lateral root development. Genes Dev14:302~3036.
    Xing S, Rosso MG, Zachgo S (2005) ROXY1, a member of the plant glutaredoxin family, is required forpetal development in Arabidopsis thaliana. Development132:1555~1565.
    Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004) Characterization of GaWRKYI, a cottontranscription factor that regulates the sesquiterpene synthase gene(+)-delta-cadinene synthase-A. PlantPhysiol135:507~515.
    Xue GP (2003) The DNA-bingding activity of an AP2transcriptional activator HVCBF2involved inregulation of low-temperature responsive genes in barley is modulated by temperature. Plant J33:373~383.
    Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, et al.(2004) Solution structure of the B3DNAbinding domain of the Arabidopsis cold-responsive transcription factor RAV1. Plant Cell16:3448~3459.
    Yanagisawa S (2001) The Transcriptional Activation Domain of the Plant-Specific Dof1Factor Functionsin Plant, Animal, and Yeast Cells. Plant Cell Physiol42:813~822.
    Yanagisawa S (2002) The Dof family of plant transcription factors. Trends Plant Sci7:555~560.
    Yang X, Makaroff CA, Ma H (2003) The Arabidopsis MALE MEIOCYTE DEATH1gene encodes aPHD-finger protein that ss required for male meiosis. Plant Cell15:1281~1295.
    Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, et al.(1990) The protein encoded by theArabidopsis homeotic gene agamous resembles transcription factors. Nature346:35~39.
    Yu F, Liu X, Alsheikh M, Park S, Rodermel S (2008) Mutations in SUPPRESSOR OF VARIEGATION1,a factor required for normal chloroplast translation, suppress var2-mediated leaf variegation inArabidopsis. Plant Cell20:1786~1804.
    Yu J, Hu S, Wang J, et al.(2002) A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica).Science296:79~92.
    Zahn LM, Leebens-Mack JH, Arrington JM, Hu Y, Landherr LL, et al.(2006) Conservation anddivergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub-andneofunctionalization events. Evol Dev8:30~45.
    Zik M, Irish VF (2003) Global identification of target genes regulated by APETALA3and PISTILLATAfloral homeotic gene action. Plant Cell15:207~222.
    Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping often agronomic traits on the soybean (Glycine max L. Men.) genetic map and their association withEST markers. Theor Appl Genet108:1131~1139.
    Zhang Y, Wang X, Zhang W, Yu F, Tian J, et al.(2011) Functional analysis of the two Brassica AP3genes involved in apetalous and stamen carpelloid phenotypes. PLoS One6Epub Jun30.
    Zhao L, Luo QL, Yang CL, Han YP and Li WB (2008) A RAV-like transcription factor controlsphotosynthesis and senescence in soybean. Planta227:1389~1399.
    Zhao Y, Wang ML (2004) Inheritance and agronomic performance of an apetalous flower mutant inBrassica napus L. Euphytica137:381~386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700