快速凝固AZ91镁合金及SiCp/AZ91镁基复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用快速凝固/粉末冶金法制备镁合金时,可以显著细化合金的晶粒组织、减少甚至消除粗大的平衡析出相,从而显著提高合金的塑性变形性能和力学性能,这对高强高韧性变形镁合金材料的研制和工业化应用具有重要的意义。
     本论文利用实验室自行设计的雾化-双辊激冷装置制备了AZ91镁合金箔片状粉末,通过致密化和塑性变形的方法制备出了直径为Φ10mm和Φ8mm的AZ91镁合金材料;通过将合金粉末与SiC粉末均匀混合的方法制备出了SiCp/AZ91复合材料棒材。利用扫描电镜(SEM)、X-射线衍射(XRD)和透射电镜(TEM)等检测手段研究了快速凝固/粉末冶金AZ91镁合金及其复合材料的晶粒组织、析出相的演变规律,SiC增强颗粒在合金基体中的分布特点和材料的力学性能,探讨了材料的强化机制和拉伸断裂机理,研究了快速凝固/粉末冶金AZ91镁合金及其复合材料在各热处理过程中的微观组织及其力学性能的稳定性。
     研究结果表明,快速凝固/粉末冶金AZ91镁合金棒材组织由过饱和α-Mg相和少量细小的β-Mg17Al12相组成;合金粉末热挤压后的密度可达到理论值;快速凝固AZ91镁合金及其复合材料的理想挤压温度为350℃,挤压速度为0.1m/min。快速凝固AZ91镁合金挤压棒材的抗拉强度和伸长率分别为383.23MPa和9.4%;随着挤压比的增加,晶粒变得更加细小,从而提高了材料的抗拉强度、屈服强度和伸长率;热挤压AZ91镁合金在室温拉伸时呈现韧性断裂特征。
     采用快速凝固/粉末冶金法制备的SiCp/AZ91复合材料中SiC颗粒分布较均匀,复合材料的屈服强度、抗拉强度、伸长率随SiC颗粒含量的增加而逐渐减小。在热挤压过程中,Mg和SiC颗粒表面的SiO2之间发生了界面反应,在界面产生Mg2Si相。与合金材料相比,复合材料的力学性能有所下降。
     不同工艺参数条件下对快速凝固/粉末冶金AZ91镁合金及其复合材料棒材进行热处理研究,并对其组织和性能进行分析。实验表明,快速凝固/粉末冶金AZ91镁合金在退火处理过程中发生了静态再结晶现象,在200℃时可以观察到再结晶现象。分析了退火温度和退火时间对合金显微组织和硬度的影响规律。快速凝固/粉末冶金SiCp/AZ91棒材在退火处理过程中也发生了静态再结晶。
Fabricating magnesium alloy by rapid solidification/powder metallurgy (RS/PM), can refine the grain of the alloy ,reduce and eliminate the coarse precipitation phase, and then improve the plastic forming properties and mechanical properties of the alloy. It is vital significance for developing high-strength and high elongation property wrought magnesium and industrial appliations.
     In this study, alloy fluid flow was broken up, the AZ91magnesium alloy powder was prepared by twin-roll rapid solidification technique, and then the hot extrusion of AZ91 alloy solid materials 10mm and 8mm in diameter were prepared at 350℃. The SiC powder and AZ91 alloy powder were blended uniformly and then SiCp/AZ91 magnesium matrix composites have been fabricated using rapid solidification/powder metallurgy (RS/PM) process. By means of SEM, XRD and TEM, some analysis on grain structure, the change of precipitation phase, the distribution of SiC particles in matrix and mechanical properties of materials was carried out. Reinforcing mechanism and tensile fracture behavior were discussed, and the stability of microstructure and mechanical property of RS/PM AZ91 magnesium alloy and RS/PM SiCp/AZ91 composites at different technological conditions of heat treatment were studied too.
     The experiment results showed that RS/PM AZ91 magnesium alloy microstructures consist dominantly of supersaturatedα-Mg solid solution and little amount of the fine Mg17Al12 phase. The density of the hot-extruded RS AZ91 powder was approximately near the theoretical density of alloy. The optimal extrusion temperature and extrusion speed of RS/PM AZ91 magnesium alloy and its composites was 350℃×0.1m/min. The ultimate tensile strength of the as-extruded AZ91 alloy was 383.23MPa, the elongation was 9.4%. Increasing the extrusion ratio could refine the grains and improve the yield, tensile strength and elongation of the as-extruded AZ91 alloy. The as-obtained alloy shows ductile fracture feature.
     The silicon carbide particulates(SiCp)in AZ91 magnesium alloy metal matrix were near uniformly dispersed through the alloy matrix. The mechanical properties of the composite such as tensile strength, yield strength and elongation degraded with the increase of the content of SiCp. The Mg2Si appeared to originate between the Mg and SiO2 on the surface of SiC during the hot extrusion. For all content of the SiC particle reinforcement the mechanical properties of the composite was lower than the unreinforced counterpart.
     Heat treatment of RS/PM AZ91 magnesium alloy and its composites under different processing parameter was studied, then the microstructure and mechanical properties were analyzed. the results showed that the occurrence of static recrystallization in magnesium alloy bars during annealing can be observed, which began at annealing of 200℃. The influencing mechanism of annealing temperature and annealing time on the microstructure and hardness of the alloy bars were approached. The occurrence of static recrystallization in RS/PM SiCp/AZ91 composites bars during annealing could be observed too.
引文
[1] Schumann S, Friedrich H. Current and future use of magnesium in the automobile industry. Materials Science Forum, 2003, 419-422: 51-56
    [2] 陈振华, 严红革, 陈吉华等. 镁合金. 北京: 化学工业出版社, 2004, 183-338
    [3] Mabuchi M, Iwasaki H, Yanase K, et al. Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE. Scripta Materialia, 1997, 36(6): 681
    [4] Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science, 2000, 45(2): 103
    [5] 郭强, 严红革, 陈振华等. 多向锻造工艺对 AZ80 镁合金显微组织和力学性能的影响. 金属学报, 2006, 42(7): 740
    [6] Govind, Nair K S, Mittal M C, et al. Development of rapidly solidified (RS) magnesium-aluminium-zinc alloy. Materials Science and Engineering A, 2001, 304-306: 520-523
    [7] 刘正, 张奎, 曾小勤. 镁基轻质合金理论基础及其应用. 北京: 机械工业出版社, 2002, 202-205
    [8] 陈振华 , 夏伟军 , 陈吉华等 . 耐热镁合金. 北京: 化学工业出版社 , 2007, 112-370
    [9] 徐锦锋, 翟秋亚, 袁森. AZ91D 镁合金的快速凝固特征. 中国有色金属学报, 2004, 14(6): 939-944
    [10] Hehmann F, Sommer F, Predel B. Extension of solid solubility in magnesium by rapid solidification. Materials Science and Engineering A, 1990, 125(2): 249-265
    [11] 陈吉华, 陈振华, 严红革. 快速凝固镁合金的研究进展. 化工进展, 2004, 23(8): 816-821
    [12] Hwang S M, Kang Y H. Analysis of flow and heat transfer in Twin-Roll strip casting by finite element method. Engineering for Industry, 1995, 117(3): 304-315
    [13] Murty Y V, Adler R P I. High speed casting of metallic foils by the double-roller quenching technique. Materials Science, 1982, 17(7): 1945-1954
    [14] Singer A R E, Roche A D, Day L. Atomization of liquid metals using twin roller technique. Powder Metallurgy, 1980, 23(2): 81-85
    [15] Larionova T V, Park W W, You B S. A ternary phase observed in rapidly solidified Mg-Ca-Zn alloys. Scripta Materialia, 2001, 45(1): 7-12
    [16] Sugamata M, Hanawa S, Kaneko J. Structures and mechanical properties of rapidly solidified Mg-Y based alloys. Materials Science and Engineering A, 1997, 226-228: 861-866
    [17] Kawamura Y, Morisaka T, Yamasaki M. Structure and mechanical properties ofrapidly solidified Mg97Zn1RE2 alloys. Materials Science Forum, 2003, 419-422: 751-756
    [18] Koike J, Kawamura Y, Hayashi K, et al. Mechanical properties of rapidly solidified Mg-Zn alloys. Materials Science Forum, 2000, 350-351: 105-110
    [19] Hondo K, Sugamata M, Kaneko J, et al. Structures and mechanical properties of rapidly solidified Mg-Ag based alloys. Japan Institue of Light Metals, 2002, 52(6): 276-281
    [20] Schemme K, Hornbogen E. Rapid solidification of Mg-Li-X alloys. Magnesium Alloys and Their Applications, 1992, 519-525
    [21] Cho S S, Chun B S, Won C W, et al. Structure and properties of rapidly solidified Mg-Al alloys. Materials Science, 1999, 34(17): 4311-4320
    [22] Zheng M Y, Wu Q, Liang H C, et al. Microstructure and mechanical properties of aluminum borate whisker-reinforced magnesium matrix composites. Materials Letters, 2002, 57(3): 558-564
    [23] Jayalakshmi S, Kailas S V, Seshan S. Tensile behaviour of squeeze cast AM100 magnesium alloy and its Al2O3 fibre reinforced composites. Composites Part A: Applied Science and Manufacturing, 2002, 33(8): 1135-1140
    [24] Jayamathy M, Kailas S V, Kumar K, et al. The compressive deformation and impact response of a magnesium alloy: influence of reinforcement. Materials Science and Engineering A, 2005, 393(1-2):27-35
    [25] Luo A. Processing, microstructure, and mechanical behaviour of cast magnesium metal matrix composites. Metallurgical and Materials Transactions A, 1995, 26(9): 2445-2455
    [26] Hu H. Grain microstructure evolution of Mg(AM50A)/SiCp metal matrix composites. Scripta Materialia, 1998, 39(8): 1015-1022
    [27] Huard G, Angers R, Krishnadev M R, et al. SiCp/Mg composites made by low-energy mechanical processing. Canadian Metallurgical Quarterly, 1999, 38(3): 193-200
    [28] Hong T W, Kim S K, Park G S, et al. Fabrication of Mg2NiHx from Mg and Ni chips by hydrogen induced planetary ball milling. Materials Transactions JIM, 2000, 41(3): 393-398
    [29] Jiang Q C, Wang H Y, Ma B X, et al. Fabrication of B4C participate reinforced magnesium matrix composite by powder metallurgy. Alloys and Compounds, 2005, 386(1-2): 177-181
    [30] Watanabe H, Mukai T, Nieh T G, et al. Low temperature superplasticity in a magnesium-based composite. Scripta Materialia, 2000, 42(3): 249-255
    [31] 康智涛. 多层喷射共沉积制备大尺寸 SiC 颗粒增强铝基复合材料的工艺、设备及过程原理研究: [中南大学博士学位论文]. 长沙: 中南大学, 2001, 7-12
    [32] Ebert T, Moll F, Kainer K U. Spray forming of magnesium alloys and composites.Powder Metallurgy, 1997, 40(2): 126
    [33] Noguchi A, Ezawa I, Kaneko J, et al. SiCp/Mg-Ce and Mg-Ca alloy composites obtained by spray forming. Japan Institute of Light Metals, 1995, 45(2): 64
    [34] Wang H Y, Jiang Q C, Li X L, et al. In situ synthesis of TiC/Mg composites in molten magnesium. Scripta Materialia, 2003, 48(9): 1349-1354
    [35] 孙志强, 张荻, 丁剑等. 原位增强镁基复合材料研究进展与原位反应体系热力学. 材料科学与工程, 2002, 20(4): 579-584
    [36] Lü L, Lai M O, Laing W. Magnesium nanocomposite via mechanical milling. Composites Science and Technology, 2004, 64(13-14): 2009-2014
    [37] Wang H Y, Jiang Q C, Zhao Y Q, et al. Fabrication of TiB2 and TiB2-TiC particulates reinforced magnesium matrix composites. Materials Science and Engineering A, 2004, 372(1-2): 109-114
    [38] Wang H Y, Jiang Q C, Zhao Y Q, et al. In situ synthesis of TiB2/Mg composite by self-propagating high-temperature synthesis reaction of the Al-Ti-B system in molten magnesium. Alloys and Compounds, 2004, 379(1-2): L4-L7
    [39] Kondoh K, Oginuma H, Kimura A, et al. In-situ synthesis of Mg2Si intermetallics via powder metallurgy process. Materials Transcations, 2003, 44(5): 981-985
    [40] 武凤, 朱静. 石墨/镁基复合材料中的残余应变、位错及孪晶. 金属学报, 1998, 34(5): 449-454
    [41] 陈煜, 吴桢干, 顾民元等. 石墨纤维增强镁基复合材料界面. 中国有色金属学报, 1997, 7(3): 124-126
    [42] Zheng M Y, Wu K, Yao C K. Characterization of interfacial reaction in squeeze cast SiCw/Mg composites. Materials Letters, 2001, 47(3): 118-124
    [43] Wu F, Zhu J. Morphology of second-phase precipitates in carbon-fiber- and graphite-fiber-reinforced magnesium-based metal-matrix composites. Composites Science and Technology, 1997, 57(6): 661-667
    [44] Braszczyńska K N, Lityńska L, Zyska A, et al. TEM analysis of the interfaces between the components in magnesium matrix composites reinforced with SiC particles. Materials Chemistry and Physics, 2003, 81(2-3): 326-328
    [45] Cai Y, Taplin D, Tan M J, et al. Nucleation phenomenon in SiC particulate reinforced magnesium composite. Scripta Materialia, 1999, 41(9): 967-971
    [46] Gen S, Yao L J, Makoto Y, et al. Interfaces in Al18B4O33/Al, Mg alloy composites. Japan Institue of Light Metals, 1999, 63(5): 577-580
    [47] 金头男, 聂祚仁, 李斗星. 浸渍/挤压(SiCw+B4Cp)/Mg(AZ91)复合材料的界面特征. 中国有色金属学报, 2002, 12(2): 284-288
    [48] 郑茂盛, 赵更申. 关于颗粒增强金属基复合材料的协同强化. 稀有金属材料与工程, 1996, 25(5): 16-17
    [49] Lloyd D J. Particles reinforced aluminium and magnesium metal matrix composites. International Materials Reviews, 1994, 39(1): 1-23
    [50] 胡连喜, 李小强, 王尔德等. 挤压变形对 SiCw/ZK51A 镁基复合材料组织和性能的影响. 中国有色金属学报, 2000, 10(5): 680-683
    [51] Xi Y L, Chai D L, Zhang W X, et al. Titanium alloy reinforced magnesium matrix composite with improved mechanical properties. Scripta Materialia, 2006, 54(1): 19-23
    [52] Brutinger F, Li Y, Zeschky J, et al. Stress relaxation in Mg-Al-alloys AZ31 reinforced by ceramic form. Materials Science Forum, 2003, 419-422: 811-816
    [53] 纪秀林, 王树奇, 谢建华. 內生颗罷銮棵净春喜牧系难芯肯肿? 上海有色金属, 2004, 25(3): 136-140
    [54] Vaidya A R, Lewandowski J J. Effects of SiCp size and volume fraction on high cycle fatigue behavior of AZ91D magnesium alloy composites. Materials Science and Engineering A, 1996, 220(1): 85-92
    [55] 杜军, 李文芳, 刘耀辉等. AZ91 镁合金及其 Al2O3 纤维-石墨颗粒混杂增强复合材料的滑动摩擦磨损性能研究. 摩擦学学报, 2004, 24(4): 341-345
    [56] Lim C Y H, Lim S C, Gupta M. Wear behaviour of SiCp-reinforced magnesium matrix composites. Wear, 2003, 255(1-6): 629-637
    [57] 董群, 陈礼清, 赵明久等. 镁基复合材料制备技术、性能及应用发展概况. 材料导报, 2004, 18(4): 86-90
    [58] Inem B, Pollard G. Interface structure and fractography of a magnesium-alloy, metal-matrix composite reinforced with SiC particles. Materials Science, 1993, 28(16): 4427-4434
    [59] 李荣华, 黄继华, 殷声. 镁基复合材料研究现状与展望. 材料导报, 2002, 16(8): 17-19
    [60] 房文斌, 张文丛, 于振兴等. 镁基储氢材料的研究进展. 中国有色金属学报, 2002, 12(5): 853-862
    [61] Liang G, Huot J, Boily S, et al. Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite. Alloys and Compounds, 1999, 291(1-2): 295-299
    [62] 陈振华, 夏伟军, 严红革等. 变形镁合金. 北京: 化学工业出版社, 2005, 101-171
    [63] Ravi Kumar N V, Blandin J J, Desrayaud C, et al. Grain refinement in AZ91 magnesium alloy during thermomechanical processing. Materials Science and Engineering A, 2003, 359(1-2): 150-157
    [64] Barnett M R, Beer A G, Atwell D, et al. Influence of grain size on hot working stresses and microstructures in Mg-3Al-Zn. Scripta Materialia, 2004, 51(1): 19-24
    [65] Ion S E, Humphreys F J, White S H, et al. Dynamic recystallization and the development of microstructure during the high temperature deformation of magnesium. Acta Metallurgical Materialia, 1982, 30(10): 1909-1919
    [66] 金军兵, 王智祥, 刘雪峰等. 均匀化处理对AZ91镁合金组织和力学性能的影响. 金属学报, 2006, 42(10): 1014-1018
    [67] 吉泽升, 陈晓瑜, 胡茂良等. 固相合成AZ91D镁合金的组织和性能. 中国有色金属学报, 2006, 16(12): 2011-2015
    [68] 陈振华, 夏伟军, 严红革等. 镁合金材料的塑性变形理论及其技术. 化工进展, 2004, 23(2): l27-135
    [69] Suzuki M, Kimura T, Koike J, et al. Strengthing effect of Zn in heat resisitant Mg-Y-Zn solid solution alloys. Scripta Materialia, 2003, 48(8): 997-1002
    [70] 周玉, 武高辉. 材料分析测试技术. 哈尔滨: 哈尔滨工业大学出版社, 1998, 190-194
    [71] Lü L, Lai M O, Gupta M, et al. Improvement of microstructure and mechanical properties of AZ91/SiC composite by mechanical alloying. Materials Science, 2000, 35(22): 5553-5561
    [72] Cai Y, Tan M J, Shen G J, et al. Microstructure and heterogeneous nucleation phenomena in cast SiC particles reinforced magnesium composite. Materials Science and Engineering A, 2000, 282(1-2): 232-239
    [73] 秦蜀懿, 张国定. 如何韧化颗粒增强金属基复合材料. 机械工程材料, 1998, 22(3): 1-4
    [74] 郗雨林, 柴东朗, 张文兴等. 钛合金颗粒增强镁基复合材料的制备与性能. 稀有金属材料与工程, 2006, 35(2): 308-311
    [75] Chawla N, Andres C. Cyclic stress-strain behavior of particle reinforced metal matrix composites. Scripta Materialia, 1998, 38(10): 1595-1600
    [76] Seshan S, Jayamathy M, Kailas S V, et al. The tensile behavior of two magnesium alloys reinforced with silicon carbide particulates. Materials Science and Engineering A, 2003, 363(1-2): 345-351
    [77] Taya M, Lulay K E, Lloyd D J. Strengthening of a particulate metal matrix composite by quenching. Acta Metallurgical Materialia, 1991, 39(1): 73-78
    [78] Wang Z R, Zhang R J. Mechanical-behavior of cast particulate SiC/Al(A356) metal matrix composite. Metallurgical Transactions A, 1991, 22(7): 1585-1593
    [79] Singh P M, Lewandowski J J. Effects of heat-treatment and reinforcement size on reinforcement fracture during tension testing of a SiC(p) discontinuously reinforced aluminum-alloy. Metallurgical Transaction A, 1993, 24(11): 2531-2535
    [80] Spigarelli S, Cerri E, Evangelista E, et al. Interpretation of constant-load and constant-stress creep behavior of a magnesium alloy produced by rapid solidification. Materials Science and Engineering A, 1998, 254(1): 90-98
    [81] 陈培生, 薛锋, 李子全等. n-SiCp/MB2 复合材料组织与力学性能. 中国有色金属学报, 2004, 14(10): 1648-1652
    [82] Wang R M, Eliezer A, Gutman E. Microstructures and dislocations in the stressed AZ91D magnesium alloys. Materials Science and Engineering A, 2003, 344(1-2):279-287
    [83] Galiyev A, Kaibyshev R, Sakai T, et al. Continuous dynamic recrystallization in magnesium alloy. Materials Science Forum, 2003, 419-422: 509-514
    [84] Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-Zn alloy sheet. Materials Science and Engineering A, 2003, 399(1-2): 124-132
    [85] Koike J, Ohyama R, Kobayashi T, et al. Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523K. Materials Transactions JIM, 2003, 44(4): 445-451
    [86] Kaibyshev R, Galiyev A, Sitdikov O. On the possibility of producing a nanocrystalline structure in magnesium and magnesium alloys. Nanostructured Materials, 1995, 6(5-8): 621-624
    [87] Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Materialia, 2001, 49(7): 1199-1207
    [88] 杨平, 孟利, 毛为民等. 利用道次间退火改善镁合金轧制成形性的研究. 材料热处理学报, 2005, 26(2): 34-38
    [89] 余 琨, 黎文献. Mg-Al-Zn 系变形镁合金轧制及热处理后的组织与性能. 金属热处理, 2002, 27(5): 8-11
    [90] Mathis K, Trojanova Z, Luka P, et al. Deformation behaviour of Mg-Al-Mn alloys at elevated temperatures. Metallurgia Italiana, 2002, 93(1): 33-36
    [91] 彭伟平, 彭彩虹, 李培杰等. AZ31B 镁合金再结晶过程的动力学. 中国有色金属学报, 2006, 16(10): 1725-1728
    [92] 米国发, 曾松岩, 蒋祖龄等. 快速凝固二元 Al-Cr 合金的退火组织及显微硬度. 金属学报, 1994, 30(1): A25-A28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700