Al-Si合金的选择性激光熔化工艺参数与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对传统的铸造铝合金成型中对复杂形状零部件的生产存在模具成本高、生产周期长、材料利用率低等突出问题,本论文研究了选择性激光熔化(SLM)Al-Si合金的工艺参数及力学性能,讨论了工艺参数和热处理工艺对SLM Al-Si合金的显微形貌、物相分布及力学性能的影响,取得一些重要研究成果。
     获得了SLM Al-Si合金的最优化工艺参数为:激光能量,200W;激光扫描速度,375mm/s至1125mm/s;激光扫描间距,0.15mm;激光停留时间,80μs;铺粉层厚,50μm;保护气氛,Ar或N2。揭示了不同工艺参数条件下选择性激光熔化Al-Si合金的微观形貌、物相分布和力学性能。SLM Al-Si合金的微观结构由纳米级球状Si颗粒和岛状的Al基体组成,部分Si颗粒被固溶到Al基体中形成了固溶强化。本研究制得的不同Si含量的SLM Al-Si合金的强度和韧性均优于铸造Al-Si合金,其中,Al-12Si合金的断裂强度(368MPa)提高了22.7%,屈服强度(224MPa)是铸造性能的1.5倍,断裂韧性(4.8%)也提高了1倍。随着Si含量的增加,SLM Al-Si合金的断裂强度和屈服强度增大,断裂韧性减小。
     研究了热处理工艺对SLMAl-Si合金微观形貌、力学性能和冲蚀磨损性能的影响,500℃不同时间热处理后SLMAl-Si合金的微观结构中Si颗粒由纳米级长大为微米级,且均匀分布在Al基体中,使得SLM Al-Si合金的强度有所降低,韧性大幅提高,其中Al-12Si合金的断裂韧性(延伸率为25%)提高了5倍以上。180℃不同时间的时效处理后发现SLM Al-10Si-0.35Mg和Al-7Si-0.6Mg合金的屈服强度有大幅提高,分别在12h和24h时达到了最大值为210MPa和227MPa,实现了明显的强化效果。热处理前不同Si含量的SLM Al-Si合金样品的体积冲蚀率均高于热处理后SLM Al-Si合金的体积冲蚀率。SLM Al-Si合金在冲蚀磨损过程中主要发生了塑性变形。
     对SLM工艺中存在球化、热影响区、裂纹、残余应力等缺陷及形成机理进行分析并得到:激光能量密度过高或过低均会引起球化,通过优化工艺参数可防止球化缺陷的产生;激光的热辐射会导致两相邻激光扫描轨迹之间产生热影响区,造成组织不均匀,影响材料的力学性能,通过适宜的热处理能够有效地消除热影响区;裂纹的产生主要受金属粉体本身性能的影响较大,增加合金的抗热裂性能够有效地防止热裂纹的形成;残余应力和翘曲变形主要是由于熔池上下表面的冷却速度不同造成的,减小熔池上下表面的温度差是减少残余应力和翘曲变形的有效途径。
     本论文通过对Al-Si合金的SLM工艺及性能的研究,成功制备高性能的Al-Si合金,揭示了工艺参数和热处理工艺对SLMAl-Si合金组织及性能的影响规律,为Al-Si合金的快速成型(3D打印)工业应用和矿物加工用复杂形状流部件制备提供了重要的技术依据和理论基础。
Traditional casting fabrication method of Al alloy components requires tooling ordies to shape the parts. These lead highly cast, long production cycle and low materialutilization, especially for small production of complex parts. In this work, theparameters and properties of Selective Lase Melting (SLM) Al-Si alloy were studied.The effect of process parameters and solution treatment on the microstructure, phasedistribution and mechanical properties were discussed. Some important results havebeen obtained.
     The optimized parameters of SLM Al-Si alloy have been achieved. The laserpower is200W, laser scan speed is375to1125mm/s, exposure time is80μs, laserscan space is0.15mm, laser thickness is50μm, atmosphere is Ar or N2. Themicrostructure of SLM Al-Si alloy is composed by nanometer-sized Si particles andAl matrix as a result of the rapid cooling. And solid solution strengthing was causedby part of Si particles solid soluted in the Al matrix. The SLM Al-Si alloys withdifferent Si content were all superior to those produced by casting method. SLMAl-12Si alloy got1.5times the yield strength,22.7%higher ultimate tensile strengthand twice the elongation to failure. The strength of SLM Al-Si alloys increased asincreasing Si content, while the ductility decreased.
     The influence of solution treatment on the microstructure and properties wasexplored. After solution treatment at500℃, the fine Si particles have formed asmicron-sized, rounded particles and uniformly distributed in the Al matrix. Thoughthe yield stress and the ultimate tensile strength were reduced a little, there is a largeincrease in the ductility after solution treatment. The ductility of SLM Al-12Si is25%which increased more than5times. The aging treatment at180℃on the SLMAl-10Si-0.35Mg and Al-7Si-0.6Mg shows that Mg2Si phase could significantlyimprove the yield strength of SLM Al-10Si-0.35Mg and Al-7Si-0.6Mg, respectively210MPa and227MPa.
     The defects and formation mechanism during the SLM were also analyzed anddiscussed. The balling phenomenon is normally caused by the inappropriate laserenergy density. The optimized SLM process parameters of can reduce the formation of balling defect. Laser radiation of two adjacent laser tracks will cause heat-affectedzone, which resulted in disuniform microstructure and damaged the mechanicalproperties of materials. Reasonable heat treatment can effectively promote thediffusion of alloy elements, eliminating the heat-affected zone. Cracking of SLMsamples is caused mainly by the properties of the metal powders. The heat cracking ofSLM alloys could be prevented by increasing the thermal cracking resistance of alloys.Residual stress and deformation is generated mainly by the big difference of coolingrate on the upper and lower surfaces of the molten pool. How to avoid the cooling rateof upper and lower surfaces in the molten pool is an effective way to reduce theresidual stress and deformation.
     In this paper, the parameters and properties of Selective Lase Melting (SLM)Al-Si alloy were studied. And high performance SLM Al-Si alloys have been obtained.The influence of solution treatment on the microstructure, phase distribution andmechanical properties were also discussed. The results will provide the experimentaldata and theoretical basis for the industry of SLM Al-Si alloy.
引文
3D systems. sPro125and sPro250Direct Metal SLM Production Printer.2012, PN70743.
    Abdulwahab M, Madugu I A, Yaro S A, Hassan S B, et al. Effects of multiple-step thermal ageingtreatment on the hardness characteristics of A356.0-type Al-Si-Mg alloy. Materials andDesign,2011,32:1159~1166.
    Abe E, Santos E C, Kitamura Y, et al. Influence of forming conditions on the titanium model inrapid prototyping with the selective laser melting process. Journal of Mechanical EngineeringScience,2003,217(1):119~126.
    ASM Handbook. Volume03: Alloy Phase Diagrams. ASM International,1992.
    ASM Handbook. Volume15: Casting. ASM International,1992.
    Basavakumar K G, Mukunda P G, Chakraborty M. Dry sliding wear behaviour of Al–12Si andAl–12Si–3Cu cast alloys. Materials and Design,2009,30(4):1258~1267.
    BOURELL D L, MARCUS H L, BARLOW J W, et al. Selective laser sintering of metals andceramics. Princeton, NJ, ETATS-UNIS: APMI International.1992,28(4):369~381.
    Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples usingSelective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior.Materials and Design,2012,34:159~169.
    Buchbinder D, Schleifenbaum H, Heidrich S, et al. High Power Selective Laser Melting (HP SLM)of Aluminum Parts. Physics Procedia,2011,12, Part A:271~278.
    Ceschini L, Morri Alessandro, Morri Andrea, et al. Correlation between ultimate tensile strengthand solidification microstructure for the sand cast A357aluminium alloy. Materials andDesign,2009,30(10):4525~31.
    Chantikul P, Bennison S J, Lawn B R. Role of Grain Size in the Strength and R-Curve Propertiesof Alumina. Journal of the American Ceramic Society.1990,73:2419~2427.
    Chlebus E, Ku nicka B, Kurzynowski T, et al. Microstructure and mechanical behaviour ofTi-6Al-7Nb alloy produced by selective laser melting. Materials Characterization,2011,62(5):488~495.
    Darken L S, Gurry R W. Physical chemistry of metals. New York (NY): McGraw-Hill;1953.
    Ejiofor J U, Reddy R G. Developments in the Processing and Properties of Particulate Al-SiComposites. Journal of the Minerals, Metals&Materials Society,1997,49(11):31~37
    Emadi D, Gruzleski J E, Toguri J M. The effect of na and Sr modification on surface tension andvolumetric shrinkage of A356alloy and their influence on porosity formation. MetallurgicalTransactions B.1993,24(6):1055~63.
    EOS GmbH. The Product Instruction of EOSINT M280. Germany: EOS GmbH,2005.8~21.
    Finnie I, Mcfadden D H. On the velocity dependence of the erosion of ductile metals by solidparticles at low angles of incidence. Wear,1978,48:181~190
    Finnie I. The mechanism of erosion of ductile metals. In: Haythornthwaite R M, eds. Proceedingsof the Third US National179Congress on Applied Mechanics.New York: American Societyof Mechanical Engineers,1958,527~532
    Gibson I. Material properties and fabrication parameters in selective laser sintering process. RapidPrototyping Journal.1997(3):129~136.
    Gokhale A M, Patel G R. Origins of variability in the fracture-related mechanical properties of atilt-pour-permanent-mold cast Al-alloy. Scripta Materialia,2005,52(3):237~241.
    Gu D, Shen Y. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgicalmechanisms and control methods. Materials and Design,2009,30(8):2903~2910.
    Haque M M, Maleque M A. Effect of process variables on structure and properties ofaluminium–silicon piston alloy. Journal of Materials Processing Technology,1998,77(1-3):122~128.
    Haque M M, Sharif A. Study on wear properties of aluminium–silicon piston alloy. Journal ofMaterials Processing Technology,2001,118(1-3):69~73.
    Hutchings I M. A model for the erosion of metals by spherical particles at normal incidence. Wear,1981,70:269~281
    Hutchings I M. Proc. Corrosion/Erosion of Coal Conversion System Materials Conf. Houston:NACE,79-884-20,393~428
    Kempen K, Thijs L, Van Humbeeck J, et al. Mechanical Properties of AlSi10Mg Produced bySelective Laser Melting. Physics Procedia,2012,39:439~446.
    Kempen K, Yasa E, Thijs L. Microstructure and mechanical properties of Selective Laser Melted18Ni-300steel. Physics Procedia,2011,(12):255~263.
    Kent D, Schaffer G B, Sercombe T B, et al. A novel method for the production of aluminiumnitride. J. Drennan, Scripta Materialia,2006,54(12):2125~2129.
    Knuutinen A, Nogita K, McDonald S D, et al. Modification of Al–Si alloys with Ba, Ca, Y and Yb.Journal of Light Metals,2001,(1):229~40.
    Kobayashi T. Strength and fracture of aluminum alloys. Material Science and Engineering A,2000,280(2):8~16.
    Kobryn P A, Moore E H, Semiatin S L. The Effect of Laser Power and Traverse Speed onMicrostructure, Porosity and Build Height in Laser-Deposited Ti-6Al-4V. Scripta Material,2000,43:299~305.
    Krell A, Blank P. Grain Size Dependence of Hardness in Dense Submicrometer Alumina. Journalof the American Ceramic Society.1995,78:1118~1120.
    Kruth J, Froyen L, Vanvaerenbergh J, et al. Selective laser melting of iron-based powder. Journalof Materials Processing Technology,2004,149(1-3):616~622.
    Kruth J, Leu M, Nakagawa T. Progress in Additive Manufacturing and Rapid Prototyping. Annalsof the ClRP.1998,47(2):525~540.
    Kruth J. Binding mechanisms in selective laser sintering and selective laser melting. RapidPrototyping Journal,2005(11):26~36.
    Li B, Wang H, Jie J, et al. Effects of yttrium and heat treatment on the microstructure and tensileproperties of Al–7.5Si–0.5Mg alloy. Materials and Design.2011,32(3):1617~22.
    Li J H, Schumacher P. Effect of Y addition and cooling rate on refinement of eutectic Si in Al-5wt-%Si alloys. International Journal Of Cast Metals Research.2012,25:347~57.
    Li R, Liu J, Shi Y, et al.316L Stainless Steel with Gradient Porosity Fabricated by Selective LaserMelting. Journal of Materials Engineering and Performance,2010,19(5):666~671.
    Limowicz T F. The Large-Scale Cormercialization of Aluminum-Ma-trix Corposites. IndurstrialInsight,1994,(11):49~53.
    Lin C Y, Wirtz T, LaMarca F, et al. Structural and mechanical evaluations of a topology optimizedtitanium interbody fusion cage fabricated by selective laser melting process. Journal ofBiomedical Materials Research Part A,2007,83A (2):272~279.
    Louvis E, Fox P, Sutcliffe C J. Selective laser melting of aluminium components. Journal ofMaterials Processing Technology,2011,211(2):275~284.
    Lu L, Nogita K, Dahle A K. Combining Sr and Na additions in hypoeutectic Al–Si foundry alloys.Materials Science and Engineering: A,2005,399(1-2):244~253.
    Lu S Z, Hellawell A. The mechanism of silicon modification in aluminum-silicon alloys: Impurityinduced twinning. Metallurgical Transactions A.1987,18(10):1721~33.
    MacAskill I A, Hexemer Jr R L, Donaldson I W, et al. Effects of magnesium, tin and nitrogen onthe sintering response of aluminum powder. Journal of Materials Processing Technology,2010,210(15):2252~2260.
    Manfredi D, Calignano F, Krishnan M, et al. From Powders to Dense Metal Parts:Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal LaserSintering. Materials,2013,6(3):856~869.
    Mbuya T O, Sinclair I, Moffat A J, et al. Micromechanisms of fatigue crack growth in castaluminium piston alloys. International Journal of Fatigue,2012,42:227~237.
    MCP Group. The Product Instruction of MCP Realizer SLM. Germany: MCP Group,2005.5~17.
    Mercelis P, Kruth J-P. Residual stresses in selective laser sintering and selective laser melting.Rapid Prototyping Journal,2006,12(5):254~265.
    Metal Powder Industries Federation. Standard Test Methods for Metal Powders and PowderMetallurgy Products. Princeton, NewJersey, USA,2009.
    Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for theautomotive industry. Materials Science and Engineering: A,2000,280(1):37~49.
    Moustafa M A, Samuel F H, Doty H W. Effect of solution heat treatment and additives on thehardness, tensile properties and fracture behaviour of Al-Si (A413.1) automotive alloys.Journal of Materials Science,2003,(38):4523~34.
    Mukesh Agarwala D B, Beaman J, Marcus H, et al. Direct selective laser sintering of metals.Rapid Prototyping Journal,1995(1):26~36.
    Mullen L, Stamp R C, Brooks W K, et al. Selective Laser Melting: A regular unit cell approach forthe manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedicapplications. Journal of Biomedical Materials Research Part B: Applied Biomaterials,2009,89B (2):325~334.
    Mullen L, Stamp R C, Fox P, et al. Selective laser melting: A unit cell approach for themanufacture of porous, titanium, bone in-growth constructs, suitable for orthopedicapplications. II. Randomized structures. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2010,92B (1):178~188.
    Mumtaz K A, Erasenthiran P, Hopkinson N. High density selective laser melting of Waspaloy.Journal of Materials Processing Technology,2008,195(1-3):77~87.
    Murr L E, Quinones S A, Gaytan S M, et al. Microstructure and mechanical behavior of Ti-6Al-4Vproduced by rapid-layer manufacturing, for biomedical applications. Journal of theMechanical Behavior of Biomedical Materials,2009,2(1):20~32.
    Narayan Prabhu K, Ravishankar B N. Effect of modification melt treatment on casting/chillinterfacial heat transfer and electrical conductivity of Al–13%Si alloy. Materials Science andEngineering: A.2003,360(1-2):293~298.
    Ogris E, Wahlen A, Luchinger H, et al. On the silicon spheroidization in Al–Si alloys. Journal ofLight Metals,2002,2(4):263~269.
    Osakada K, Shiomi M. Flexible manufacturing of metallic products by selective laser melting ofpowder. International Journal of Machine Tools and Manufacture,2006,46(11):1188~1193.
    Pacz A. Alloy. US Patent1387900.1921
    Pattanayak D K, Fukuda A, Matsushita T, et al. Bioactive Ti metal analogous to human cancellousbone: Fabrication by selective laser melting and chemical treatments. Acta Biomaterialia,2011,7(3):1398~1406.
    Polmear I J. Light alloys. New York.1989.
    Rombouts M, Kruth J P, Froyen L, et al. CIRP Annals-Manufacturing Technology,2006,(55):187~192.
    Santos E, Osakada K, Shiomi M, et al. Fabrication of titanium dental implants by selective lasermelting, in: I. Miyamoto, H. Helvajian, K. Itoh, et al.(Eds.) Fifth International Symposiumon Laser Precision Microfabrication.2004.268~273.
    Schaffer G, Hall B, Bonner S, et al. The effect of the atmosphere and the role of pore filling on thesintering of aluminium. Acta Materialia,2006,54:131~138.
    Schaffer G, Hall B. The influence of the atmosphere on the sintering of aluminum. Metallurgicaland Materials Transactions A,2002,33(10):3279~3284.
    Seidel J, Claussen N, R del J. Reliability of alumina ceramics: effect of grain size, Journal of theEuropean Ceramic Society.1995,15:395~404.
    Selective Laser Melting Visions become Reality, Realizerhttp://www.realizer.com/en/wp‐content/themes/realizer/Brochure.pdf.1~16.
    Sercombe T B, Schaffer G B. On the role of magnesium and nitrogen in the infiltration ofaluminium by aluminium for rapid prototyping applications. Acta Materialia,2004,52(10):3019~3025.
    Sercombe T B. Rapid Manufacturing of Aluminum Components. Science,2003,301(5637):1225~1227.
    Simchi A, Asgharzadeh H. Densification and microstructural evaluation during laser sintering ofM2high speed steel powder. Materials Science and Technology,2004,20(11):1462~1468.
    Simchi A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructuralfeatures. Materials Science and Engineering: A,2006,428(1-2):148~158.
    Subramanian K. Selective laser sintering of alumina with polymer binders. Rapid PrototypingJournal,1995(1):24~35.
    Surappa M K, Blank E, Jaquet J C. Effect of macro-porosity on the strength and ductility of castAl-7Si-0.3Mg alloy. Scripta Metallurgica,1986,20(9):1281~1286.
    Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable textureby selective laser melting of pre-alloyed AlSi10Mg powder. Acta Materialia,2013,61(5):1809~1819.
    Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selectivelaser melting of Ti-6Al-4V. Acta Materialia,2010,58:3303~3312.
    Tiryakioglu M. Si particle size and aspect ratio distributions in an Al–7%Si–0.6%Mg alloyduring solution treatment. Material Science and Engineering A,2008,473(1-2):1~6.
    Tiryakioglu M. The effect of solution treatment and artificial aging on the work hardeningcharacteristics of a cast Al–7%Si–0.6%Mg alloy. Material Science and Engineering A,2006,427(1-2):154~159.
    Wang N, Wang Z, Aust K T, et al. Effect of Grain Size on Mechanical Properties ofNanocrystalline Materials, Acta Materialia.1995,43:519~528.
    Wang Q G, Apelian D, Lados D A. Fatigue behavior of A356-T6aluminum cast alloys. Part1.Effect of casting defects. Journal of Light Metals.2001,(1):73~84.
    Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process.Applied Surface Science,2007,253(19):8064~8069.
    Yadroitsev I, Gusarov A, Yadroitsava I, et al. Single track formation in selective laser melting ofmetal powders. Journal of Materials Processing Technology,2010,210(12):1624~1631.
    Zeren M. The effect of heat-treatment on aluminum-based piston alloys. Materials and Design,2007,28(9):2511~2517.
    Zhang D L, Zheng L H, StJohn D H. Effect of a short solution treatment time on microstructureand mechanical properties of modified Al-7wt%Si-0.3wt%Mg alloy. Journal of LightMetals,2002,2:27~36.
    Zhang L C, Klemm D, Eckert J, et al. Manufacture by selective laser melting and mechanicalbehavior of a biomedical Ti-24Nb-4Zr-8Sn alloy. Scripta Materialia2011,65,21~24.
    Zhou J, Duszczyk J, Korevaar B M. Microstructural features and final mechanical properties ofthe iron-modified Al-20Si-3Cu-1Mg alloy product processed from atomized powder. Journalof Materials Science,1991,26(11):3041~3050.
    蔡启舟,骆海贺,魏伯康等.铝合金缸盖铸造缺陷分析及对策.中国压铸、挤压铸造、半固态加工学术年会专刊,2007,70~72.
    陈光霞,曾晓雁,王泽敏,等.可摘除局部义齿支架的选择性激光熔化制造技术.现代制造工程,2010,(6):64~68.
    陈忠伟,介万奇. Mg含量对Al-Si-Mg铸造合金微观组织与力学性能的影响.材料科学与工程学报,2004,24(5):647~652.
    邓琦林.激光熔覆成形金属零件的精度分析.航空精密制造技术,2000,36(4):13~17.
    邓琦林.致密金属零件的激光近形制造.航空精密制造技术,2000,36(1):25~28.
    范宋杰,何国球,刘晓山,等.A356铝合金显微结构及拉伸断口分析.金属功能材料,2007,14(2):24~27
    宫博.铝及铝合金中常见的焊接裂纹及其防止措施.轻合金及其加工,2012(9):66~70.
    顾冬冬,沈以赴.基于选区激光熔化的金属零件快速成型现状与技术展望.航空制造技术,2012(8):32~37.
    桂满昌.颗粒增强铝基复合材料的制备和应用.材料导报,1996,(6):65~71.
    激光快速成型技术在精密金属零件快速制造中的应用.中国百科网,http://www.chinabaike.com/z/jichuang/761998.html.
    李丙超.Al-Si活塞合金及其复合材料疲劳特性研究:[硕士学位论文].山东:山东大学,2010.
    李延民,李建国,杨海鸥等.金属零件激光直接成形.应用激光,2002,22(2):140~144.
    刘闯,姚嘉,卢伟.铝合金在汽车上的应用现状和前景分析.佳木斯大学学报.2006,24(4):559~562.
    刘静安.汽车工业用铝材的开发及应用.轻合金加工技术,1997,25(2):1~4.
    刘自由,张海鹰.硬铝合金半连续铸造的裂纹缺陷分析.湖南农机,2012,39(5):51~52.刘景武.立式离心铸造件裂纹缺陷分析与对策.现代铸铁,1996,8(15):39~51.
    陆建,倪晓武,贺安之.激光与材料相互作用物理学.北京:机械工业出版社,1996.
    宋晓辉. ZK61镁合金圆铸锭热裂纹缺陷的仿真分析.中国会议,全国铝及镁合金熔铸技术交流会论文集,2011,10(15):122~129.
    汤顺意,周年润.铸造Al-Si合金变质处理的概况和发展趋势.浙江冶金,2007,(2):1~5.
    汪长勤,赵玉涛,张松利,等. Si、Mg含量及合金元素对A356合金力学性能的影响.特种铸造及有色合金,2010,30(1):88~91.
    王祝堂.铝在汽车中的应用前景及报废汽车铝的回收与再生.轻合金加工技术,1995,23(7):2~6.
    熊艳才,刘伯操.铸造铝合金现状及未来发展.种铸造及有色合金,1998,(4):1~5.
    杨森,钟敏霖,张庆茂等.金属零件的激光直接快速制造.粉末冶金技术,2002,20(4):234~238.
    朱敏,曹娟华.铝合金在汽车上的应用分析.江西化工,2013(2):31~35.
    铸造手册.中国机械工程学会铸造专业学会.北京:机械工业出版社,1993(13):48~165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700