霍山石斛苯丙氨酸解氨酶的分离纯化、酶学特性及外界影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
霍山石斛(Dendrobium huoshanense C. Z. Tang et S. J. Cheng)产于安徽省霍山县,是国家重点保护的传统名贵药用植物;其富含石斛多糖和生物碱等多种生物活性成分,具有益胃生津、滋阴清热、抗衰老、提高机体免疫力等功效。但由于霍山石斛中生物碱含量普遍较低,无法满足市场的需求,因此,加强霍山石斛次生产物合成调控,提高生物碱含量,促进药用品质改善,成为霍山石斛研究中的重点。
     苯丙氨酸解氨酶(phenylalanine ammonia-lyase,PAL,EC4.3.1.5) ,是苯丙烷类代谢途径的关键酶和限速酶,其主要催化L-苯丙氨酸脱氨生成反式肉桂酸,可为多种酚类、生物碱、类黄酮等终产物提供前体物质。已有研究表明石斛生物碱含量与PAL活性有关,PAL可能是石斛属植物生物碱合成的关键因素之一。研究霍山石斛PAL可以为进一步研究PAL在生物碱调控中的作用机理提供基础,还可以为常规育种或生物技术育种创造高含量生物碱的霍山石斛提供基础。本研究以霍山石斛组织培养试管苗为材料,进行了PAL的分离纯化、基本酶学性质和外界影响因子的研究。主要研究结果如下:
     采用35%-75%饱和硫酸铵分级沉淀、透析袋脱盐、PEG20000浓缩、DE-52阴离子交换层析和Sephadex G-150凝胶层析对PAL进行分离纯化,得到了分离纯化的PAL,蛋白质得率为1.29%,酶的得率为10.38%,纯化倍数为8。样品于SDS-聚丙烯酞胺凝胶电泳检验为单一蛋白带,说明得到了PAL纯品。
     SDS-PAGE测量该酶亚基分子量时,考马斯亮蓝R-250染色后凝胶上仅有一条带,说明该酶各亚基大小相等;由该带的相对迁移率和由标准蛋白质迁移率所得的标准曲线得到该酶的亚基分子量约为50KD。因大多数植物PAL由4个相同大小的亚基构成,推测该酶的分子量约为200KD。
     纯化后的霍山石斛PAL,于210-340nm波长下进行波长扫描发现,在220nm有肽键的强吸收,说明可能有共轭体系的存在;在280nm附近处(284nm)有吸收峰,说明酶分子中存在含苯基侧链的氨基酸残基。
     PAL反应进程曲线表明,在3h以内,反应产物与反应时间基本成线性关系。PAL在硼酸缓冲液中最适pH值为pH8.4,在pH8.2-8.6之间有较高的稳定性,用pH4.0和pH10.0的缓冲液处理,均会使酶分子结构发生变化,导致酶活性降低。PAL最适反应温度是45℃,而且具有较好的耐热性,60℃处理20min其残存活性仍保持在50%以上。随着底物L-苯丙氨酸浓度的逐渐增大,酶的活性也逐渐增大,最适底物浓度为2mmol/L。以D-苯丙氨酸、L-酪氨酸代替L-苯丙氨酸作为霍山石斛PAL反应底物,L-Phe作为反应底物与D-Phe及L-Tyr作为反应底物对PAL活性影响的差异达到极显著水平,差异达到1%极显著水平。而随着酶液浓度的增加,反应速度也随之增加,当酶液量达到一定时,反应速度突然加快,当达到更高浓度之后反应速度将减缓。用Lineweaver-Burk法进行双倒数作图,计算得两个Km值分别为:Km1为0.4425×10-3mol/L,Km2为0.847×10-4mol/L,贮存实验证明该酶最好在-20℃下用甘油贮存。
     重金属AgNO3,HgCl2都能不同程度地抑制酶活性,且两者对PAL活性的抑制均达到极显著水平。EDTA、EDTA-Na2对PAL都有较强的抑制作用,但与对照相比,EDTA-Na2处理差异不显著,而EDTA差异极显著。AlCl3、ZnSO4、MnSO4、MgSO4都不同程度地促进PAL的活性,但与对照相比差异均未达到极显著,最佳处理效果为AlCl3>ZnSO4>MgSO4>MnSO4;在供试浓度范围内,最佳处理浓度为AlCl3 1mmol/L、ZnSO4 1mmol/L、MgSO4 2mmol/L、MnSO4 1mmol/L。而CuSO4、CaCl2(0.5mmol/L除外)都不同程度地抑制酶的活性,与对照相比CuSO4差异极显著,CaCl2处理差异不显著。Al3+盐不同形态对PAL酶活性影响不同,AlCl3、Al2(S04)3均能促进PAL酶活性升高,且与对照相比,均达5%显著水平,但AlCl3的促进作用优于Al2(S04)3;Al(N03)3处理则抑制PAL活性,但与对照相比,未达显著水平。
     L-酪氨酸、L-组氨酸、L-胱氨酸、L-半胱氨酸、D-苯丙氨酸均是霍山石斛PAL的抑制剂,与对照相比均达到极显著水平,而且L-胱氨酸抑制程度随抑制剂浓度增加而增强。
The herb of Dendrobium huoshanense is a kind of precious traditional Chinese medicinal materials in Anhui Province and is protected by government for its medicinal value.Because it has affluent amylose and alkaloids,it can diminish inflammation,clear the sight and improve the immunity of human body.But because of its low alkaloids content,it has been unable to meet the needs of the market.So strengthening the secondary metabolites’s synthesize control,increasing alkaloids content and accelerating the improvement of medicinal value become emphases in Dendrobium’s study.
     Phenylalanine ammonia-lyase (PAL,EC4.3.1.5) mostly catalyzes the spontaneous nonoxidative deamination of L-phenylalanine(L-Phe) to trans-Cinnamic acid, which provides precursors for alkaloids,phenolics,flavanoids and isoflavanoids.PAL is the key enzyme and rate-limit enzyme in phenylpropanoid pathway.Some researches indicated that the differentiation of Dendrobium’s alkaloids content related to PAL activity.PAL may be the key factor for the synthesize of Dendrobium’s alkaloids.Study on D. huoshanense PAL and its properties can interpret the function of PAL in synthesize of alkaloids,and can lay the base for artificially creating higher alkaloids content D. huoshanense by routine breeding or genetic engineering.In this research,PAL was isolated and purified from D. huoshanense and the characterization of the PAL and its outer factors was studied.The main results were as followes:
     1.After series isolating and purifying process of precipitation between 35% and 75% ammonium sulfate saturation, dialysis, concentration by PEG20000,DE-52 anion- exchange chromatography and Sephadex G-150 filtration column,the recovery of protein was 1.29%,and that of PAL was 10.38%, and the purification multiple was 8.
     2.The molecular weight of the subunit was measured by SDS-PAGE, and one protein band was observed, which proved that the PAL was purified to homogeneity.The molecular weight of the subunit was measured was 50KD by the Rf of the subunit according to the standard line obtained from the Rf of the standard proteins. And it was reported that PAL was made up of four subunits in the same size,so it was estimated that the molecular weight of D. huoshanense PAL was about 200 KD.
     3.PAL,which was purified,had strong absorbance at 220nm and 284nm by UV, speculating that it has conjugate structure and contain amino acid groups of phenyl-containing.
     4.The chart of PAL reaction showed that the output and reaction time was linear in 3h.Its optimum pH was 8.4 in boracic acid buffer and PAL can remain stable in pH8.2-8.6. After being treated with pH4.0 and pH10.0 buffer,the PAL activities fell because of the molecular structure of enzyme changed.The optimum temperature of PAL was 45℃and the PAL can be able to bear higher temperature,its activity remained about 50% under 20 min at 60℃.Along with the augment of L-Phe’s concentration,the activity of PAL was increased gradually,and the optimum substrate concentration was 2mmol/L. When L-Phe was replaced by D-Phe or L-Tyr as substance on PAL activity,the effects between L-Phe and D-Phe or L-Tyr were extremely significant.While along with the augment of PAL’s concentration,the reaction rate was increased gradually,and when achieving stated concentration the reaction rate quickened abruptly but was slowdown after achieving a higher concentration.By the Lineweaver-Burk plot for Km,there are two Km values:Km1=0.4425×10-3mol/L, Km2= 0.847×10-4mol/L.PAL had better be reserved in low temperature with glycerol.
     5.Heavy metal salts AgNO3 and HgCl2 all inhibited PAL activities in different degree,and compared with contral the effects were extremely significant. EDTA and EDTA-Na2 inhibited PAL activities,but compared with contral the effect of EDTA was extremely significant while EDTA-Na2 was not. AlCl3,ZnSO4,MnSO4 and MgSO4 enhanced the PAL activities in diferent degree and these effect were not obvious compared with contral.The effect ranked was AlCl3>ZnSO4>MgSO4>MnSO4 and the most effective concentrations in the present experiment were as followed: AlCl3 1mmol/L,ZnSO4 1mmol/L,MgSO4 2mmol/L and MnSO4 1mmol/L.However, CuSO4 and CaCl2 (except 0.5mmol/L) inhibited the PAL activities.Compared with contral the effect of CuSO4 was extremely significant but was not obvious for diferent concentrations CaCl2. The effects of different Al3+ salts on PAL activities were different. AlCl3 and Al2(S04)3 enhanced the PAL activities and the effects were significant, while AlCl3’effects were higher than Al2(S04)3’.Al(N03)3 inhibited PAL activities, and the effect was not obvious.
     6.L-Tyr,L-His,L-cystine,L-Cys and D-Phe were all PAL’inhibitor,and the effects were extremely significant compared with contral.And the results also showed that the inhibitory effects increased with the rise in the concentration of the L-cystine.
引文
[1]吉占和.中国植物志(19卷)[M].北京:科学出版社, 1999
    [2]中华人民共和国卫生部药典委员会.中国药典(一部)[M].北京:化学工业出版社, 2000
    [3]王德群,彭华胜.霍山石斛的名实混乱与原植物[J].中国中药杂志, 2004, 29(12): 1198-1199
    [4]唐振缁,程式君.中药“霍山石斛”原植物的研究[J].植物研究, 1984, 4(3) : 141
    [5]袁超.亟待保护与开发的濒危中草药-霍山石斛[J].安徽科技, 2001, 9: 21
    [6]王旭红,余国奠.中国兰科药用植物[J].中国野生植物资源, 1993, (4): 15-22
    [7]崔田,马洪怡.霍山石斛的研究概况[J].吉林中医药, 2007, 27(10) : 66-68
    [8]魏小勇.石斛属植物生物碱研究进展[J].中国药事, 2005, 19(7): 445-447
    [9]包雪声,顺庆生,陈立钻.中国药用石斛彩色图谱[M].上海:上海医科大学出版社、复旦大学出版社, 2001
    [10]吴立军.天然药物化学[M].北京:人民卫生出版社, 2000
    [11]丁亚平,吴庆生,于力文.铁皮石斛最佳采收期的理论探讨[J].中国中药杂志, 1998, 23(8): 458
    [12]金蓉鸾,孙继军,张远名. 11种石斛的总生物碱的测定[J].南京药学院报, 1981, 1: 9-10
    [13]丁亚平,杨道麒,吴庆生,等.安徽霍山三种石斛总生物碱的测定及其分布规律研究[J].安徽农业大学学报, 1994, 21(4): 503
    [14]于力文,蔡永萍,张鹤英,等.安徽霍山三种石斛营养成分分析及其分布规律[J].安徽农业科学, 1996, 24(4): 369-370
    [15]汪曙,林毅,蔡永萍,等.霍山石斛杂交种与亲本生长生理指标及药效成分含量的比较[J].中国中药杂志, 2006, 31(17): 1401-1403
    [16]欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控[J].植物生理学通讯, 1988, 24(3): 9-l6
    [17]江昌俊,余有本.苯丙氨酸解氨酶的研究进展(综述)[J].安徽农业大学学报, 2001, 28(4): 425-430
    [18]欧阳光察,应初衍,沃绍根,等.植物苯丙氨酸解氨酶的研究.Ⅵ.水稻、小麦PAL的纯化及基本特性[J].植物生理学报, 1985, l1 (2) : 204-214
    [19]Lim H W, Park SS, Lim CJ. Purification and properties of phenylalanine ammonia- lyase from leaf mustard[J]. Molecules and Cells, 1997, 7(6): 715-720
    [20]刘鸿年,刘发敏.茶鲜叶苯酸氨酸解氨酶的提取及其活性测定[J].中国茶叶,1989(1): 4-5
    [21]R Subramaniam, S Reinold, E K Molitor, et al. Structure, inheritance, and expression of hybrid poplar(Populus trichocarpa×Populus deltoides) phenylalanine ammonia-lyase genes[J]. Plant Physiology, 1993, (102): 71-83
    [22]荣瑞芬,郭堃,厉重先,等.紫外照射诱导采后番茄苯丙氨酸解氨酶的分离纯化[J].北方园艺, 2007, (12): 1-4
    [23]姜红林,梁颖.甘蓝型油菜苯丙氨酸解氨酶的分离纯化与性质研究[J].中国农学通报, 2006, 22(7): 282-286
    [24]Hanson K R, Havir E A. Phenylalanine ammonia-lyase[J]. The Biochemistry of Plants, 1981, 7: 578-621
    [25]Laura Jane M S, Ricardo L, Dulce D O. Compartmentation of phenolic compounds and phenylalanine ammonia-lyase in leaves of Phyllanthus tenellus Roxb. and their induction by copper sulphate[J]. Annals of Botany, 2000, 86(5): 1023
    [26]赵健身,杨顺楷.苯丙氨酸解氨酶[J].天然产物研究与开发, 1993, 5(4): 47-56
    [27]M Jason MacDonald, Godwin B D'Cunha. A modern view of phenylalanine ammonia lyase[J]. Biochemistry and Cell Biology, 2007, 85, 3: 273-282
    [28]Lois R, Dietrich A, Hahlbrock K, et a1. A phenylalanine ammonia-lyase gene from parsley structure, regulation and identification of elicitor and light responsive cis-acting elements[J]. The EMBO Journa1, 1989, 8(6): 1641-164
    [29]江柯,卢涛,赵德立,等.红酵母苯丙氨酸解氨酶的分离纯化及性质研究[J].四川大学学报(自然科学版), 2004, 41(4): 865-868
    [30]牛三勇,杜欣.绿豆苯丙氨酸解氨酶的分离提纯及抗肿瘤的初步研究[J].兰州医学院学报, 1992, 18(3): 148-151
    [31]孟延发.无壳葫芦籽苯丙氨酸解氨酶的纯化及其基本性质[J].兰州大学学报(自然科学版) ,1991, 27(2) : 134-139
    [32]江力,袁怀波,张世杰,等.山药苯丙氨酸解氨酶特性的研究[J].食品科学, 2006, 27(10) : 36-40
    [33]Bolwell GP, Bell JN, Cramer CL, et a1. L-phenylalanine ammonia-lyase from Phaseolus vulgaris, characterization and differential induction of multiple forms from elicitor-treated cell suspension cultures[J]. European Journal of Biochemistry, 1985, 149: 411-419
    [34]杨顺楷,杨亚力,杨维力.苯丙氨酸解氨酶(PAL,EC4.3.1.5)反应机理研究新进展[J].生物加工过程, 2004, 2(4) : 1-5
    [35]邱枫,许雷,高洪文.柠条幼苗发育中苯丙氨酸解氨酶活性[J].亚热带农业研究,2006, 2(3) : 184-187
    [36]王定康,刘敬业,冉邦定,等.烤烟成熟期中苯丙氨酸解氨酶动态的研究[J].牡丹江大学学报, 2000, 9(1): 36-38
    [37]应初衍,刘山莉,欧阳光察.大麦苯丙氨酸解氨酶的内源性抑制物[J].植物生理学通讯, 1989, 2: 39-41
    [38]宛国伟,董娟娥,梁宗锁,等.培养条件对离体丹参根苯丙氨酸解氨酶和多酚氧化酶活性的影响[J].西北植物学报, 2007, 27(12): 2471-2477
    [39]Ming-Jie CHEN, Veerappan V, Bing-Wen LU, et al. Cis- and trans- cinnamic acids have different effects on the catalytic properties of Arabidopsis phenylalanine ammonia lyases PAL1, PAL2, and PAL4[J]. Journal of Integrative Plant Biology, 2005, 47(1): 67-75
    [40]江力,袁怀波,周强,等.底物和产物对鲜切山药苯丙氨酸解氨酶活性的影响[J].食品科学, 2007, 28(10): 35-38
    [41]王燕,刘卫红,杜何为,等.底物、末端产物对离体银杏叶苯丙氨酸解氨酶活性的影响[J].果树学报, 2004, 21(5) : 443-446
    [42]Appert C, Zon J, Amrhein N. Kinetic analysis of the inhibition of phenylalanine ammonia-lyase by 2-aminoindan-2-phosphonic acid and other phenylalanine analogues[J]. Phytochemistry, 2003, 62(3) : 415-422
    [43]赵健身,杨顺楷.β-环糊精对苯丙氨酸解氨酶反应影响的研究[J].天然产物研究与开发, 1995, 7(2): 27-32
    [44]刘芳,李红旗,沈忠耀.重组大肠杆菌苯丙氨酸解氨酶稳定性和反式肉桂酸的转化[J].化学反应工程与工艺, 2007, 23(4) : 326-331
    [45]刘卫红,程水源.光照及机械损伤对银杏叶苯丙氨酸解氨酶活性的影响[J].湖北农业科学, 2003, 3: 73-75
    [46]Ahmed E G, Charles L W, Ann M C. Induction of chitinase, (beta-1,3-glucanase), and phenylalanine ammonia lyase in peach fruit by UV-C treatment[J]. Phytopathology, 2003, 93(3): 349-355
    [47]程水源,王燕,刘卫红,等.生长调节剂对离体银杏叶苯丙氨酸解氨酶活性的影响[J].植物资源与环境学报, 2005, 14(1): 20-22
    [48]Pellegrini L, Rohfritseh O. Phenylalanine ammonia-lyase in tobacco[J]. Plant Physiol, 1994, 106: 877-886
    [49]Wajahatullah K, Balakrishnan P, Donald L S. Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves[J]. Journal of Plant Physiology, 2003, 160(8): 859
    [50]张淑珍,徐鹏飞,吴俊江,等.大豆疫霉根腐病菌毒素处理抗感不同大豆品种后苯丙氨酸解氨酶活性的变化[J].作物杂志, 2008, 1: 47-49
    [51]梁颖,李加纳.甘蓝型油菜种皮色泽形成与相关酶及蛋白质含量的关系[J].中国农业科学, 2004, 37(4) : 522-527
    [52]明兴加,李坤培,叶小利,等.紫色甘薯生长过程中花色素含量变化研究[J].西南师范大学学报(自然科学版), 2006, 31(4): 162-166
    [53]杨光道,段琳,束庆龙,等.油茶果皮花青素、糖含量和PAL活性与炭疽病的关系[J].林业科学, 2007, 43(6): 100-104
    [54]刘国强,吴锦程,唐朝晖,等.枇杷采后酚类物质代谢与果肉木质化的关系[J].中国农学通报, 2008, 24(1): 247-251
    [55]宾金华,姜胜,黄胜琴,等.茉莉酸甲酯诱导烟草幼苗抗炭疽病与PAL活性及细胞壁物质的关系[J].植物生理学报, 2000, 26(1) : 1-6
    [56]胡美娇,刘秀娟,黄圣明.热处理后芒果、香蕉果皮PAL活性变化与炭疽病发生的关系[J].热带作物学报, 2000, 21(4) : 63-68
    [57]邢会琴,李敏权,徐秉良,等.过氧化物酶和苯丙氨酸解氨酶与苜蓿白粉病抗性的关系[J].草地学报, 2007, 15(4): 376-380
    [58]李新,司龙亭.黄瓜不同品种苗期感染枯萎病菌后几种酶活性的变化[J].华北农学报, 2007, 22(B08): 9-11
    [59]金庆超,叶华智,张敏.苯丙氨酸解氨酶活性与玉米对纹枯病抗性的关系[J].四川农业大学学报, 2003, 21(2) : 116-118
    [60]马桂珍,暴增海,刘云鹤,等.粘帚霉生防菌株发酵液对大豆幼苗中几种防御酶活性的影响[J].吉林农业大学学报, 2007, 29(3): 267-270
    [61]郭文硕.杉木对炭疽病的抗性与苯丙氨酸解氨酶的关系[J].应用与环境生物学报, 2002, 8(6) : 592-595
    [62]刘亚光,李海英,杨庆凯.大豆品种的抗病性与叶片内苯丙氨酸解氨酶活性关系的研究[J].大豆科学, 2002, 21(3) : 195-198
    [63]程茂高,乔卿梅,蒋士君. HarpinEa激发烟草叶片过敏性反应与苯丙氨酸解氨酶活性的关系[J].烟草科技, 2007, 11: 63-66
    [64]毛爱军,王永健,冯兰香,等.水杨酸诱导辣椒抗疫病生化机制的研究[J].中国农学通报, 2005, 21(5): 219-222,468
    [65]王晓华,张东方,郑珺.苯丙氨酸解氨酶诱导人白血病HL-60细胞凋亡的初步研究[J].肿瘤防治杂志, 2004, 11(2) : 142-144
    [66]唐宇.荞麦中苯丙氨酸解氨酶活力与黄酮含量的关系[J].绵阳经济技术高等专科学校学报, 1998, 15(1): 9-12
    [67]刘金福,李晓雁,孟蕊.苦荞发芽过程中促进黄酮合成的因素初探[J].食品工业科技, 2006, 27(10): 106-108
    [68]房建军,阙国宁,韩一凡.银杏细胞培养中影响黄酮积累量的几个因素[J].林业科学研究, 2006, 19 (1): 51-53
    [69]田向军,邱宗波,刘晓,等.增强UV-B辐射对小麦叶片黄酮类化合物日变化的影响[J].环境科学学报, 2007, 27(3): 516-521
    [70]张长平,孙安慈,元英进.真菌诱导子对悬浮培养南方红豆杉细胞态势及紫杉醇合成的影响[J].生物工程学报, 2001, 17(4): 436-440
    [71]张长平,李春.真菌诱导子对悬浮培养南方红豆杉细胞次生代谢的影响[J].化工学报, 2002, 53(5): 498-502
    [72]张长河,余龙江,梅兴国,等. Chitosan对红豆杉PAL及Taxol合成的影响[J].华中理工大学学报, 1999, 27(4): 104-106
    [73]余龙江,蔡永君,兰文智.红豆杉细胞周期时相与紫杉醇诱导合成的关系初探[J].武汉植物学研究, 2001, 19(6): 509-512
    [74]李春,元英进,马忠海,等.寡聚糖诱导悬浮培养南方红豆杉细胞的凋亡[J].植物学报, 2002, 44(5): 598-602
    [75]李家儒,管志勇,刘曼西,等. Cu2+对红豆杉培养中紫杉醇形成的影响[J].华中农业大学学报, 1999, 18(2): 117-120
    [76]梅兴国,张舟宁,苏湘鄂,等.水杨酸对红豆杉细胞的诱导作用[J].生物技术, 2000, 10(6): 18-20
    [77]王艳东,路明,元英进.甲基茉莉酮酸对悬浮培养南方红豆杉细胞代谢的影响[J].中草药, 2003, 34(1): 27-30
    [78]Jian Zhao, Zhu Wei-Hua, Qiu Hu. Enhanced catharanthine production in catha- ranthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors[J]. Enzyme and Microbial Technology, 2001, 28(7-8): 673-681
    [79]Moreno-Valenzuela O.A., Monforte-Gonzalez M., Munoz-Sanchez J.A., et al. Effect of macerozyme on secondary metabolism plant product production and phospho-lipase C activity in Catharanthus roseus hairy roots[J]. Journal of Plant Physiology, 1999, 155(4/5): 447-452
    [80]崔堂兵,罗焕亮,郭勇,等.胡桐悬浮培养细胞中苯丙氨酸解氨酶活性与红厚壳素产量的关系[J].植物生理学通讯, 2004, 4(6): 702-704
    [81]殷俊,刘超,管培珠,等.纤维素酶降解人参细胞胞壁产生的激发子诱导人参培养细胞的反应[J].实验生物学报, 1999, 32(3): 301-311
    [82]徐茂军,董菊芳,张刚. NO对金丝桃悬浮细胞生长及金丝桃素生物合成的促进作用研究[J].生物工程学报, 2005, 21(1): 66-70
    [83]李伟,杜桂森,黄勤妮.狭叶红景天愈伤组织中红景天甙含量及相关代谢酶活力的研究[J].西北植物学报, 2005, 25(8): 1645-1648
    [84]张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社, 2003
    [85]杨建雄.生物化学与分子生物学实验技术教程[M].北京:科学出版社, 2002
    [86]B.D.哈密斯, D.利克伍德.蛋白质的凝胶电泳实践方法[M].北京:科学出版社, 1986
    [87]Bolwell G P, Cramer C L, Lamb C J, et al. L-Phenylalanine ammonia-lyase from Phaseolus vulgaris: partial degradation of enzyme subunits in vitro and in vivo[J]. Biochimica et Biophysica Acta, 1986, 881: 210-217
    [88]孟延发,辛嘉英.植物苯丙氨酸解氨酶的研究: I.鹰嘴豆PAL的纯化及其基本性质[J].兰州大学学报(自然科学版), 1990, 26(8) : 109-113
    [89]王燕,刘卫红,杜何为,等.银杏叶中苯丙氨酸解氨酶基本特性的研究[J].湖北农业科学, 2004, (4): 72-74
    [90]李艳华,王庆国.芦笋过氧化物酶和苯丙氨酸解氨酶特性及抑制条件的研究[J].食品与发酵工业, 2007, 33(11): 55-59
    [91]程水源,陈昆松,刘卫红,等.植物苯丙氨酸解氨酶基因的表达调控与研究展望[J].果树学报, 2003, 20(5): 351-357
    [92]Jorrin J, Dixon R A. Stress responses in alfalfa II. Purification, characterization, and induction of phenylalanine ammonia lyase isoforms from elicitor-treated cell suspension cultures[J]. Plant Physiol, 1990, 92: 447-455
    [93]Camm EL, Towers GHN. Phenylalanine ammonia lyase[J]. Phytochemisty, 1973, (12): 961-973
    [94]Whetten RW, Sederoff RR. Phenylalanine ammonia-lyase from lobloly pine. Purifrcation of the enzyme and isolation of complementary DNA clones[J]. Plant Physiology, 1992, 98 (1): 380-386
    [95]邱枫,许雷,高洪文.柠条幼苗苯丙氨酸解氨酶的纯化[J].林业科学研究, 2008, 21(2): 154-160
    [96]王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700