大鼠前部缺血性视神经病变模型的建立及视神经损伤的动态观察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1、建立大鼠前部缺血性视神经病变(anterior ischemic optic neuropathy, AION)模型。
     2、探讨AION模型大鼠视神经损伤随时间的动态变化趋势。
     3、初步了解外源性神经生长因子(nerve growth factor, NGF)对AION模型大鼠视神经损伤的影响。
     方法
     1、应用光动力方法制备大鼠AION模型(倍频532nm激光,孟加拉玫瑰红作为光敏剂),以右眼为实验眼(n=23);单纯激光组大鼠不注射光敏剂、仅激光照射右眼视盘(11=11);正常对照组大鼠无任何处理(n=13)。借助眼底镜检查、眼底荧光素血管造影,观察AION模型大鼠眼底形态变化;通过HE染色、透射电镜检查,观察大鼠视神经及视网膜的组织病理学表现;采用经上丘荧光金逆行标记法,了解AION导致的RGCs损伤的分布特点。
     2、将大鼠随机分为5组:正常对照组(n=10)、模型1周组(n=12)、2周组(n=13)、4周组(n=15)及8周组(n=15)。借助经上丘荧光金逆行标记法、HE染色技术,观察AION模型建立1周、2周、4周、8周后大鼠RGCs的密度及存活率的变化。同时,通过大鼠视神经半薄切片甲苯胺蓝染色,了解不同时间点视神经轴突损伤情况。
     3、将大鼠随机分为3组:NGF干预组(n=10)、生理盐水组(n=10)、未干预模型组(n=8)。NGF干预组大鼠分别于损伤后12小时、4天、10天,玻璃体腔注射外源性NGF (2μg/4μL);生理盐水组大鼠在相同时间点玻璃体腔注射等量生理盐水;未干预组大鼠在损伤后不做其他处理。比较4周后各组大鼠的RGCs存活情况及视神经轴突损害的程度。
     结果
     1、大鼠AION模型建立后,第3天视盘明显水肿,1周后视盘水肿基本消退。眼底荧光素血管造影早期视盘、脉络膜局灶性充盈不良。视神经纵切片HE染色显示模型建立后第3天大鼠视神经水肿、空泡变性,视盘周围局限性视网膜脱离;4周后视神经萎缩,细胞增生明显。电镜下可见第3天模型组大鼠视神经轴突肿胀,部分髓鞘解体;4周后,轴突明显丢失,伴反应性胶质化。视网膜切片HE染色示4周后神经纤维层明显变薄、RGCs凋亡,而视网膜内、外核层无明显变化。荧光金逆行标记显示模型组大鼠RGCs密度明显降低;RGCs损伤呈区域性,以激光照射区附近为重。
     2、正常对照组大鼠与AION模型1周组、2周组、4周组及8周组右眼RGCs密度分别为2273±219个/mm2,2075±120个/mm2,1783±143个/mm2,1330±169个/mm2,869±301个/mm2,组间比较显示各组RGCs密度之间的差异均有统计学意义(P<0.05)。上述五组大鼠RGCs存活率分别为99.99%±3.4%,91.8%±2.9%,72.6%±5.7%,54.4%±7.0%,37.5%±13.0%,组间比较显示各组RGCs存活率之间的差异均有统计学意义(P<0.05)。缺血损伤后2周内大鼠RGCs存活率下降相对缓慢;之后RGCs存活率迅速降低,此过程至少持续到第8周。甲苯胺蓝染色显示AION损伤1周后,大鼠视神经即有明显轴突丢失,并逐渐进展;轴突损害以视神经中央部为重;晚期视神经胶质瘢痕明显。
     3、NGF干预组大鼠RGCs密度大于生理盐水组及未干预模型组(1447±70个/mm2vs.1298±97个/mm2,1447±70个/mm2vs.1313±153个/mm2;P<0.05)。NGF干预组大鼠RGCs的存活率也明显高于生理盐水组及未干预模型组(62.0%±2.8%vs.53.3%±5.1%,62.0%±2.8%vs.52.3%±7.9%;P<0.05)。NGF干预组大鼠视神经存在明显的轴突丢失及反应性胶质增生。
     结论
     1、本实验制备的大鼠AION模型与人眼非动脉炎性前部缺血性视神经病变在形态学及组织病理学改变方面有一定的相似性,可以用于后续实验。
     2、AION模型大鼠RGCs的损伤相对滞后,并且持续时间长。这期间是神经保护干预的良好时机,有利于挽救有潜在损伤的RGCs。
     3、初步研究显示玻璃体腔注射外源性NGF有一定的神经保护作用。
Objective
     1. To establish a rat model of anterior ischemic optic neuropathy (rAION).
     2. To qualitatively and quantitatively evaluate the time-course of optic nerve (ON) damage in rAION model.
     3. To investigate the neuroprotective effects of intravitreally administered nerve growth factor (NGF) on neuronal degeneration in rAION model.
     Methods
     1. rAION was induced by directly illuminating the ON of the right eye with532nm green laser, after intravenous infusion with the photosensitizing agent Rose Bengal (RB)(n=23). Sham laser treatment consisted of illuminating the ON region with a laser without RB injection(n=11); Rats in normal control group underwent no intervention (n=13). Effect of rAION on the appearance of ON and retina was observed with funduscope and fundus fluorescein angiography (FFA). Hematoxylin and eosin (H&E) staining and transmission electron microscopy were performed to assess rAION-indeced histologic changes in the retina and ON. After labeling RGCs by stereotactic injections of3%FluoroGold (FG) into the superior colliculus, the animals were sacrificed, and RGCs were counted on retinal flat mounts in a masked fashion.
     2. The rats were randomly divided into five groups:1-week (n=12),2-week (n=13),4-week (n=15),8-week (n=15) model group and the normal control group (n=10). Animals undergoing AION were sacrificed on7,14,28or56days post-injury. The density of RGCs was calculated by morphometric measurement with FG labeling. The RGC survival rate was defined as ratio of RGC density of right eye/left eye. Semithin sections of ON were stained with toluidine blue for evaluation of axonal degeneration.
     3. The rats were randomly divided into three groups:NGF treatment group (n=10), normal saline (NS) treatment group (n=10), and untreated group (n=8). Rats either received exogenous NGF (intravitreal injections,2μg/4μL) or NS12hours,4days, and10days after the modeling. Rats were euthanized at4weeks post-infarct. The number of surviving RGCs was measured by means of RGC staining using retrograde labeling of FG. Toluidine blue staining were performed in the semithin section of ON to identify axonal degeneration in NGF-treated rats.
     Results
     1. In the rAION-induced eyes, the optic disc was extremely swollen3days after photodynamic therapy. ON edema resolved on day7after induction. The focal filling defect of choroid and optic disc was observed during the early phase of FFA. H&E-stained longitudinal ON sections of rAION revealed peripapillary retinal detachment and vacuolar degeneration corresponded to swollen axons on day3after induction, and optic disc atrophy4weeks after the modeling. Ultrastructural study showed axonal edema and collapsed sheaths in the ischemic optic nerve3days after induction. Four weeks later, there were extensive axonal loss and severe glial scar, accompanied with a reduction of retinal nerve fiber layer thickness and RGC death in large numbers. Meanwhile, no obvious degenerative change was observed in the inner and outer nuclear layers. Retrograde labeling with FG revealed that rAION resulted in regional RGC loss.
     2. The density of labeled RGCs was2273±219cells/mm2in control group,2075±120cells/mm2in1-week group,1783±143cells/mm2in2-week group,1330±169cells/mm2in4-week group,869±301cells/mm2in8-week group, respectively; There were significant differences between all pairs of groups(P<0.05, respectively). The survival rate of RGCs was99.9%±3.4%,91.8%±2.9%,72.6%±5.7%,54.4%±7.0%,37.5%±13.0%, respectively; There were significant differences between all pairs of groups(P<0.05, respectively). During the2-week period closely after ischemic injury, RGCs death was a relatively slow process. Thereafter, the number of apoptotic RGCs rapidly increased, which lasted at least for6weeks. Toluidine blue staining of semithin sections of the ON revealed significant demyelination1week after ischemic damage. Progressive axonal degeneration existed for several weeks, which mainly affected the central region of the optic nerve with extensive reactive gliosis.
     3. The density of RGCs in NGF-treated rats was1447±70cells/mm2(P<0.05, compared with the NS-treated group,1298±97cells/mm2; P<0.05, compared with the untreated ischemic group,1313±153cells/mm2). Correspondingly, the survival rate of RGCs was significantly higher in the NGF-treated rats than in the NS-treated and the untreated groups(62.0%±2.8%vs.53.3%±5.1%,62.0%±2.8%vs.52.3%±7.9%; both P<0.05). There was obvious axonal loss and glial scar in NGF-treated rats, similar to what happened in untreated ischemic rats.
     Conclusions
     1. The findings of the rAION model resemble the histologic and physiologic defects seen in human nonarteritic anterior ischemic optic neuropathy. Therefore, rAION model in this study is appropriate for the following research.
     2. rAION results in later RGC death. The extended period of cell death after rAION induction is much more longer than previously recognized, when neuroprotective treatment may rescue damaged RGCs.
     3. Exogenous NGF has neuroprotective effect on rAION in our pilot study.
引文
1. Miller NR. Current Concepts in the Diagnosis, Pathogenesis, and Management of Nonarteritic Anterior Ischemic Optic Neuropathy[J]. Journal of Neuro-Ophthalmology,2011,31(2):E1-E3.
    2. Hattenhauer MG, Leavitt JA, Hodge DO, et al. Incidence of nonarteritic anterior ischemic optic neuropathy[J]. American journal of ophthalmology,1997, 123(1):103-7.
    3. Characteristics of patients with nonarteritic anterior ischemic optic neuropathy eligible for the Ischemic Optic Neuropathy Decompression Trial[J]. Arch Ophthalmol,1996,114(11):1366-74.
    4. Lee MS, Grossman D, Arnold AC, et al. Incidence of nonarteritic anterior ischemic optic neuropathy:increased risk among diabetic patients[J]. Ophthalmology,2011, 118(5):959-63.
    5. Xu L, Wang Y, Jonas JB. Incidence of nonarteritic anterior ischemic optic neuropathy in adult Chinese:the Beijing Eye Study[J]. European journal of ophthalmology,2007,17(3):459-60.
    6. Zhao BQ, Suzuki Y, Kondo K, et al. A novel MCA occlusion model of photothrombotic ischemia with cyclic flow reductions:development of cerebral hemorrhage induced by heparin[J]. Brain research Brain research protocols,2002, 9(2):85-92.
    7. Watson BD, Dietrich WD, Busto R, et al. Induction of reproducible brain infarction by photochemically initiated thrombosis[J]. Annals of neurology,1985, 17(5):497-504.
    8. Bernstein SL, Guo Y, Kelman SE, et al. Functional and cellular responses in a novel rodent model of anterior ischemic optic neuropathy [J]. Investigative ophthalmology & visual science,2003,44(10):4153-62.
    9. Bernstein SL, Johnson MA, Miller NR. Nonarteritic anterior ischemic optic neuropathy (NAION) and its experimental models [J]. Progress in retinal and eye research,2011,30(3):167-87.
    10.郭瑶,陈蕾,王敏芳,et al.孟加拉玫瑰红诱导的激光所致大鼠缺血性视神经病变模型制作[J].国际眼科杂志,2007,7(3):703-6.
    11. Chen CS, Johnson MA, Flower RA, et al. A primate model of nonarteritic anterior ischemic optic neuropathy[J]. Investigative ophthalmology & visual science,2008, 49(7):2985-92.
    12. Chang CH, Huang TL, Huang SP, et al. Neuroprotective effects of recombinant human granulocyte colony-stimulating factor (G-CSF) in a rat model of anterior ischemic optic neuropathy (rAION)[J]. Experimental eye research,2014, 118:109-16.
    13. Chuman H, Maekubo T, Osako T, et al. Rodent model of nonarteritic ischemic optic neuropathy and its electrophysiological evaluation[J]. Japanese journal of ophthalmology,2012,56(5):518-27.
    14. Wang RS, Lv PL, Wang WJ, et al. Establishing an experimental model of photodynamically induced anterior ischemic optic neuropathy[J]. Visual neuroscience,2011,28(2):155-62.
    15.王润生,于彬科,张玉磊,et al.维替泊芬光动力疗法诱导大鼠前部缺血性视神经病变模型研究[J].中国激光医学杂志,2009,18(6):341-4,400.
    16.王润生,王小娣,吕沛霖,et al.光动力诱导前部缺血性视神经病变的实验研究[J].中华眼底病杂志,2008,24(2):90-4.
    17. Knox DL, Kerrison JB, Green WR. Histopathologic studies of ischemic optic neuropathy[J]. Transactions of the American Ophthalmological Society,2000, 98:203-20; discussion 21-2.
    18. Levin LA. Axonal loss and neuroprotection in optic neuropathies[J]. Canadian journal of ophthalmology,2007,42(3):403-8.
    19. Zhang C, Guo Y, Slater BJ, et al. Axonal degeneration, regeneration and ganglion cell death in a rodent model of anterior ischemic optic neuropathy (rAION)[J]. Experimental eye research,2010,91(2):286-92.
    20. Bernstein SL, Mehrabyan Z, Guo Y, et al. Estrogen is not neuroprotective in a rodent model of optic nerve stroke[J]. Molecular vision,2007,13(215-16):1920-5.
    21. Atkins EJ, Bruce BB, Newman NJ, et al. Treatment of nonarteritic anterior ischemic optic neuropathy[J]. Survey of ophthalmology,2010,55(1):47-63.
    22. Lebrun-Julien F, Di Polo A. Molecular and cell-based approaches for neuroprotection in glaucoma[J]. Optometry and vision science:official publication of the American Academy of Optometry,2008,85(6):417-24.
    23. Almasieh M, Wilson AM, Morquette B, et al. The molecular basis of retinal ganglion cell death in glaucoma[J]. Progress in retinal and eye research,2012, 31(2):152-81.
    24. Lad SP, Neet KE, Mufson EJ. Nerve growth factor:structure, function and therapeutic implications for Alzheimer's disease[J]. Current drug targets CNS and neurological disorders,2003,2(5):315-34.
    25. Ichim G, Tauszig-Delamasure S, Mehlen P. Neurotrophins and cell death[J]. Experimental cell research,2012,318(11):1221-8.
    26. Roberti G, Mantelli F, Macchi I, et al. Nerve Growth Factor Modulation of Retinal Ganglion Cell Physiology[J]. Journal of cellular physiology,2014,229(9):1130-3.
    27. Fiore M, Chaldakov GN, Aloe L. Nerve growth factor as a signaling molecule for nerve cells and also for the neuroendocrine-immune systems[J]. Reviews in the neurosciences,2009,20(2):133-45.
    28. Chiaretti A, Falsini B, Aloe L, et al. Neuroprotective role of nerve growth factor in hypoxic-ischemic injury. From brain to skin[J]. Archives Italiennes De Biologie, 2011,149(2):275-82.
    29. Schulte-Herbrueggen O, Braun A, Rochlitzer S, et al. Neurotrophic factors-A tool for therapeutic strategies in neurological, neuropsychiatric and neuroimmunological diseases?[J]. Current Medicinal Chemistry,2007,14(22):2318-29.
    30. Chiaretti A, Falsini B, Aloe L, et al. Neuroprotective role of nerve growth factor in hypoxicischemic injury. From brain to skin[J]. Arch Ital Biol,2011,149(2):275-82.
    31. Micera A, Lambiase A, Aloe L, et al. Nerve growth factor involvement in the visual system:implications in allergic and neurodegenerative diseases[J]. Cytokine & Growth Factor Reviews,2004,15(6):411-7.
    32. Sun X, Xu X, Wang F, et al. Effects of nerve growth factor for retinal cell survival in experimental retinal detachment[J]. Current eye research,2007,32(9):765-72.
    33.周欢粉,魏世辉.神经生长因子对脱髓鞘性视神经炎小鼠视网膜神经组织保护作用的实验研究[J].中华眼视光学与视觉科学杂志,2010,12(5):329-34.
    34. Lenzi L, Coassin M, Lambiase A, et al. Effect of exogenous administration of nerve growth factor in the retina of rats with inherited retinitis pigmentosa[J]. Vision Research,2005,45(12):1491-500.
    35. Colafrancesco V, Coassin M, Rossi S, et al. Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration[J]. Annali Dell Istituto Superiore Di Sanita,2011,47(3):284-9.
    36. Lambiase A, Mantelli F, Bonini S. Nerve growth factor eye drops to treat glaucoma[J]. Drug News Perspect,2010,23(6):361-7.
    37. Michishita E, Park JY, Burneskis JM, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins[J]. Molecular biology of the cell,2005,16(10):4623-35.
    38. Colafrancesco V, Parisi V, Sposato V, et al. Ocular Application of Nerve Growth Factor Protects Degenerating Retinal Ganglion Cells in a Rat Model of Glaucoma[J] Journal of Glaucoma,2011,20(2):100-8.
    39. Goldenberg-Cohen N, Guo Y, Margolis F, et al. Oligodendrocyte dysfunction after induction of experimental anterior optic nerve ischemia[J]. Investigative ophthalmology & visual science,2005,46(8):2716-25.
    40. Slater BJ, Mehrabian Z, Guo Y, et al. Rodent anterior ischemic optic neuropathy (rAION) induces regional retinal ganglion cell apoptosis with a unique temporal pattern[J]. Investigative ophthalmology & visual science,2008,49(8):3671-6.
    41. Ma J, Jiang L, Zhong Y, et al. Neuroprotective effect on retinal ganglion cells by transpupillary laser irradiation of the optic nerve head[J]. Neuroscience letters,2010, 476(1):3-8.
    42. Hayreh SS. Blood flow in the optic nerve head and factors that may influence it[J]. Progress in retinal and eye research,2001,20(5):595-624.
    43. Hayreh SS. The blood supply of the optic nerve head and the evaluation of it-myth and reality[J]. Progress in retinal and eye research,2001,20(5):563-93.
    44. Fontal MR, Kerrison JB, Garcia R, et al. Ischemic optic neuropathy[J]. Seminars in neurology,2007,27(3):221-32.
    45. Hayreh SS. Ischemic optic neuropathy[J]. Progress in retinal and eye research,2009, 28(1):34-62.
    46. Zhang ZZ, Gong YY, Shi YH, et al. Valproate promotes survival of retinal ganglion cells in a rat model of optic nerve crush[J]. Neuroscience,2012,224:282-93.
    47. Xie J, Jiang L, Zhang T, et al. Neuroprotective effects of Epigallocatechin-3-gallate (EGCG) in optic nerve crush model in rats[J]. Neuroscience letters,2010, 479(1):26-30.
    48. Parrilla-Reverter G, Agudo M, Nadal-Nicolas F, et al. Time-course of the retinal nerve fibre layer degeneration after complete intra-orbital optic nerve transection or crush:a comparative study[J]. Vision Res,2009,49(23):2808-25.
    49. Parrilla-Reverter G, Agudo M, Sobrado-Calvo P, et al. Effects of different neurotrophic factors on the survival of retinal ganglion cells after a complete intraorbital nerve crush injury:a quantitative in vivo study[J]. Experimental eye research,2009,89(1):32-41.
    50. Taniguchi T, Shimazawa M, Sasaoka M, et al. Endothelin-1 impairs retrograde axonal transport and leads to axonal injury in rat optic nerve[J]. Current neurovascular research,2006,3(2):81-8.
    51. Masuzawa K, Jesmin S, Maeda S, et al. A model of retinal ischemia-reperfusion injury in rats by subconjunctival injection of endothelin-1 [J]. Experimental biology and medicine (Maywood, NJ),2006,231(6):1085-9.
    52. Aktas Z, Gurelik G, Gocun PU, et al. Matrix metalloproteinase-9 expression in retinal ganglion cell layer and effect of topically applied brimonidine tartrate 0.2% therapy on this expression in an endothelin-1-induced optic nerve ischemia model[J]. International ophthalmology,2010,30(3):253-9.
    53. Zhong L. A modified chronic ocular hypertension rat model for retinal ganglion cell neuroprotection[J]. Frontiers of medicine,2013,7(3):367-77.
    54. Sandalon S, Konnecke B, Levkovitch-Verbin H, et al. Functional and structural evaluation of lamotrigine treatment in rat models of acute and chronic ocular hypertension[J]. Experimental eye research,2013,115:47-56.
    55. Schmid H, Renner M, Dick HB, et al. Loss of inner retinal neurons after retinal ischemia in rats[J]. Investigative ophthalmology & visual science,2014, 55(4):2777-87.
    56. Vidal-Sanz M, Salinas-Navarro M, Nadal-Nicolas FM, et al. Understanding glaucomatous damage:anatomical and functional data from ocular hypertensive rodent retinas[J]. Progress in retinal and eye research,2012,31(1):1-27.
    57. Levin LA, Louhab A. Apoptosis of retinal ganglion cells in anterior ischemic optic neuropathy [J]. Arch Ophthalmol,1996,114(4):488-91.
    58. Albrecht May C. Comparative anatomy of the optic nerve head and inner retina in non-primate animal models used for glaucoma research[J]. The open ophthalmology journal,2008,2:94-101.
    59. Fukuda Y, Watanabe M, Wakakuwa K, et al. Intraretinal axons of ganglion cells in the Japanese monkey (Macaca fuscata):conduction velocity and diameter distribution[J]. Neuroscience research,1988,6(1):53-71.
    60. May CA, Lutjen-Drecoll E. Morphology of the murine optic nerve[J]. Investigative ophthalmology & visual science,2002,43(7):2206-12.
    61. Gellrich NC, Schimming R, Zerfowski M, et al. Quantification of histological changes after calibrated crush of the intraorbital optic nerve in rats[J]. The British journal of ophthalmology,2002,86(2):233-7.
    62. Morrison JC, Johnson EC, Cepurna WO, et al. Microvasculature of the rat optic nerve head[J]. Investigative ophthalmology & visual science,1999,40(8):1702-9.
    63. Sugiyama K, Gu ZB, Kawase C, et al. Optic nerve and peripapillary choroidal microvasculature of the rat eye[J]. Investigative ophthalmology & visual science, 1999,40(13):3084-90.
    64. Bernstein SL, Guo Y, Slater BJ, et al. Neuron stress and loss following rodent anterior ischemic optic neuropathy in double-reporter transgenic mice[J]. Investigative ophthalmology & visual science,2007,48(5):2304-10.
    65. Ma K, Xu L, Zhang H, et al. Effect of brimonidine on retinal ganglion cell survival in an optic nerve crush model[J]. American journal of ophthalmology,2009, 147(2):326-31.
    66. Kalesnykas G, Oglesby EN, Zack DJ, et al. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma[J]. Investigative ophthalmology & visual science,2012,53(7):3847-57.
    67. Kim HS, Park CK. Retinal ganglion cell death is delayed by activation of retinal intrinsic cell survival program[J]. Brain research,2005,1057(1-2):17-28.
    68. McKernan DP, Guerin MB, O'Brien CJ, et al. A key role for calpains in retinal ganglion cell death[J]. Investigative ophthalmology & visual science,2007, 48(12):5420-30.
    69. Yamashita K, Kotani Y, Nakajima Y, et al. Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons[J]. Brain research,2007,1154:215-24.
    70. Jiang W, Xia F, Han J, et al. Patterns of Nogo-A, NgR, and RhoA expression in the brain tissues of rats with focal cerebral infarction[J]. Translational research:the journal of laboratory and clinical medicine,2009,154(1):40-8.
    71. Fawcett JW. Overcoming inhibition in the damaged spinal cord[J]. Journal of neurotrauma,2006,23(3-4):371-83.
    72. Fard MA, Ebrahimi KB, Miller NR. RhoA activity and post-ischemic inflammation in an experimental model of adult rodent anterior ischemic optic neuropathy[J]. Brain research,2013,1534:76-86.
    73. Johnson EC, Guo Y, Cepurna WO, et al. Neurotrophin roles in retinal ganglion cell survival:lessons from rat glaucoma models[J]. Experimental eye research,2009, 88(4):808-15.
    74. Lambiase A, Aloe L, Centofanti M, et al. Experimental and clinical evidence of neuroprotection by nerve growth factor eye drops:Implications for glaucoma[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(32):13469-74.
    75.孙志敏,管怀进,程新梁,et al.神经生长因子对成年兔视神经夹伤后修复的影响[J].中华眼底病杂志,2005,21(4):253-7.
    76. Mattson MP, Lovell MA, Furukawa K, et al. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons[J]. Journal of neurochemistry,1995,65(4):1740-51.
    77. Semkova I, Schilling M, Henrich-Noack P, et al. Clenbuterol protects mouse cerebral cortex and rat hippocampus from ischemic damage and attenuates glutamate neurotoxicity in cultured hippocampal neurons by induction of NGF[J]. Brain research,1996,717(1-2):44-54.
    78. Inagaki N, Thoenen H, Lindholm D. TrkA tyrosine residues involved in NGF-induced neurite outgrowth of PC 12 cells[J]. The European journal of neuroscience,1995,7(6):1125-33.
    79. Yang JP, Liu XF, Liu HJ, et al. Extracellular signal-regulated kinase involved in NGF/VEGF-induced neuroprotective effect[J]. Neuroscience letters,2008, 434(2):212-7.
    80. Guegan C, Onteniente B, Makiura Y, et al. Reduction of cortical infarction and impairment of apoptosis in NGF-transgenic mice subjected to permanent focal ischemia[J]. Brain research Molecular brain research,1998,55(1):133-40.
    81. Graham SH, Chen J, Clark RS. Bcl-2 family gene products in cerebral ischemia and traumatic brain injury[J]. Journal of neurotrauma,2000,17(10):831-41.
    82. Babu PP, Suzuki G, Ono Y, et al. Attenuation of ischemia and/or reperfusion injury during myocardial infarction using mild hypothermia in rats:an immunohistochemical study of Bcl-2, Bax, Bak and TUNEL[J]. Pathology international,2004,54(12):896-903.
    83. Rybnikova E, Sitnik N, Gluschenko T, et al. The preconditioning modified neuronal expression of apoptosis-related proteins of Bcl-2 superfamily following severe hypobaric hypoxia in rats[J]. Brain research,2006,1089(1):195-202.
    84. Conner JM, Franks KM, Titterness AK, et al. NGF is essential for hippocampal plasticity and learning[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience,2009,29(35):10883-9.
    85. Lenzi L, Coassin M, Lambiase A, et al. Effect of exogenous administration of nerve growth factor in the retina of rats with inherited retinitis pigmentosa[J]. Vision Res, 2005,45(12):1491-500.
    86. Tirassa P, Triaca V, Amendola T, et al. EGF and NGF injected into the brain of old mice enhance BDNF and ChAT in proliferating subventricular zone[J]. Journal of neuroscience research,2003,72(5):557-64.
    87. Colafrancesco V, Coassin M, Rossi S, et al. Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration[J]. Annali dell'Istituto superiore di sanita,2011,47(3):284-9.
    88. Lambiase A, Coassin M, Tirassa P, et al. Nerve growth factor eye drops improve visual acuity and electrofunctional activity in age-related macular degeneration:a case report[J]. Annali dell'Istituto superiore di sanita,2009,45(4):439-42.
    89. Falsini B, Chiaretti A, Barone G, et al. Topical Nerve Growth Factor as a Visual Rescue Strategy in Pediatric Optic Gliomas:A Pilot Study Including Electrophysiology[J]. Neurorehabilitation and Neural Repair,2011,25(6):512-20.
    90. Chiaretti A, Falsini B, Servidei S, et al. Nerve Growth Factor Eye Drop Administration Improves Visual Function in a Patient With Optic Glioma[J]. Neurorehabilitation and Neural Repair,2011,25(4):386-90.
    1. Miller NR. Current Concepts in the Diagnosis, Pathogenesis, and Management of Nonarteritic Anterior Ischemic Optic Neuropathy[J]. Journal of Neuro-Ophthalmology,2011,31 (2):E 1-E3.
    2. Hayreh SS. Blood flow in the optic nerve head and factors that may influence it[J]. Progress in retinal and eye research,2001,20(5):595-624.
    3. Harris A, Ciulla TA, Chung HS, et al. Regulation of retinal and optic nerve blood flow[J]. Arch Ophthalmol,1998,116(11):1491-5.
    4. Fontal MR, Kerrison JB, Garcia R, et al. Ischemic optic neuropathy[J]. Seminars in neurology,2007,27(3):221-32.
    5. Hayreh SS. Ischemic optic neuropathy[J]. Progress in retinal and eye research,2009, 28(1):34-62.
    6. Levin LA, Danesh-Meyer HV. Hypothesis:a venous etiology for nonarteritic anterior ischemic optic neuropathy[J]. Arch Ophthalmol,2008,126(11):1582-5.
    7. Knox DL, Kerrison JB, Green WR. Histopathologic studies of ischemic optic neuropathy [J]. Transactions of the American Ophthalmological Society,2000, 98:203-20; discussion 21-2.
    8. Hayreh SS. Inter-individual variation in blood supply of the optic nerve head. Its importance in various ischemic disorders of the optic nerve head, and glaucoma, low-tension glaucoma and allied disorders[J]. Doc Ophthalmol,1985,59(3):217-46.
    9. Zhao BQ, Suzuki Y, Kondo K, et al. A novel MCA occlusion model of photothrombotic ischemia with cyclic flow reductions:development of cerebral hemorrhage induced by heparin[J]. Brain research Brain research protocols,2002, 9(2):85-92.
    10. Watson BD, Dietrich WD, Busto R, et al. Induction of reproducible brain infarction by photochemically initiated thrombosis[J]. Annals of neurology,1985, 17(5):497-504.
    11. Bernstein SL, Guo Y, Kelman SE, et al. Functional and cellular responses in a novel rodent model of anterior ischemic optic neuropathy[J]. Investigative ophthalmology & visual science,2003,44(10):4153-62.
    12. Bernstein SL, Guo Y. Changes in cholinergic amacrine cells after rodent anterior ischemic optic neuropathy (rAION)[J]. Investigative ophthalmology & visual science,2011,52(2):904-10.
    13. Bernstein SL, Guo Y, Slater BJ, et al. Neuron stress and loss following rodent anterior ischemic optic neuropathy in double-reporter transgenic mice[J]. Investigative ophthalmology & visual science,2007,48(5):2304-10.
    14. Bernstein SL, Mehrabyan Z, Guo Y, et al. Estrogen is not neuroprotective in a rodent model of optic nerve stroke[J]. Molecular vision,2007,13:1920-5.
    1 5.郭瑶,陈蕾,王敏芳,et al.孟加拉玫瑰红诱导的激光所致大鼠缺血性视神经病变模型制作[J].国际眼科杂志,2007,7(3):703-6.
    16. Chang CH, Huang TL, Huang SP, et al. Neuroprotective effects of recombinant human granulocyte colony-stimulating factor (G-CSF) in a rat model of anterior ischemic optic neuropathy (rAION)[J]. Experimental eye research,2014, 118:109-16.
    17. Chuman H, Maekubo T, Osako T, et al. Rodent model of nonarteritic ischemic optic neuropathy and its electrophysiological evaluation[J]. Japanese journal of ophthalmology,2012,56(5):518-27.
    18. Tseng SC, Feenstra RP, Watson BD. Characterization of photodynamic actions of rose bengal on cultured cells[J]. Investigative ophthalmology & visual science,1994, 35(8):3295-307.
    19.王润生,王小娣,吕沛霖,et al.光动力诱导前部缺血性视神经病变的实验研究[J].中华眼底病杂志,2008,24(2):90-4.
    20.王润生,于彬科,张玉磊,et al.维替泊芬光动力疗法诱导大鼠前部缺血性视神经病变模型研究[J].中国激光医学杂志,2009,18(6):341-4,400.
    21. Tesser RA, Niendorf ER, Levin LA. The morphology of an infarct in nonarteritic anterior ischemic optic neuropathy[J]. Ophthalmology,2003,110(10):2031-5.
    22. Albrecht May C. Comparative anatomy of the optic nerve head and inner retina in non-primate animal models used for glaucoma research[J]. The open ophthalmology journal,2008,2:94-101.
    23. Bernstein SL, Johnson MA, Miller NR. Nonarteritic anterior ischemic optic neuropathy (NAION) and its experimental models[J]. Progress in retinal and eye research,2011,30(3):167-87.
    24. Gellrich NC, Schimming R, Zerfowski M, et al. Quantification of histological changes after calibrated crush of the intraorbital optic nerve in rats[J]. The British journal of ophthalmology,2002,86(2):233-7.
    25. Morrison JC, Johnson EC, Cepurna WO, et al. Microvasculature of the rat optic nerve head[J]. Investigative ophthalmology & visual science,1999,40(8):1702-9.
    26. Sugiyama K, Gu ZB, Kawase C, et al. Optic nerve and peripapillary choroidal microvasculature of the rat eye[J]. Investigative ophthalmology & visual science, 1999,40(13):3084-90.
    27. May CA, Lutjen-Drecoll E. Morphology of the murine optic nerve[J]. Investigative ophthalmology & visual science,2002,43(7):2206-12.
    28. Goldenberg-Cohen N, Guo Y, Margolis F, et al. Oligodendrocyte dysfunction after induction of experimental anterior optic nerve ischemia[J]. Investigative ophthalmology & visual science,2005,46(8):2716-25.
    29. Wang RS, Lv PL, Wang WJ, et al. Establishing an experimental model of photodynamically induced anterior ischemic optic neuropathy[J]. Visual neuroscience,2011,28(2):155-62.
    30. Chen CS, Johnson MA, Flower RA, et al. A primate model of nonarteritic anterior ischemic optic neuropathy[J]. Investigative ophthalmology & visual science,2008, 49(7):2985-92.
    31. Zhang C, Guo Y, Miller NR, et al. Optic nerve infarction and post-ischemic inflammation in the rodent model of anterior ischemic optic neuropathy (rAION)[J]. Brain research,2009,1264:67-75.
    32. Fard MA, Ebrahimi KB, Miller NR. RhoA activity and post-ischemic inflammation in an experimental model of adult rodent anterior ischemic optic neuropathy[J]. Brain research,2013,1534:76-86.
    33. Salgado C, Vilson F, Miller NR, et al. Cellular Inflammation in Nonarteritic Anterior Ischemic Optic Neuropathy and Its Primate Model[J]. Archives of Ophthalmology, 2011,129(12):1583-91.
    34. Horn KP, Busch SA, Hawthorne AL, et al. Another barrier to regeneration in the CNS:activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience,2008,28(38):9330-41.
    35. Shechter R, London A, Varol C, et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice[J]. PLoS Med,2009,6(7):e1000113.
    36. Patel AR, Ritzel R, McCullough LD, et al. Microglia and ischemic stroke:a double-edged sword[J]. Int J Physiol Pathophysiol Pharmacol,2013,5(2):73-90.
    37.陈倩,孙兴怀.即早基因在视神经损伤大鼠初级视皮层的表达[J].中华眼科杂志,2010,46(9):810-4.
    38.朱益华,陈晓莉.慢性高眼压大鼠模型视网膜中Bin-3a表达的动态变化[J].中华实验眼科杂志,2011,29(12):1077-81.
    39. Simons M, Trajkovic K. Neuron-glia communication in the control of oligodendrocyte function and myelin biogenesis[J]. J Cell Sci,2006,119(Pt 21):4381-9.
    40. Nakazawa T, Nakazawa C, Matsubara A, et al. Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience,2006,26(49):12633-41.
    41. Son JL, Soto I, Oglesby E, et al. Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss[J]. Glia,2010,58(7):780-9.
    42. Masland RH. The fundamental plan of the retina[J]. Nat Neurosci,2001, 4(9):877-86.
    43. Yi KD, Simpkins JW. Protein phosphatase 1, protein phosphatase 2A, and calcineurin play a role in estrogen-mediated neuroprotection[J]. Endocrinology, 2008,149(10):5235-43.
    44. Numakawa Y, Matsumoto T, Yokomaku D, et al.17beta-estradiol protects cortical neurons against oxidative stress-induced cell death through reduction in the activity of mitogen-activated protein kinase and in the accumulation of intracellular calcium[J]. Endocrinology,2007,148(2):627-37.
    45. Cascio C, Russo D, Drago G, et al.17beta-estradiol synthesis in the adult male rat retina[J]. Experimental eye research,2007,85(1):166-72.
    46. Zhou X, Li F, Ge J, et al. Retinal ganglion cell protection by 17-beta-estradiol in a mouse model of inherited glaucoma[J]. Dev Neurobiol,2007,67(5):603-16.
    47. Russo R, Cavaliere F, Watanabe C, et al.17Beta-estradiol prevents retinal ganglion cell loss induced by acute rise of intraocular pressure in rat[J]. Prog Brain Res,2008, 173:583-90.
    48. Nakazawa T, Takahashi H, Shimura M. Estrogen has a neuroprotective effect on axotomized RGCs through ERK signal transduction pathway[J]. Brain research, 2006,1093(1):141-9.
    49. Hayashi Y, Kitaoka Y, Munemasa Y, et al. Neuroprotective effect of 17beta-estradiol against N-methyl-D-aspartate-induced retinal neurotoxicity via p-ERK induction[J]. Journal of neuroscience research,2007,85(2):386-94.
    50. Kitaoka Y, Munemasa Y, Hayashi Y, et al. Axonal protection by 17beta-estradiol through thioredoxin-1 in tumor necrosis factor-induced optic neuropathy[J]. Endocrinology,2011,152(7):2775-85.
    51. Yamashita K, Kotani Y, Nakajima Y, et al. Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons[J]. Brain research,2007,1154:215-24.
    52. Jiang W, Xia F, Han J, et al. Patterns of Nogo-A, NgR, and RhoA expression in the brain tissues of rats with focal cerebral infarction [J]. Translational research:the journal of laboratory and clinical medicine,2009,154(1):40-8.
    53. Fawcett JW. Overcoming inhibition in the damaged spinal cord[J]. Journal of neurotrauma,2006,23(3-4):371-83.
    54. Slater BJ, Vilson FL, Guo Y, et al. Optic Nerve Inflammation and Demyelination in a Rodent Model of Nonarteritic Anterior Ischemic Optic Neuropathy[J]. Investigative ophthalmology & visual science,2013,54(13):7952-61.
    55. Tsai RK, Chang CH, Wang HZ. Neuroprotective effects of recombinant human granulocyte colony-stimulating factor (G-CSF) in neurodegeneration after optic nerve crush in rats[J]. Experimental eye research,2008,87(3):242-50.
    56. Tsai RK, Chang CH, Sheu MM, et al. Anti-apoptotic effects of human granulocyte colony-stimulating factor (G-CSF) on retinal ganglion cells after optic nerve crush are PI3K/AKT-dependent[J]. Experimental eye research,2010,90(5):537-45.
    57. Oishi A, Otani A, Sasahara M, et al. Granulocyte colony-stimulating factor protects retinal photoreceptor cells against light-induced damage[J]. Investigative ophthalmology & visual science,2008,49(12):5629-35.
    58. Shima C, Adachi Y, Minamino K, et al. Neuroprotective effects of granulocyte colony-stimulating factor on ischemia-reperfusion injury of the retina[J]. Ophthalmic Res,2012,48(4):199-207.
    59. Kojima H, Otani A, Oishi A, et al. Granulocyte colony-stimulating factor attenuates oxidative stress-induced apoptosis in vascular endothelial cells and exhibits functional and morphologic protective effect in oxygen-induced retinopathy[J]. Blood,2011,117(3):1091-100.
    60. Schneider A, Kruger C, Steigleder T, et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis[J]. J Clin Invest,2005,115(8):2083-98.
    61. Surh YJ, Na HK, Park JM, et al.15-Deoxy-Delta(1)(2),(1)(4)-prostaglandin J(2), an electrophilic lipid mediator of anti-inflammatory and pro-resolving signaling[J]. Biochem Pharmacol,2011,82(10):1335-51.
    62. Touitou V, Johnson MA, Guo Y, et al. Sustained Neuroprotection From a Single Intravitreal Injection of PGJ(2) in a Rodent Model of Anterior Ischemic Optic Neuropathy[J]. Investigative ophthalmology & visual science,2013,54(12):7402-9.
    63. Oguz H, Sobaci G. The use of hyperbaric oxygen therapy in ophthalmology[J]. Survey of ophthalmology,2008,53(2):112-20.
    64. Yogaratnam JZ, Laden G, Guvendik L, et al. Hyperbaric oxygen:a novel technology for modulating myocardial schemia-reperfusion via a single drug[J]. Adv Ther,2006, 23(4):528-33.
    65. Poli S, Veltkamp R. Oxygen therapy in acute ischemic stroke-experimental efficacy and molecular mechanisms[J]. Curr Mol Med,2009,9(2):227-41.
    66. Eschenfelder CC, Krug R, Yusofi AF, et al. Neuroprotection by oxygen in acute transient focal cerebral ischemia is dose dependent and shows superiority of hyperbaric oxygenation[J]. Cerebrovasc Dis,2008,25(3):193-201.
    67. Bojic L, Ivanisevic M, Gosovic G Hyperbaric oxygen therapy in two patients with non-arteritic anterior optic neuropathy who did not respond to prednisone[J]. Undersea Hyperb Med,2002,29(2):86-92.
    68. Arnold AC, Hepler RS, Lieber M, et al. Hyperbaric oxygen therapy for nonarteritic anterior ischemic optic neuropathy[J]. American journal of ophthalmology,1996, 122(4):535-41.
    69. Avraham-Lubin BC, Dratviman-Storobinsky O, El SD, et al. Neuroprotective effect of hyperbaric oxygen therapy on anterior ischemic optic neuropathy[J]. Front Neurol,2011,2(23.
    70. Arnold AC, Hepler RS. Fluorescein angiography in acute nonarteritic anterior ischemic optic neuropathy[J]. American journal of ophthalmology,1994, 117(2):222-30.
    71. Oertel MF, May CA, Bloemendal H, et al. Alpha-B-crystallin expression in tissues derived from different species in different age groups [J]. Ophthalmologica,2000, 214(1):13-23.
    72. Xi J, Farjo R, Yoshida S, et al. A comprehensive analysis of the expression of crystallins in mouse retina[J]. Molecular vision,2003,9:410-9.
    73. Andley UP. Crystallins in the eye:Function and pathology[J]. Progress in retinal and eye research,2007,26(1):78-98.
    74. Ousman SS, Tomooka BH, van Noort JM, et al. Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination[J]. Nature,2007,448(7152):474-9.
    75. Pangratz-Fuehrer S, Kaur K, Ousman SS, et al. Functional rescue of experimental ischemic optic neuropathy with alphaB-crystallin[J]. Eye (Lond),2011, 25(6):809-17.
    76. Vidal-Sanz M, Lafuente MP, Mayor-Torroglosa S, et al. Brimonidine's neuroprotective effects against transient ischaemia-induced retinal ganglion cell death[J]. European journal of ophthalmology,2001,11 Suppl 2:S36-40.
    77. Gao H, Qiao X, Cantor LB, et al. Up-regulation of brain-derived neurotrophic factor expression by brimonidine in rat retinal ganglion cells[J]. Arch Ophthalmol,2002, 120(6):797-803.
    78. Danylkova NO, Alcala SR, Pomeranz HD, et al. Neuroprotective effects of brimonidine treatment in a rodent model of ischemic optic neuropathy[J]. Experimental eye research,2007,84(2):293-301.
    79. Goldenberg-Cohen N, Dadon-Bar-El S, Hasanreisoglu M, et al. Possible neuroprotective effect of brimonidine in a mouse model of ischaemic optic neuropathy[J]. Clin Experiment Ophthalmol,2009,37(7):718-29.
    80. Saylor M, McLoon LK, Harrison AR, et al. Experimental and clinical evidence for brimonidine as an optic nerve and retinal neuroprotective agent:an evidence-based review[J]. Arch Ophthalmol,2009,127(4):402-6.
    81. Wilhelm B, Ludtke H, Wilhelm H. Efficacy and tolerability of 0.2% brimonidine tartrate for the treatment of acute non-arteritic anterior ischemic optic neuropathy (NAION):a 3-month, double-masked, randomised, placebo-controlled trial[J]. Graefe's archive for clinical and experimental ophthalmology= Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,2006, 244(5):551-8.
    82. Fazzone HE, Kupersmith MJ, Leibmann J. Does topical brimonidine tartrate help NAION?[J]. The British journal of ophthalmology,2003,87(9):1193-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700