方钴矿基热电材料的热电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料是一种能够实现电能与热能之间直接转换的半导体功能材料。由热电材料制作的温差发电和制冷器件具有无污染、无噪声、易于维护、安全可靠等优点,在工业余热发电、航天、微电子及制冷等领域具有广泛的应用。方钴矿化合物是一种新型的中温区热电材料,其中填充方钴矿化合物因其同时具有晶体的良好导电性能和玻璃的低热导率被认为是一种典型的“电子晶体-声子玻璃”材料。制备多元的填充方钴矿材料可以优化材料成分,提高材料的热电性能。
     本文采用真空熔炼-退火合成方法,以Co、Sb、Ni、Yb、La、Te等单质为原料制备了方钴矿化合物。应用XRD、SEM等手段对粉末、热压试样进行了物相成分和微观形貌的分析。对熔炼试样粉末采用真空热压技术进行热压,测试热电性能。主要取得以下研究成果:
     1.制备了La、Yb、Ce单填充和La-Ca、La-Yb双填充方钴矿化合物,并研究了它们的热电性能。研究发现不管是单填充还是双填充都能够显著的降低方钴矿材料的热导率,但采用La-Yb双填充改善电学性能效果不佳。其中La_(0.5)Co_4Sb_(12)、Yb_(0.2)Co_4Sb_(12)、Ce_(0.2)Co_4Sb_(12)和La_(0.4)Ca_(0.1)CO_4Sb_(12)的最大ZT分别达到了0.69(773K)、1.24(773K)、0.55(723K)和0.74(735K)。在提高方钴矿热电性能方面,重稀土元素Yb优于轻稀土元素La和Ce,稀土-碱土双填充方钴矿优于这两种元素的单填充方钴矿。
     2.采用熔炼-退火方法制备了La、Ni共掺方钴矿热电材料La_(0.3)Co_(4-x)Ni_xSb_(12)(x=0,0.1,0.5,0.75,1)。研究发现,Ni的固溶度在0.5到0.75之间,La_(0.3)Co_(4-x)Ni_xSb_(12)显n型。随着x值的增大,Seebeek系数绝对值总体呈下降趋势,而电导率和热导率则增加。La_(0.3)Co_(3.9)Ni_(0.1)Sb_(12)功率因子和ZT值分别达到最佳:功率因子σ·α_(max)~2=3.97×10~(-3)Wm~(-1)K~(-2)(520K),ZT_(max)=0.64(773K)。
     3.设计了La_(0.5)Co_4Sb_(11.9)Te_(0.1):Sb_2Te_3:Bi_2Te_3=1:0.05:0.04(摩尔比)、La_(0.2)Yb_(0.2)Co_4Sb_(11.8)Te_(0.2)和La_(0.1)Yb_(0.2)Ca_(0.1)Co_(3.9)Ni_(0.1)Sb_(11.9)Te_(0.1)三种成分。发现少量Te和Bi掺杂到La_(0.5)Co_4Sb_(12)中可以减小最大ZT值的所处温度。由于Te元素在Sb位的固溶,化合物La_(0.2)Yb_(0.2)Co_4Sb_(11.8)Te_(0.2)的ZT值在773K时达到了1,比La_(0.2)Yb_(0.2)Co_4Sb_(12)提高约233%。实验结果表明,元素Te掺杂方钴矿可以提高方钴矿材料的热电性能,稀土元素双填充与少量Te元素掺杂结合可以有效加强对声子的散射,大幅度地降低声子热导率。La_(0.1)Yb_(0.2)Ca_(0.1)Co_(3.9)Ni_(0.1)Sb_(11.9)Te_(0.1)的最大ZT值为0.6(708K)。
Thermoelectric(TE) materials are semiconducting functional materials,which can convert heat energy directly to electricity or reversely.TE power generators and cooling devices have been extensively applied in waste heat harvesting,space flight, microeleetronic cooling with the merit of pollution-free,noiseless,easy-maintenance and reliability.Skutterudite-based compounds considered to be promising novel TE materials in middle temperature range.Filled skutterudites are suggested as the "phonon-glass/electron-crystal" materials with the good electrical transport properties of a crystal but the poor heat conduction characteristics of a glass.The preparation of multicomponent alloy such as filled skutterudites can optimize material compositions and improve thermoelectric properties.
     In this work,skutterudites are prepared by vacuum melting and annealing from pure Co,Sb,Ni,Yb,La,Te and other alloying or doping elements,and also by vacuum hot pressing from the alloy powders.The compositions and microstructures of the powders and the hot pressed bulk skutterudites were investigated by x-ray diffraction(XRD) and scanning electron microscopy(SEM).Transport properties of the hot pressed bulk samples were measured.The main results of the present work are listed as follows.
     1.The single filled(La,Yb,Ce) and double filled(La-Ca,La-Yb) skutterudites were prepared and their thermoelectric properties were studied.It was shown that the thermal conductivity is greatly reduced by forming single filled and double filled cobalt antimonide,but the thermoelectric properties for the La-Yb filled skutterudites, La_xYb_(0.2)Co_4Sb_(12),were not so good.The highest ZT values for the La_(0.5)Co_4Sb_(12), Yb_(0.2)Co_4Sb_(12),Ce_(0.2)Co_4Sb_(12),La_(0.4)Ca_(0.1)Co_4Sb_(12) were 0.69(773K),1.24(773K),0.55 (723K),and 0.74(735K) respectively.It was found that the heavy RE(rare earth) element Yb was better than the light ones,La and Ce,in both electrical conductivity and thermal conductivity,and similiarly RE-AE was better than their separate element.
     2.Thermoelectric(TE) materials La_(0.3)Co_(4-x)Ni_xSb_(12)(x=0,0.1,0.5,0.75,1) were prepared by melt-annealing method.The solid solubility limit of Ni in La-filled CoSb_3 is between 0.5 and 0.75 when the filling rate of La is 0.3.Transport properties measurements indicate that all these La_(0.3)Co_(4-x)Ni_xSb_(12) samples are n-type.The absolute Seebeck coefficient values decrease with the increasing of the value of x, however,the values of electrical conductivity and thermal conductivity increase with the addition of Ni.As a result,the La_(0.3)Co_(3.9)Ni_(0.1)Sb_(12) Skutterudites exhibit a maximum power factor of 3.97×10~(-3)Wm~(-1)K~(-2) at 520K and a maximum ZT value of 0.64 at 773K.
     3.Three samples La_(0.5)Co_4Sb_(11.9)Te_(0.1):Sb_2Te_3:Bi_2Te_3=1:0.05:0.04(mall rate), La_(0.2)Yb_(0.2)Co_4Sb_(11.8)Te_(0.2) and La_(0.1)Yb_(0.2)Ca_(0.1)Co_(3.9)Ni_(0.1)Sb_(11.9)Te_(0.1) were designed and prepared in this work.It was found that a small quantity of Te and Bi could help to deduce the temperature at the highest ZT value in the composite La_(0.5)Co_4Sb_(12).Due to Te subsititution for Sb,a ZT value~1 at 773K for La_(0.2)Yb_(0.2)Co_4Sb_(11.8)Te_(0.2),which is 233%higher than that of La_(0.2)Yb_(0.2)Co_4Sb_(12).The thermoelectric properties could be further improved by Te doping.Combination double RE filling with a small quantity of Te doping could effectively increase the scattering of phonons to greatly decrease the thermal conductivity.The highest ZT value of 0.6 is obtained for La_(0.1)Yb_(0.2)Ca_(0.1) Co_(3.9)Ni_(0.1)Sb_(11.9)Te_(0.1) at 708K.
引文
[1]B.C.Sales.Thermoelectric materials-Smaller is cooler.Science[J],2002,295(5558):1248-1249.
    [2]F.J.DiSalvo.Thermoelectric cooling and power generation[J].Science,1999,285(5428):703-706.
    [3]M.S.Dresselhaus,G.Chen,M.Y.Tang,R.G.Yang,H.Lee,D.Z.Wang,Z.F.Ren,J.P.Fleurial and P.Gogna,New directions for low-dimensional thermoelectric materials[J],Adv.Mater.,(2007),19(8),1043-1053.
    [4]R.Venkatasubramanian,E.Siivola,T.Colpitts and B.O'Quinn,Thin-film thermoelectric devices with high room-temperature figures of merit[J],Nature,(2001),413(6856),597-602.
    [5]B.D.H.Littman,Theoretical bound on the thermoelectric figure of merit from irreversible thermodynamics[J],J.Appl.Phys.,(1961),32(45),217-219.
    [6]高敏,张景韶,and D.M.ROWE.温差电转换及其应用[M].兵器工业出版社.北京.1996.
    [7]D.M.Rowe,CRC Handbook of Thermoelectrics[M],CRC press,Boca Raton FL,(1995).
    [8]T.M.Tritt,Thermoelectric materials-Holey and unholey semiconductors[J],Science,(1999),283(5403),804-805.
    [9]W.M.Yim,A.Amith,Bi-Sb alloys for magneto-thermoelectric and thermomagnetic cooling,Solid State Electron[J],(1972),15,1141-1165.
    [10]D.Y.Chung,T.Hogan,P.Brazis,M.Rocci-Lane,C.Kannewurf,M.Bastea,C.Uher and M.G.Kanatzidis,CsBi_4Te_6:A high-performance thermoelectric material for low-temperature applications[J],Science,(2000),287(5455),1024-1027.
    [11]M.I.Fedorov,E.A.Gurieva,P.P.Konstantinov,L.V.Prokofeva and Y.I.Ravich,Thermoelectrical figure of merit in PbTe-based solid solutions with phonon scattering by off-center impurities[J],in Proc.22nd Int.Conf.on Thermoelectrics,La Grande Motte,France,(2003),271-274.
    [12]P.W.Zhu,X.Jia,H.Y.Chen,L.X.Chen,W.L.Guo,D.L.Mei,B.B.Liu,G.Z.Ren and G.T.Zou,Giant improved thermoelectric properties in PbTe by HPHT at room temperature[J],Chem.Phys.Lett,(2002),359(1-2),89-94.
    [13]M.Orihashi,Y.Noda,H.T.Kaibe and I.A.Nishida,Evaluation of thermoelectric properties of impurity-doped PbTe[J],Mater.Trans.actions Jim,(1998),39(6),672-678.
    [14]K.Kishimoto,Y.Nagamoto and T.Koyanagi,Thermoelectric properties of SiGe sintered alloys with modified grain boundaries[J],in Proc.17th Int.Conf.on Thermoelectrics,Nagoya,Japan,(1998),257-259.
    [15]D.M.Rowe,N.Savvides,The reversal of precipitation in heavily doped silicon-germanium alloys[J],J.Phys.D:Appl.Phys.,(1979),12(9),1613-1619.
    [16]G.S.Nolas,J.Poon,M.Kanatzidis,Recent developments in bulk thermoelectric materials[J], MRS Bulletin,(2006),31(3),199-205.
    [17]R.F.Service,Semiconductor advance may help reclaim energy from 'lost' heat[J],Science,(2006),311(5769),1860-1860.
    [18]B.C.Sales,D.Mandrus,R.K.Williams,Filled skutterudit antimonides:A new class of thermoelectric materials[J].Science,1996.272(5166):1325-1328.
    [19]J.P.Fleurial,T.Caillat and A.Borshchevsky,Skutterudites:An update[J],in Proc.16th Int.Conf.on Thermoelectrics,Dresden,Germany,(1997),1-11.
    [20]B.C.Sales,D.Mandrus,B.C.Chakoumakos,V.Keppens and J.R.Thompson,Filled skutterudite antimonides:Electron crystals and phonon glasses[J],Phys.Rev.B,(1997),56(23),15081-15089.
    [21]X.Shi,L.D.Chen,S.Q.Bai,X.Y.Huang,X.Y.Zhao,Q.Yao and C.Uher,Influence of fullerene dispersion on high temperature thermoelectric properties of Ba_yCo_4Sb_(12)-based composites[J],J.Appl.Phys.,(2007),102(10),103709.
    [22]N.R.Dilley,E.D.Bauer,M.B.Maple,S.Dordevic,D.N.Basov,F.Freibert,T.W.Darling,A.Migliori,B.C.Chakoumakos and B.C.Sales,Thermoelectric and optical properties of the filled skutterudite YbFe_4Sb_(12)[J],Phys.Rev.B,(2000),61(7),4608-4614.
    [23]D.H.Galvan,Electronic structure calculations for PrFe_4P_(12) filled skutterudite using extended huckel tight-binding method[J],Int.J.Mod.Phys.B,(2003),17(26),4749-4762.
    [24]J.W.Kaiser and W.Jeitschko,The antimony-rich parts of the ternary systems calcium,strontium,barium and cerium with iron and antimony;structure refinements of the LaFe_4Sb_(12)-type compounds SrFe_4Sb_(12) and CeFe_4Sb_(12);the new compounds CaOs_4Sb_(12) and YbOs_4Sb_(12)[J],J.Alloys Compd.,(1999),291(1-2),66-72.
    [25]D.Cao,F.Bridges,P.Chesler,S.Bushart,E.D.Bauer and M.B.Maple,Evidence for rattling behavior of the filler atom(L) in the filled skutterudites LT_4X_(12)(L=Ce,Eu,Yb;T=Fe,Ru;X=P,Sb) from EXAFS studies[J],Phys.Rev.B,(2004),70(9),094109.
    [26]K.Matsuhira,C.Sekine,K.Kihou,I.Shirotani,M.Wakeshima,Y.Hinatsu,Y.Sei,A.Nakamura and S.Takagi,Transport properties of filled skutterudite antiferromagnet GdRu_4P_(12)[J],Physica B:Condens.Matter,(2006),378(80),235-236.
    [27]D.Ravot,U.Lafont,L.Chapon,J.C.Tedenac and A.Manger,Anomalous physical properties of cerium-lanthanum filled skutterudites[J],J.Alloys Compd.,(2001),323,389-391.
    [28]D.A.Gajewski,N.R.Dilley,E.D.Bauer,E.J.Freeman,R.Chau,M.B.Maple,D.Mandrus,B.C.Sales and A.H.Lacerda,Heavy fermion behaviour of the cerium-filled skutterudites CeFe_4Sb_(12) and Ce_(0.9)Fe_3CoSb_(12)[J],J.Phys.:Condens.Matter,(1998),10(31),6973-6985.
    [29]J.L.Feldman,D.J.Singh,C.Kendziora,D.Mandrus and B.C.Sales,Lattice dynamics of filled skutterudites:La(Fe,Co)_4Sb_(12)[J],Phys.Rev.B,(2003),68(9),094301.
    [30]L.Yang,L.T.Zhang and J.S.Wu,Effect of density on the thermoelectric properties of the filled slmtterudite compound La_(0.75)Fe_3CoSb_(12)[J],Acta Phys.Sin.,(2004),53(2),537-542.
    [31]X.F.Tang,L.D.Chen,T.Goto,T.Hirai and R.Z.Yuan,Synthesis and thermoelectric properties of filled skutterudite compounds Ce_yFe_xCo_(4-x)Sb12 by solid state reaction[J],J.Mater.Sci.,(2001),36(22),5435-5439.
    [32]X.F.Tang,H.Li,Q.J.Zhang,M.Niino and T.Goto,Synthesis and thermoelectric properties of double-atom-filled skutterudite compounds Ca_mCe_nFe_xCo_(4-x)Sb_(12)[J],J.Appl.Phys.,(2006),100(12),123702.
    [33]X.Shi,W.Zhang,L.D.Chen,J.Yang and C.Uher,Theoretical study of the filling fraction limits for impurities in CoSb_3[J],Phys.Rev.B,(2007),75(23),235208.
    [34]L.D.Chen,T.Kawahara,X.F.Tang,T.Goto,T.Hirai,J.S.Dyck,W.Chen and C.Uher,Anomalous barium filling fraction and n-type thermoelectric performance of Ba_yCo_4Sb_(12)[J],J.Appl.Phys.,(2001),90(4),1864-1868.
    [35]T.Caillat,J.P.Fleurial and A.Borshchevsky,Bridgman-solution crystal growth and characterization of the skutterudite compounds CoSb_3 and RhSb_3[J],J.Cryst.Growth,(1996),166(1-4),722-726.
    [36]G.A.Slack and V.G Tsoukala,Some Properties of Semiconducting IrSb_3[J],J.Appl.Phys.,(1994),76(3),1665-1671.
    [37]K.T.Wojciechowski,Effect of tellurium doping on the thermoelectric properties of CoSb_3[J],Mater.Res.Bull.,(2002),37(12),2023-2033.
    [38]X.Y.Li,L.D.Chen,J.F.Fan,W.B.Zhang,T.Kawahara and T.Hirai,Thermoelectric properties of Te-doped CoSb_3 by spark plasma sintering[J],J.Appl.Phys.,(2005),98(8),083702.
    [39]T.Caillat,A.Borshchevsky and J.-P.Fleurial,Properties of single crystalline simiconductiong CoSb_3[J],J.Appl.Phys.,(1996),80(8),4442-4449.
    [40]B.C.Sales,B.C.Chakoumakos and D.Mandrus,Thermoelectric properties of thallium-filled skutterudites[J],Phys.Rev.B,(2000),61(4),2475-2481.
    [41]J.S.Dyck,W.D.Chen,C.Uher,L.Chen,X.F.Tang and T.Hirai,Thermoelectric properties of the n-type filled skutterudite Ba_(0.3)Co_4Sb_(12) doped with Ni[J],J.Appl.Phys.,(2002),91(6),3698-3705.
    [42]G.S.Nolas,M.Kaeser,R.T.Littleton and T.M.Tritt,High figure of merit in partially filled ytterbium skutterudite materials[J],Appl.Phys.Lett.,(2000),77(12),1855-1857.
    [43]Y.Z.Pei,L.D.Chen,W.Zhang,X.Shi,S.Q.Bai,X.Y.Zhao,Z.G Mei and X.Y.Li,Synthesis and thermoelectric properties of K_yCo_4Sb_(12)[J],Appl.Phys.Lett.,(2006),89(22),221107.
    [44]M.Puyet,B.Lenoir,A.Dauscher,M.Dehmas,C.Stiewe and E.Muller,High temperature transport properties of partially filled Ca_xCo_4Sb_(12) skutterudites[J],J.Appl.Phys.,(2004),95(9),4852-4855.
    [45]X.Y.Zhao,X.Shi,L.D.Chen,W.Q.Zhang,W.B.Zhang and Y.Z.Pei,Synthesis and thermoelectric properties of Sr-filled skutterudite Sr_yCo_4Sb_(12)[J],J.Appl.Phys.,(2006),99(5),053711.
    [46]I.H.Kim,S.C.Ur.Thermoelectric properties of Fe-doped CoSb_3 prepared by mechanical alloying and vacuum hot pressing[J].Mater Lett.2007,61(11-12):2446-2450.
    [47]W.S.Liu,B.P.Zhang,J.F.Li ea tl.Enhanced thermoelectric properties in CoSb_(3-x)Te_x alloys prepared by mechanical alloying and spark plasma sintering[J].J.Appl.Phys.2007,102:103717-103721.
    [48]G.A.Lamberton,S.Bhattacharya,R.T.Littleton Ⅳ.et al.High figure of merit in Eu-filled CoSb_3-based skutterudites[J].Appl.Phys.Lett.2002,80(4):598.
    [49]G.S.Nolas,M.Kaeser,R.T.Littleton Ⅳ,et al.High figure of merit in partially filled ytterbium skutterudite materials[J].Appl.Phys.Lett.200,77(12):1855.
    [50]L.D.Chen,T.Kawahara,X.F.Tang.Anomalous barium filling fraction and n-type thermoelectric performance of Ba_yCo_4Sb_(12)[J].J.Appl.Phys.2001,90(4):1864.
    [51]X.F.Tang,Q.J.Zhang,L.D.Chen et al.Synthesis and thermoelectric properties of p-type-and n-type-filled skutterudite R_yM_xCo_(4-x)Sb_(12)(R:Ce,Ba,Y;M:Fe,Ni)[F].J.Appl.Phys.2005,97(9):093712.
    [52]J.Yang,W.Zhang,S.Q.Bai.et al.Dual-frequency resonant phonon scattering in Ba_xR_yCo_4Sb_(12)(R=La,Ce,and Sr)[J].Appl.Phys.Lett.2007,90:192111.
    [53]X.F.Tang,Q.J.Zhang,L.D.Chen,T.Goto,T.J Hirai.Synthesis and thermoelectric properties of p-type and n-type-filled skutterudite R_yM_xCo_(4-x)Sb_(12)(R:Ce,Ca,Y;M:Fe,Ni)[J].Appl.Phys;2005,97(9):093712-093715.
    [54]T.Caillat,J.Kulleck,A.Borshchevsky,J.-P Fleurial.Preparation and thermoelectric properties of the skutterudite-related phase Ru_(0.5)Pd_(0.5)Sb_3[J]J.Appl.Phys.,1996,79(11):8419-8426.
    [55]L.G.A.amberton,S.Bhattacharya,R.T.Littleton,M.A.Kaeser,R.H.Tedstrom,T.M.Tritt,J.Yang,G.S.Nolas.High figure of merit in Eu-filled CoSb_3-based skutterudites[J].Appl.Phys.Lett,2002,80(4):598-600.
    [56]D.T.Morelli,G.P.Meisner,B.X.Chen,S.Hu,C.Uher.Cerium filling and doping of cobalt triantimonide[J].Phys.Rev.B,1997,56:7376-7383.
    [57]Y.Z.Pei,L.D.Chen,W.Zhang,X.Shi,S.Q.Bai,X.Y.Zhao,Z.G.Mei,X.Y.Li.Synthesis and thermoelectric properties of K_yCo_4Sb_(12)[J].Appl.Phys.Lett,2006,89:221107-221110.
    [58]M.Puyet,B.Lenoir,A.Danscher,M.Dehmas,C.Stiewe,E.M(u|¨)ller.High temperature transport properties of partially filled Ca_xCo_4Sb_(12) skutterudites[J].J.Appl.Phys;2004,95:4852-4855.
    [59]B.C.Sales,D.Mandrus,B.C.Chakoumakos,V.J.Keppens,R.Thompson.Filled skutterudite antimonides:Electron crystals and phonon glasses[J].Phys.Rev.B,1997.56(23):15081- 15089.
    [60]B.C.Sales,D.Mandrus,R.K.Williams.Filled skutterudite antimonides:A new class of thermoelectric materials[J].Science,1996.272(5266):1325-1328.
    [61]G.S.Nolas,D.T.Morelli,T.M.Tritt.Skutterudites:A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications[J].Annu.Rev.Mater.Sci.,1999.29:89- 116.
    [62]X.Shi,H.Kong,C.P.Li,C.Uher,J.Yang.Low thermal conductivity and high thermoelectric figure of merit in n-type Ba_xYb_yCo_4Sb_(12) double-filled skutterudites[J].Appled Physics Letters 2008,92:182101-182103
    [63]K.F.Hsu,S.Loo,F.Guo.et al.Cubic AgPb_mSb_(2+m):Bulk Thermoelectric Materials with High Figure of Merit[J].Science,2004,303:818-821.
    [64]B.A.Cook,J.L.Harringa,S.H.Han.et al.Si_(80)Ge_(20) thermoelectric alloys prepared with GaP additions[J].J.Appl.Phys.1995,78(9):5474.
    [65]P.C.Zhai,W.Y.Zhao,Y.Li.et al.Nanostructures and enhance thermoelectric properties in Ce-filled skutterudite bulk materials[J].Appl.Phys.Lett 2006,89:052111.
    [66]X.Y.Zhao,X.Shi,L.D.Chen.et al.Synthesis of Yb_yCo_4Sb_(12)/Yb_2O_3 composites and their thermoelectric properties[J].Appl.Phys.Lett 2006,89:092121.
    [67]J.L.Mi,X.B.Zhao,T.J.Zhu.et al.Improved thermoelectric figure of merit in n-type CoSb_3 based nanocomposites[J].Appl.Phys.Lett.2007,91(17):172116.
    [68]G.Jeffrey Snyder.Small thermoelectric generators[J].The electronchemical society interface,fall 2008.
    [69]D.T.Morelli,T.Caillat,J.P.Fleurial,A.Borshchevsky,J.Vandersande,B.Chen and C.Uher,Low-temperature transport properties of p-type CoSb_3[J].Phys.Rev.B,(1995),51(15),9622-9628.
    [70]Chung D Y,Hogan T,Brazis P,Rocci-Lane M,Kannewurf C,Bastea M,Uher C and Kanatzidis M G CsBi_4Te_6:A high-performance thermoelectric material for low-temperature applications[J].Science,2000,287(5455):1024-1027.
    [71]Singh D J,Mazin Ⅱ.Phys Rew B,1997,56(4):1650.
    [72]Snyder G J and Ursell T S.Thermoelectric efficiency and compatibility[J].Phys.Rev.Lett,2003,91(14):148301.
    [73]Kuznetsov V L,Kuznetsova L A,Rowe D M.Effect of partial void filling on the transport properties of Nd_xCo_4Sb_(12) skutterudites[J].J.Phys.:Condens.Matter;2003,15:5035- 5048.
    [74]Nolas G S,Cohn J L,Slack G A.Effect of partial void filling on the lattice thermal conductivity of skutterudites[J].Phys.Rev.B,1998,58:164-170
    [75]Yang J Y,Chen Y H,Zhu W,Peng J Y,Bao S Q,Fan X A,Duan X K,Effect of La filling on thermoelectric properties of La_xCo_(3.6)Ni_(0.4)Sb_(12)-filled skutterudite prepared by MA-HP method[J].Journal of Solid State Chemistry;2006,179:212-216.
    [76]Zhang J.X,Zhang L,Lu Q M,Liu K G,Liu D M,Zhou M L,Zuo T Y,Preparation and thermoelectric properties of n-type La_(0.9)Ni_xCo_(4-x)Sb_(12) compounds[J].Journal of Functional Materials and Devices;2004,10:59-62.
    [77]刘恩科,朱秉升,罗晋生.半导体物理学[M],第4版,北京:国防工业出版社,1997:292.
    [78]糜建立,赵新兵,朱铁军,曹高劭.Te掺杂方钴矿CoSb_3的溶剂热合成及电学性能[J].无机材料学报,2007,22(5):869-872.
    [79]Takizawa H,Uheda K,Endo T.A new high-pressure polymorph of NiSb_2[J].Intermetallics;2000,8:1399-1403.
    [80]王焜,唐新峰.张清杰.稀土元素Ce填充P型方钴矿化合物的热电性能[J].半导体学报,2006,27(6):1.21-1025.
    [81]糜建立.方钴矿基热电材料的纳米化及热电性能:[博士学位论文].浙江大学,2008
    [82]张倩.Mg_2(Si,Sn)基热电材料的合金化和复合化研究:[博士学位论文].浙江大学.2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700