冬小麦、油菜对砷污染反应的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷是自然界中的一种元素,广泛存在于无机环境和有机物中。砷因自然作用或者人为活动而进入陆地以及水环境中。在我国的湖北、湖南、山西等地方一些土壤中因为煤炭燃烧以及金属冶炼等原因砷的含量较高,给粮食安全生产、人们生活和健康带来了威胁。冬小麦和油菜是我国广泛种植的大田作物,在砷污染地区有不同程度的种植。本文在总结了国内外砷对植物生物有效性研究的基础上,通过土壤培养和营养液培养试验相结合,以冬小麦和油菜两种作物为材料,应用生理生化研究法并结合砷的在线形态分离技术,深入研究了冬小麦和油菜两种作物对砷的不同反应。主要研究结果如下:
     1.研究了冬小麦、油菜生长及产量对砷污染的反应。结果表明:当砷浓度为30 mg/L以上时,冬小麦根系和茎叶停止生长,趋于死亡而油菜仍能生长。30 mg/L砷处理时,冬小麦茎叶和根系生物量较对照分别降低了66.7%和78.3%;而相同浓度处理下,油菜的茎叶和根系生物量较对照却分别降低了47.5%和27.8%,这说明油菜较小麦对砷有较高耐性。土培条件下,低浓度的砷促进小麦生长,高浓度的砷抑制小麦生长和产量。油菜对砷有较高的耐性,不同砷浓度处理没有显著影响油菜的生长和产量。两种作物的可食用部分砷含量都没有超过安全标准,可以食用。比较油菜和小麦两种作物对砷污染的不同反应以及砷的累积情况,可知在土壤砷浓度小于60 mg/kg时,油菜、小麦都适合种植;当土壤砷浓度为80—100 mg/kg时,适合种植油菜。
     2.研究了冬小麦、油菜光合作用特性对砷污染的反应。结果表明:较低的砷水平显著提高冬小麦、油菜叶片中叶绿素a、叶绿素b和类胡萝卜素的含量。不同砷处理显著降低了冬小麦叶片净光合速率(Pn)、气孔导度(Gs)、胞间二氧化碳浓度(Ci)和蒸腾速率(Tr),影响小麦光合作用的主要因子是气孔限制。不同的砷水平提高了油菜叶片的Pn、Gs、Ci和Tr,促进了油菜的光合作用。这可能是砷显著提高了叶片中叶绿素的含量,同时油菜对砷的吸收较少,砷的毒害作用小使叶片的光合作用能力升高。不同砷水平处理下,冬小麦、油菜光合作用的不同反应说明砷对二者光合作用的影响机理不同,具体原因需进一步研究。在不同的生育期,随着土壤中砷浓度的增加,冬小麦的光合作用在低砷浓度处理时增加,高砷处理时显著降低;而油菜光合作用受砷影响不显著,证明油菜较小麦对砷有更高耐性。
     3.研究了冬小麦、油菜养分吸收对砷污染的反应。结果表明:砷主要累积在冬小麦和油菜的根系,转移到地上部分的量比较少只有根系砷浓度的1%—5%。溶液培养中,砷促进了小麦茎叶中Ca、Mg的含量,降低了K和P的含量;而根系中Ca、Mg、K、P的含量逐渐降低。油菜茎叶中养分元素受砷的影响比较小,但是Ca、Mg含量有不同程度提高。砷不同程度影响小麦、油菜根系中Fe、Mn、Cu和Zn等含量。油菜吸收和转移养分元素到茎叶中的能力要强于小麦,尤其油菜将P、Fe元素从根系转移到茎叶的能力很强,这可能是油菜较小麦对砷有较高耐性的原因之一。两种作物根系中Fe和P是营养元素中最容易受到砷影响的两种元素。
     4.研究了砷污染下不同磷肥浓度对冬小麦、油菜生长的影响。结果表明:缺磷时,高砷处理对油菜的毒害程度要比小麦严重;施入适当的磷肥后,油菜表现出对砷污染有较高的耐性,生长和产量不容易受到影响,磷肥显著降低了砷对油菜毒害。砷污染下,小麦受磷的影响不大,磷肥的施用对降低砷对小麦的毒害有一定作用,但效果不十分明显。在200 mg/kg砷污染的土壤中,适当施用磷肥,对小麦和油菜的生长有利,但是过高的磷肥会加重砷对小麦的毒害。在砷高度污染的土壤中,更适合种植油菜。
     5.研究了冬小麦、油菜体内砷含量和形态的变化。结果表明:冬小麦能够积累较高浓度的砷在体内。相较于冬小麦,油菜吸收累积砷的浓度要比冬小麦低。进入植物体内的砷,主要存在于冬小麦和油菜的根系,转移到地上部分的砷含量很低,为根系砷浓度的0.2%—1.5%。砷主要以无机三价态和五价态存在于冬小麦和油菜的根系和叶片中,且三价态的砷含量高于五价态砷的含量。随着溶液中砷浓度的提高,三价态的砷含量显著提高,而五价态砷含量变化不大。
     6.研究了冬小麦、油菜酶系统和非酶系统对砷污染的反应。结果表明:砷胁迫下,两种作物通过酶系统(SOD、CAT和POD)和非酶系统(Vc、-SH、GSH和PCs)的反应抵抗或降低砷对作物体本身的伤害。小麦酶系统在其抵抗砷毒害过程中发挥的作用不明显,它主要是通过非酶系统的作用来降低砷对自身的毒害;而油菜在较低砷浓度处理(0—8 mg/L)时,酶系统和非酶系统均非常活跃,二者共同作用来抵抗砷的毒害;在8-16 mg/L砷处理时,油菜通过非酶系统的作用来实现对自身的保护。
Arsenic is a toxic element widely encountered in the environment and in organisms. Arsenic can enter terrestrial and aquatic environments through both natural formation and anthropogenic activities.In some areas of Hubei,Shanxi,Yunnan,and Hunan provinces of China,soil arsenic concentrations is much higher compared with other provinces because of coal fuels and metal smelters.In China both winter wheat and rape live through the winter and they are the main crops in these areas.High arsenic concentrations in soil or water may lead to elevated concentrations of arsenic in the grains of these two crops or in straw and give high risk to human's health.Based on the reviews of soil arsenic physical and chemical activities and arsenic bioavailability to plants,solution culture and soil culture experiments were conducted to investigate the different physiological responses between winter wheat and rape which are planted in arsenic polluted soil.The main results were as following:
     1.The effects of arsenic on the growth and yields of winter wheat and rape were investigated under arsenic stress.The results indicated that the growth of wheat shoots and roots stopped when solution arsenic was more than 30 mg/L but rape did not. Comparing with the control,the shoot and root biomass of wheat decreased by 66.7% and 78.3%,while those of rape decreased by 47.5%and 27.8%,respectively..It implied that rape has higher tolerance than wheat under arsenic stress.
     In soil culture experiments,wheat yields were elevated at low rates of arsenic addition(<60 mg/kg) but reduced at high rates of As concentrations(80-100 mg/kg);the growth of rape hadn't showed significant responses to As addition.Phosphorus concentrations in wheat at jointing and ear sprouting stages increased with increasing soil As concentrations,and these increases were assumed to contribute a lot to enhanced growth of wheat at low As treatments.Arsenic did not significantly affect phosphorus concentrations in rape either.The highest arsenic concentrations in wheat shoot and rape leaf was 8.31 and 3.63 mg/kg,respectively.Arsenic concentrations in wheat and rape grains did not exceed the maximum permissible limit for food stuffs of 1.0mg/kg.When soil arsenic concentration is 0-60 mg/kg,both wheat and rape can be grown satisfactorily without adverse effects;when soil arsenic concentration is 80-100 mg/kg,rape is more suitable to be planted than wheat.
     2.The effects of arsenic on photosynthesis of wheat and rape under arsenic stress were investigated.The results indicated that arsenic significantly increased the Chlorophyll(Chla,Chlb and Catotenoids) contents in winter wheat and rape's leaves with solution arsenic increasing.However,Arsenic significantly decreased the photosynthetic rate(Pn),stomatal conductance(Cs),intercellular CO_2 concentration(Ci) and transpiration rate(Tr) of wheat under hydroponic conditions.Under arsenic stress, the stomatal limitation(Ls) of wheat leaf increased and Ci decreased.It suggested that the probable main factors to Pn decline were stomatal limitation.However,the Pn,Gs,Ci and Tr of rape leaves increased comparing with the control under hydroponic conditions. Because of the increasing chlorophyll and high tolerance to arsenic,rape's photosynthesis increased and enhanced the growth of rape biomass.Soil culture experiments indicated that wheat's Pn,Gs,Ci and Tr were affected by arsenic easily. They increased when soil arsenic concentration increased from 20 to 60 mg/kg but decreased under high soil arsenic treatments at different growth stages.But the photosynthesis of rape were not significantly affected by soil arsenic.It probably indicated that rape had high tolerance than wheat under arsenic stress.
     3.The effects of arsenic on the nutrients uptake of wheat and rape were investigated. The results indicated that the most of the arsenic accumulated in the roots of wheat and rape,and the shoot arsenic concentrations were much lower than those in roots.Arsenic increased Ca and Mg concentrations but decreased K and P concentrations in wheat shoots.The concentrations of Ca,Mg,K,P in wheat roots decreased with solution arsenic increasing.However,the nutrient elements of rape shoots were not significantly affected by arsenic.Under arsenic stress,rape has higher ability to transport nutrient elements from roots to leaves than wheat,especially for P and Fe transportation.Maybe this was one of the reasons that rape has higher tolerance to arsenic than wheat.
     4.The effects of phosphorus on the growth and yields of wheat and rape under arsenic stress were investigated.The toxicity of high soil arsenic concentrations to rape was more serious than wheat when soil P concentration was much lower.However,rape had high tolerance to arsenic than wheat and the growth and yield were not significantly affected by arsenic when 0.2 g/kg and 0.4 g/kg P fertilizers were added to this arsenic polluted soil.But the effects of P fertilizer on the toxicity of arsenic to wheat were not significant.Both arsenic concentrations in wheat and rape grains did not exceed the maximum permissible limit for food stuffs of 1.0mg/kg.When soil arsenic concentrations is very high(200mg/kg),P fertilizer could decrease the toxicity of arsenic to wheat and rape.Rape is more suitable to be planted in arsenic polluted areas compared with wheat.
     5.Concentrations and speciation of arsenic in wheat and rape tissues were investigated.The results indicated that wheat tissues could accumulate more arsenic than rape tissues could.Most arsenic accumulated in wheat and rape roots.Arsenic in roots and shoots of both two crops occurred as As~(3+) and As~(5+) species and As~(3+) was the main species.As solution culture As increased,As~(3+) concentration significantly increased but As~(5+) did not.
     6.The responses of non-enzymatic antioxidant and enzymatic antioxidant systems of wheat and rape tissues were investigated.The results indicated that both wheat and rape had high tolerance to arsenic.For rape,the contents of non-enzymatic antioxidants (glutathione-GSH,total acid-soluble thiol-SH,and phytochelatins-PCs) followed similar trends as root As concentrations,which is increasing with solution arsenic concentrations. The activities of enzymatic antioxidants(superoxide dismatase-SOD,catalase-CAT, peroxidase-POD) in rape increases with As concentrations up to 4 mg/L and then decreased.The results indicate that rape has a strong tolerance to arsenic.Enzymatic antioxidants are more important at low As exposure,whereas the non-enzymatic antioxidants are more critical at high As exposure.For wheat,the function of enzymatic antioxidant system's activities decreased and were not main system to decrease arsenic toxicity to this plant.But non-enzymatic antioxidants played an important role to decreased arsenic toxicity to wheat.
引文
1.鲍士旦.土壤农化分析.北京:中国农业出版社,2002.
    2.毕伟东,王成艳,王成贤.砷及砷化物与人类疾病.微量元素与健康研究,2002,19(2):76-7
    3.蔡宝松,雷梅,陈同斌.植物螯合肽及其在抗重金属胁迫中的作用.生态学报,2003,23(10):2125-2132
    4.曹海葵.中华人民共和国国家标准汇编.GBl 1300 89,水质一痕量砷的测定—硼氢化钾—硝酸银分光光度法,北京:中国环境监测总局,1991:221-226
    5.陈同斌,范稚莲,雷梅.磷对超富集植物蜈蚣草吸收砷的影响及其科学意义.科学通报,2002,47:151-158.
    6.陈静生.我国东部冲积平原区水成土壤元素背景值地域分异规律.环境科学学报,1994,14(1):11-17
    7.陈同斌.磷对超富集植物蜈蚣草吸收砷的影响及其科学意义.科学通报,2002,47(15):1156-1159
    8.陈同斌,韦朝阳,黄泽春.砷超富集植物娱蛤草及其对砷的富集特征.科学通报,2002,47(3):207-210
    9.陈静,王学军,朱立军.PH值和矿物成份对砷在红土中迁移的影响.环境化学,2003,22(2):121-125
    10.陈柏林,谢君.毒物砷的测定及价态分析方法.四川农业大学学报,1995,13:242-246
    11.陈同斌,刘更另.砷对水稻生长发育的影响及其原因.中国农业科学,1993,26(6):50-58
    12.陈同斌.土壤溶液中的砷及其与水稻生长效应的关系.生态学报,1996,16(2):147-153
    13.陈愚,任久长,蔡晓明.镉对沉水生物硝酸还原酶和超氧化物歧化酶活性的影响.环境科学学报,1998,18(3):313-317
    14.陈静,周黎明.HPLC联用技术在环境砷形态分析上的应用.环境科学与技术,2003,26:60-62
    15.戴开平,李焰、施文赵.环境试样中痕量砷的形态分析研究.环境科学,1992,14(3):26-31
    16.樊文华,张乃明.不同地理环境下土壤中砷含量机毒害与防止.山西师大学报,1994,8(3):65-68
    17.范秀山,彭国胜.分子、离子对及离子状态在固液吸附中的作用浅析.土壤,2002,34(1):36-41
    18.国家环境监测总站.中国土壤元素背景值.北京:中国环境科学出版社,1990,87
    19.韩照祥.环境中As(Ⅲ)对小麦萌发的影响及砷毒害防治研究.西北植物学报,2002,22(1):123-128
    20.何孟常,杨居荣.水稻籽实中砷的结合形态特征及其稳定性.应用生态学报,2002,13(9):1141-1144
    21.何新华,陈力耕,何冰.铅对杨梅幼苗生长的影响.果树学报,2004,21(1):29-32.
    22.黄泽春,陈同斌.砷超富集植物中砷化学形态及其转化的EXAFS研究.中国科学,2003,33(6):488-494
    23.黄玉山,陈建敏,谭凤仪.植物重金属结合体的研究现状.植物学报,1992,34:146-158
    24.简放陵.砷的吸附解吸及其与土壤性质的关系.热带亚热带土壤科学,1994,3(3):138-145
    25.蒋成爱,吴启堂,陈杖榴.土壤中砷污染研究进展.土壤,2004,36(3):264-270
    26.孔令韶.植物对重金属元素的吸收积累及忍耐、变异.环境科学,1983,4(1):65-69
    27.蓝祟饪,束文圣,刘威.宝山茧菜(Violab aoshanensis)—一种新的锡超富集植物.科学通报,2003,48(19):2046-2049
    28.雷梅,陈同斌.磷对土壤中砷吸附的影响.应用生态学报,2003,14(11):1989-1992
    29.廖自基.微量元素的环境化学及生物效应.北京:中国环境科学出版社.1992
    30.廖宝凉.硒、砷在水稻体内的相互作用及其自由基机理的研究.广东微量元素科学,1996,3(4):1-6
    31.廖晓勇,陈同斌,肖细元.污染水稻田土壤含砷量的空间变异特征.地理研究,2003.22:635-643
    32.凌永乐.化学元素的发现.北京:科学出版社.1981,25-27
    33.李道林,程磊.砷在土壤中的形态分布与青菜的生物学效应.安徽农业大学学报,2000,27(2):131-124
    34.李小平,李勋光.砷化物及其持留时间对砷的水稻毒性的影响.土壤,1996,2:90-93
    35.李勋光,李小平.土壤砷吸附及砷的水稻毒性.土壤,1996,2:98-100
    36.李典友.土壤中砷的含量、迁移转化及其生物效应.六安师专学报,1996,1:65-73
    37.李文学,陈同斌.超富集植物吸收富集重金属的机理和分子生物学机制.应用生态学报,2003,14(4):627-631
    38.李合生,孙群,赵世杰,章文华.植物生理生化试验原理合技术.北京:高等教育出版社,2000
    39.李建宏,邰子厚,曾召琪.Cu~(2+)对蓝藻光合作用的抑制.植物生理学报,1997,23(1):77-82
    40.李云,曾浦清,鲁功成.砷剂的生物学作用及应用前景.国外医学中医中药分册,2001,23(3):134-138
    41.李荣春.Cd、Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响.植物生态学报,2000,24(2):238-242
    42.刘志红.植物中砷的形态分析.分析测试学报,1994,13(4):56-59
    43.刘小梅,吴启堂,李秉滔.超富集植物治理重金属污染土壤研究进展.农业环境科学学报,2003,22:636-640
    44.孟紫强主编.环境毒理学.北京:中国环境科学出版社.2000,146-157
    45.潘佑民,杨国治.湖南省土壤背景值及其研究方法.北京:中国环境出版社,1988
    46.彭长宏,唐启堂.砷污染防治与含砷木材防腐剂的开发应用.安全与环境学报,2001,1(4):10-13
    47.孙波,骆永明.超量积累植物吸收重金属机理的研究进展.土壤,1999,(3):113-119
    48.宋书巧,周永章,周兴,吴欢.土壤砷污染特点与植物修复探讨.热带地理, 2004,24(1):6-9
    49.苏德纯,黄焕忠.油菜作为超富集植物修复福污染土壤的潜力.中国环境科学,2002,22(1):48-51
    50.王慎强,陈怀满,司友斌.我国土壤环境保护研究的回顾与展望.土壤,1999,(5):255-260
    51.王凯荣.我国农田镉污染现状及其治理利用对策.农业环境保护,1997,16(6):272-278
    52.王友保,刘登义,张莉,郭虎.铜、砷及其符合污染对黄豆影响的初步研究.应用生态学报,2001,12(1):117-120
    53.王真辉,林位夫.农田土壤重金属污染及其生物修复技术.海南大学学报(自然科学版),2002,20(4):383-393
    54.王彗忠,何翠屏.铅对草坪植物生物量与叶绿素水平的影响.草业科学,2003,6:73-75
    55.魏树和,周启星,王新.杂草中具重金属超富集特征植物的筛选.自然科学进展,2003,13(12):1259-1265
    56.魏夏盛.中国土壤环境背景值研究.环境科学,1991,14(4):12-19
    57.韦朝阳,陈同斌,黄泽春.大叶井口边草一种新发现的富集砷的植物.生态学报,2002,22(5):777-778
    58.韦朝阳,陈同斌.高砷区植物的生态与化学特征.植物生态学报,2002,26:695-700
    59.韦朝阳,陈同斌.重金属超富集植物及其植物修复研究进展.生态学报,2001,7:191-203
    60.谢学锦,徐邦梁.铜矿指示植物海州香蕃.地质学报,1953,32(4):360-368
    61.谢正苗,黄铭洪,叶志鸿.铝超富集植物和铝排斥植物吸收和累积铝的机理.生态学报,2002,22(10):1653-1659
    62.薛生国,陈英旭,林琦等.中国首次发现的锰超富集植物—商陆.生态学报,2003,23(5):935-937
    63.严秀平,倪哲明.联用技术应用于元素形态分析的新进展.光谱学与光谱分析,2003,23:945-954
    64.杨肖娥,龙新宪,倪吾仲.东南景天(Seduma lfrediiH)—一种新的锌超富集植物.科学通报,2002,47(13):1003-1006
    65.杨文婕,刘更另.磷和硫对空心菜吸收砷的影响.环境化学,1996,15(4):374-380
    66.赵仕林.环境样品中砷的价态分离方法研究.四川师范大学学报(自然科学版),1996,19:82-87
    67.张乃明.土壤—植物系统重金属污染研究现状与展望.环境科学进展,1999,7(4):30-33
    68.张国祥,杨居荣,华珞.土壤环境中的砷及其生态效应.土壤,1996,(2):64-68
    69.张义贤.重金属对大麦毒性的研究.环境科学学报,1997,17(2):199-204
    70.张广莉,宋广煜,赵红霞.磷影响下根际无机砷的形态分布及其对水稻生长的影响.土壤学报,2002,39(1):23-28
    71.邹邦基.土壤中的砷.土壤学进展,1986,52(2):8-13
    72.朱云集,王晨阳,马元喜,夏国军,王永华.砷胁迫对小麦根系生长及活性氧代谢的影响.生态学报,2000,20(4):707-710
    73.周易勇,刘同仇,邓波儿.铬污染对辣椒叶绿素和铁含量及几种酶活性的影响.环境科学,1991,11(3):28-29
    74.周琦.中华人民共和国国家标准汇编.GB7485—87,水质总砷的测定—二乙基二硫代氨基甲酸银分光光度法,北京:中国标准出版社,1990:96-100
    75.朱永官.土壤-植物系统中的微界面过程以及其生态环境效应.环境科学学报,2003,23(2):205-210
    76.Abedin M J,Cotter-Howells J,Meharg A A.Arsenic uptake and accumulation in rice (Oryza stativa L.)irrigated with contaminated water.Plant Soil,2002,240:311-319
    77.Abedin M J,Cresset M S,Meharg A A,Feldmarm J,Cotter-Howells J.Arsenic accumulation and metabolism in rice(Oryza sativa L.).Environ Sci Technol,2002,36:962-968
    78.Acharyya S K,Chakraborty P,Lahifi S,Raymahashay BC,Guha S,Bhowmik A.Arsenic poisoning in the Ganges delta.Nature,1999,401:545-547
    79.Alam M G M,Tokunaga S,Maekawa T.Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate.Chemosphere,2001,43:1035-1041
    80.Balasoiu C F,Zagury G J,Deschnes L.Partitioning and speciation of chromium,copper,and arsenic in CCA-contaminated soils:influence of soil composition.Sci total Environ,2001,280:239-255
    81.Basak M,Shama M,Chakraborty U.Biochemical responses of Camellia sinensis(L.)O.Kuntze to heavy metal stress.J Enwiron Biol,2001,22(1):37-41
    82.Beretka J and Nelson P.The current state of utilisation of fly ash in Australia.In "Ash - A Valuable Resource".South African Coal Ash Association,1994,1:51-63
    83.Bose P,Sharma A.Role of iron in controlling speciation and mobilization of arsenic in subsurfaceenvironment.Water Research,2002,36:4916-4926
    84.BurlO F,Ouijarro I,Carbonell-Barrachina A A,Valero D,Martinez-Sanchez F.Arsenic species:effects on and accumulation by tomato plants.J agr Food Chem,1999,47:1247-1253
    85.Cao X D,Ma L Q.Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood.Environmental Pollution,2004,132:435-442
    86.Cao X,Ma L Q,Tu C.Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fem(Pteris vittata L.).Environmental Pollution,2004,128:317-325
    87.Cappuyns V,Van Herreweghe S,Swennen R,Ottenburgs R and Deckers J.Arsenic pollution at the industrial site of Reppel-Bocholt(north Belgium).Sci Total Environ,2000,295,217-240
    88.Carbonell A A,Aarabi M A,DeLaune R D,C.rambrell R P and Patrick Jr W H,Arsenic in wetland vegetation:Availability,phytotoxicity,uptake and effects on plant growth and nutrition.Sci Total Environ,1998,217,189-199
    89.Carbonell-Barrachina A A,Burlo F,Lopez E,Mataix J.Tomato plant nutrition as affected by arsenite concentration,J plant Nutr,1998,21,235-244
    90.Carbonell-Barrachina A A,Burlo' F,Lo' pez E,Mataix J.Tomato plant nutrition as a.ected by arsenic concentration.J plant Nutr,1998b,21:235-244
    91.Carlson C L,Adriano D C,Sajwan K S,Abels S L,Thoma D P and Driver J T.Effects of selected trace metals on germinating seeds of six plant species.Water,Air, Soil Pollut, 1991, 59, 231-240
    
    92. Charter R A, Tabatabai M A, Schafer J W. Arsenic, molybdenum, selenium, and tungsten contents of fertilizers and phosphate rocks. Commun. Soil Sci Plant Anal, 1995,26:3051-3062
    
    93. Chen J, Zhou J and Goldsbrough P B. Characterization of phytochelatin synthase from tomato. Physiologia Plantarum, 1997,101: 165-172
    
    94. Chen T B, Fan Z L , L ei M. Effect of pho spho rus on arsenic accumulation in As hyperaccumulator Pteris vittata L. and its implication. Chin Sci Bull 2002, 47: 1156- 1158
    
    95. Chen T B, Liu G L, Xie K Y, Gan S W. Soil and crop arsenic contents in arsenic-toxic area in Southern China's Hunan Province and the critical contents of soil arsenic to crop safety. Soil Fertilizer, 1992, 2:1-4
    
    96. Chen T B. Arsenate adsorption in soil and its mechanism. Chin Environ Sci, 1994, 5(1):85-91
    
    97. China National Environmental Monito ring Center (CN EMC ). The backg round values of soil elements in China. Beijing: Chinese Environment Science Press, 1990
    
    98. Choder W P, Arellano J B, Bitter R. Flash induced absoption spectroscopy studies of copper interaction of with photosystem in higher plants. J Biol chem, 1994, 269: 32865-32870
    
    99. Chrenekova Z. Uptake and distribution of arsenate ions bymustard under conditions of varying phosphorus nutrition.Environmental pollution, 1975, 21(9): 752-758
    
    100.Clijsters H and Assche F. Inhibition of photosynthesis by heavy metals. Photosynthesis Research, 1985, 7, 31-40.
    101.Cobbett C S. A family of phytochelatin synthase genes from p lant fungal and animal species. Trends in Plant Sci, 1999,4 (9): 335-336.
    102.Cobbett C S. Phytochelatin and their ro les in heavy metal detoxification. Plant Phy siology, 2000,123:825-832.
    103.Cobbett C S. Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol, 2000, 3:211-216
    104.Creger T L, Peryea F J. Phosphate fertilizer enhances arsenic uptake by apricot liners grown in lead -arsenate-enriched soil. Horticultral Science, 1994,29 :88-92
    105.Cullen W R and Reimer K J. Arsenic speciation in the environment. Chemical Reviews, 1989,89:713-764
    106.De Knecht J A, Koevoets P L M, Verkleij J A C and Ernst W H O. Evidence Against a Role for Phytochelatins in Naturally Selected Increased Cadmium Tolerance in Silene vulgaris (Moench) Garcke. New Phytologist, 1992, 122: 681-688
    107.Ebbs S D and Kochian L V. Toxicity of zinc and copper to Brassica species: Implications for phytoremediation. J Environ Qual, 1997, 26: 776-781
    108.Elizabeth Willians, Mark O, Barnett, /timothy A, Kramer, and joel G, Melville. Adsorption and transport of arsenic(V) in experimental subsurface systems. J Environ Qual, 2003,32:841-850
    
    109.Ellman G L. Tissue sulfhydryl groups. Arch Biochem Biophys,\959, 82: 70-77
    110.Farquhar G D, Sharkey T D. Stomatal conductance and Photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 1982 33 : 317-345
    111.Fitz W J,Wenzel W W.Arsenic transformation in the soil-rhizosphere-plant system:fundamentals and potential application to phytoremediation.J Biotechnology,2002,99:259-278
    112.Franeesconi K,Visoottiviseth P,Sridokchan W,Goessler W.Arsenic species in an arsenic hyperaccumulating fern,Pityrogramma caIomelanos:a potential phytoremediator of arsenic-contaminated soils.Sci Total Environ,2002,248:27-35
    113.Galli U,Sch H and Brunold C.Thiols in cadmium-and copper-treated maize(Zea mays L.).Planta,1996,198:139-143
    114.Geng C N,Zhu Y G,Hu Y,Williams P,Meharg A A.Arsenate causes dierential acute toxicity to two P-deprived genotypes of flee seedlings(Oryza sativa L.).Plant Soil,2006,279:297-306
    115.Grill E,Winnaeker E L and Zenk M H.Phytoehelatins:The Principal Heavy-Metal Complexing Peptides of Higher Plants.Science,1985,230:674
    116.Hartley-Whitaker J,Ainsworth G,Vooijs R,Ten bookum W,Schat H,Meharg A A.Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus.Plant physiology,2001b,126:299-306
    117.He B,Fang Y,Jiang G,Ni Z.Optimization of the extraction for the determination of arsenic species in plant materials by high-performance liquid chromatography coupled with hydride generation atomic fluorescence spectrometry.Spectrochimiea Acta Part B:Atomic Spectroscopy,2002,57:1705-1711
    118.He Y,Zheng Y,Ramnaraine M.Differential pulse cathodic stripping voltammetric speciation of trace level inorganic arsenic compounds in natural water samples.Analytica Chimica Acta,2004,511:55-61
    119.Hingston F J,Posner A M,Quirk J P.Competitive adsorption of negatively charged ligands on hyperaccumulator Pteris Vittata L.and its arsenic accumulation.Chin Sci Bull,2002,47(11):902-905
    120.Hoagland D R and Arnon D I.The Water-culture Method for Growing Plants Without Soil.1938
    121.Hopper J L,Parker D R.Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate.Plant Soil,1999,210:199-207
    122.Jackson B P,Miller W P.Effectiveness of phosphate and hydroide for desorption of arsenic and selenium species from iron oxides.Soil Sci Soc Amer J,2000,64:1616-1622
    123.Joint F A O.WHO Expert Committee on Food Additives.Toxicological Evaluation of Certain Food Additives.WHO Food Additives Series 22,1998
    124.Khattak R,Page A L,Parker D R,Baker D.Accumulation and interactions of arsenic,selenium,molybdenum and phosphorus in alfalfa.J Environ Qual,1991,20:165-168
    125.Knudson J A,Meikle T,DeLuca T H.Role of Myeorrhizai Fungi and Phosphorus in the Arsenic Tolerance of Basin Wildrye.J Environ Qual,2003,32:2001-2006
    126.Koch I,Wang L,Ollson C,Cullen W R,Reimer K J.The predominance of inorganic arsenic species in plants from Yellowknife,Northwest Territories,Canada.Environ Sci Tech,2000,34:22-26
    127.Koricheva J,Roy S,Vranjic J A,Haukioja E,Hughes P R and Hanninen O Antioxidant responses to simulated acid rain and heavy metal deposition in birch seedlings. Environmental Pollution, 1997, 95:249-258
    128.Kumar P, Dushenkov V, Motto H, Raskin I. Phytoextraction: The Use of Plants To Remove Heavy Metals from Soils. Environ Sci Tech, 1995, 29: 1232-1238
    129.Lagrimini L M. Wound-Induced Deposition of Polyphenols in Transgenic Plants Overexpressing Peroxidase 1. Plant Physiology, 1991, 96: 577-583
    130.Le X C, Yalcin S, Ma M. Speciation of submicrogram per liter levels of arsenic in water: on-site species separation integrated with sample collection. Environ Sci Technol, 2000, 34:2342-2347
    131 .Lee D A, Chen A, Schroeder J I. Ars 1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake. The Plant Journal, 2003, 35:637-646
    
    132.Lester I H. Australia's Food & Nutrition. Australian Govt. Pub. Service. 1994
    133.Liao X Y, Chen T B, Lei M, Huang Z C, Xiao L Y. An Root distributions and elemental accumulations of Chinese brake (Pterisvittata L.) from As-contaminated soils. Plant soil, 2004, 261: 109-116
    134.Liao X Y, Chen T B, Lei M, Huang Z C, Xiao X Y, An Z Z. Root distributions and elemental accumulations of Chinese brake (Pteris vittata L.) from As-contaminated soils. Plant Soil, 2004,261: 109-116
    135.Liao X Y, Chen T B, Xiao X Y. Space variation character of As content in contaminated Paddy soil. Geographical Research, 2003, 22: 635-643
    136.Ma L Q, Komar K M M, Tu C, Zhang W, Cai Y, Kennelley E D. A fern that hyperaccumulates arsenic. Nature,2001, 409-510
    137.Marcelle R. Effects of stress on photosynthesis. Martinis Nijhoff, The Hague. 1983,317-382
    138.Marchiol L, Sacco P, Assolari S, Zerbi G. Reclamation of Polluted Soil: Phytoremediation Potential of Crop-Related BRASSICA Species. Water, Air, Soil Pollution, 2004,1518: 345-356
    139.Marin A R, Masscheleyn P H, Patrick W H. The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil,1992,139: 175-183
    140.Marin A R, Pezeshki S R, Masschelen P H and Choi H S, Effect of dimethylarsenic acid(DMAA) on growth, tissue arsenic, and photosynthesis of rice plants. J plant Nutr, 1993,16,865-880
    141.Mascher R, Lippmann B, Holzinger S and Bergmann H. Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Science, 2002,163,961-969
    142.Mattysch J, Wennrich R, Schmidt A C, Reisser W. Determination of arsenic species in water, soil and plants. Fresenius'J Anal Chem, 2000, 366:200-203
    143.Meharg A A, Macnair M R. An altered phosphate uptake systemin arsenate tolerant Holcus lanatus L. New Phytologist, 1990, 116 : 29-35
    144.Meharg A A, Hartley-Whitaker J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species.New Phytologist, 2002,154:29-43
    145.Meharg A A, Jardine L. Arsenite transport into paddy rice(Oryza sativa) roots. New Phytologist, 2003,157: 39-44
    146.Meharg A A,Macnair M R.Uptake,accumulation and translocation of arsenate in arsenate-tolerant and non-tolerant Holcus lanatusL..New Phytologist,1991,117:225-231
    147.Meharg A A.Arsenic in rice-understanding a new disaster for South-East Asia.Trends in Plant Science,2004,9(9):415-417
    148.Meharg A A.Integrated tolerance mechanisms:constitutive and adaptive plant responses to elevated metal concentrations in the environment.Plant cell Environ,1994,17:989-993
    149.Monni S,Uhlig C,Junttila O,Hansen E,Hynynen J.Chemical composition and ecophysiological responses of Empetrum nigrum to aboveground element application.Environmental Pollution,2001,112:417-426
    150.Mylona P V,Polidoros A N,Scandalios J G.Modulation of antioxidant responses by arsenic in maize.Free Radic Biol Med,1998,25:576-585
    151.National Food Authorty.Australian Food Standard Code:March.Australian Govt.Pub.Service Canberra.1993
    152.Nelson D W,Sommers L E and Page A L.Methods of Soil Analysis.Part 2.Chemical and Microbiological Properties.Agronomy Monograph,1982,9:181-197
    153.Nicholson F A,Chambers B J,Williams J R and Unwin R J.Heavy metal contents of livestock feeds and animal manures in England and Wales.Bioresource Technology,1999,70:23-31
    154.Nriagu J O,Pacyna J M.Quantitative assessment of world wide contamination of air,water and soils by trace metals.Nature,1988,333:134-139
    155.Onken B M and Hossner L R.Plant uptake and determination of arsenic species in soil solution under flooded conditions.J IEnviron Qual,1995,24:373-381
    156.Paivkoe A E A and Simola L K.Arsenate Toxicity to Pisum sativum:Mineral Nutrients,Chlorophyll Content,and Phytase Activity.Ecotoxicology Environ Safety,2001,49:111-121
    157.Pavel Tlustos.Arsenic compounds in leaves and roots of radish grown in soil treated by arsenite,arsenate and dimethylarsinic acid.Applied Organometallic Chemistry,2002,16:216-220
    158.Pershagen G.The Carcinogenicity of Arsenic.Environ Health Perspectives,1981,40:93-100
    159.Peryea F J.Phosphate induced release of arsenic from soils contaminated with lead arsenate.Soil Science Society of America Journal,1991,55:1301-1306
    160.Peryea F J.Phosphate starter fertilizer temporarily enhances soil arsenic uptake by apple trees grown under field conditions.Hortscience,1998,33:826-829
    161.Pickering I J,Prince P C,George M J,Smith R D,George G N,Salt D E.Redction and coordination of arsenic in Indian Mustard.Plant physiology,2000,122:1171-1177
    162.Pickering I J,Prince R C,George M J.Reduction and coordination of arsenic in Indian mustard.Plant Physiology,2000,122(4):1171-1177
    163.Pongratz R.Arsenic speciation in environmental samples of contaminated soil.Sci total Environ,1998,224:133-141
    164.Qafoku N P,Kulder U,Sumner M E.Arsenate displacement from fly ash in amended soils.Water Air Soil Pollut,1999,114(1-2):185-198
    165.Quartacci M F,Pinzino C,Cristina L M.Growth in excess copper induces changes in the lipid composition and fluidity pf PSⅡ-enriched membranes in wheat.Physiologia Plantarum,2000,108:87-93
    166.Raab A,Feldmann J,Meharg A A.The Nature of Arsenic-Phytochelatin Complexes in Holcus lanatus and Pteris cretica 1.Plant Physiology,2004,134:1113-1122
    167.Rosen L S,Dragovich T,Lenz H J.Phase Ⅱ study of TLK286(glutathione analog activated by GST P1-1) in refractory colorectal cancer.Proceedings of the 14th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics,2002,19-22
    168.Rumberg C B,Engel R E,Meggitt W E Effect of phosphorus concentration on the absorption of arsenate by oatfrom nutrient solution.Agron J,1960,52:452-453
    169.Schat H and Kalff M M A.Are Phytochelatins Involved in Differential Metal Tolerance or Do They Merely Reflect Metal-Imposed Strain? Plant Physiology,1992,99:1475-1480
    170.Schat H,Llugany M,Vooijs R,Hartley-Whitaker J,Bleeker P M.The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes.J Exper Bot,2000,53:2381-2392
    171.Schmoger M E V,Oven M,Grill E,Detoxification of arsenic by phytochlatins in plant.Plant Physiology,2000,122(3):793-801
    172.Shariatpanahi M and Anderson A C.Distribution and toxicity of monosodium methanearsonate following oral administration of the herbicide to dairy sheep and goats.J Environ Sci Health B,1984,19:427-439
    173.Smith A H,Goycolea M,Haque R,Biggs M L.Marked increase in bladder and lung cancer mortality in a region of northern Chile due to arsenic in drinking water.American Journal of Epidemiology,1998,147:660-669
    174.Smith E,Naidu R,Alston A M.Arsenic in the soil environment:A review.Advance in Agronomy,1998,64:149-195
    175.Sneller F E C,Van Heerwaarden L M,Kraaijeveld-Smit F J L,Ten Bookum W M,Koevoets P L M,Schat H,Verldeij J A C.Toxicity of arsenate in Silen vulgaris,accumulation and deradation of arsenate-induced phytochelatins.New Phytologest,1999,144:223-232
    176.Song J H,Shin S H,Ross G M.Oxidative stress induced by ascorbate causes neuronal damage in an in vitro system.Brain Research,2001,895:66-72
    177.Stobark A K,Grifiths W T.The effect of Cd~(2+) on the biosynthesis of chlorophyll in pleases of bar ley.Plant physiology,1985,63:293-298
    178.Tang T and Miller D M.1991 Growth and tissue composition of rice grown in soil treated with inorganic copper,nickel,and arsenic.Communications in soil science and plant analysis,1991,22:2037-2045
    179.Tokunaga S,Hakuta T.Acid washing and stabilization of an artificial arsenic-contaminated soil.Chemosphere,2002,46:31-38
    180.Tu C and Ma L Q.Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator Pteris vittata L.Plant Soil,2003a,249:3 73-382
    181.Tu C and Ma L Q.Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L.Environmental Pollution,2005,135:333-340
    182.Tu S and Ma L Q.Comparison of Arsenic and Phosphate Uptake and Distribution in Arsenic Hyperaccumulating and Nonhyperaccumulating Fern.J Plant Nutr,2004,27:1227-1242
    183.Tu S and Ma L Q.Interactive effects of pH,arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L.under hydroponic conditions.Environ Exp Bot,2003b,50:243-251
    184.Tu S,Ma L Q,MacDonald G E,Bondada B.Effects of arsenic,species and phosphorus on arsenic absorption,arsenate reduction and thiol formation in excised parts of Pteris vittata L.Environ Exp Bot,2004,51:121-131
    185.Ullrich-Eberius C I,Sanz A,Novacky A J.Evaluation of arsenate-and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1.J Exp Bot,1989,40:119-128
    186.Vazquez Reina S,Esteban E,Goldsbrough P.Arsenate-induced phytochelatins in white lupin:influence of phosphate status.Physiologia Plantarum(enhavn.1948),2005,124:41-49
    187.Visootfiviseth P,Francesconi K,Sridokchan W.the potential of Thai indigenous plant species for the phytommediation of Arsenic contaminated land.Environment Pollution,2002,118:453-461
    188.Wallace A,Mueller R T,Wood R A.Arsenic phytotoxicity and interactions in bush bean plants grown in solution culture.J Plant Nutr,1980,2:111-113
    189.Wang J,Zhao F J,Meharg A A,Raab A,Feldmann J,McGrath S P.Mechanisms of Arsenic Hyperaccumulation in Pteris vittata.Uptake Kinetics,Interactions with Phosphate,and Arsenic Speciation.Plant Physiology,2002,130:1552-1561
    190.Weckx J E J,Clijsters H M M,Foyer C H.Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper.Physiologia Plantarum,1996,96:506-512
    191.WHO.Toxicological Evaluation of Certain Food Additives and Contamination.World Health Organization,Geneva.1989
    192.Williams L E,Barnett M O,Kramer T A,Melville J G.Adsorption and Transport of Arsenic(V) in Experimental Subsurface Systems.J Environ Qual,2003,32:841-850
    193.Xie Z and Huang C Y.Control of arsenic toxicity in rice plants grown on an arsenic-polluted paddy soil.Commum.Soil Sci.Plant Anal,1998,29:2471-2477
    194.Yuan C,Jiang G,He B.Evaluation of the extraction methods for arsenic speciation in rice straw,Oryza sativa L.,and analysis by HPLC-HG-AFS.J.Anal.At.Spectrom,2005,20:103-110
    195.Zhang J and Kirkham M B.Drought-Stress-Induced Changes in Activities of Superoxide Dismutase,Catalase,and Peroxidase in Wheat Species.Plant Cell Physiol,1994,35:785
    196.Zhang W H,Cai Y,Downum K R,Ma L Q.Arsenic complexes in the arsenic hyperaccumulator pteris vittata(Chinese brake fern).Journal of Chromatography A.2004.1043:249-254
    197.Zhang W H, Cai Y, Tu C, Ma L Q. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci Total Environ, 2002, 300:167-177
    198.Zhu Y G, Christie P , Laidlaw A S. Uptake of Zn by arbuscular mycorrhizal white clover from Zn contaminated soil. Chemosphere,2001,42:193-199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700