Al-Si多元合金中耐热相演变行为与协同强化机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用高倍视频显微镜(HSVM)、电子探针(EPMA)、场发射扫描电镜(FSEM)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)、常规透射电镜(TEM),结合多元相图分析和Thermo-calc热力学模拟计算,研究了Al-Si多元合金中物相微观结构演变及其对合金的高温强化作用与机制。系统研究了合金化元素存在形式与合金相演变行为的关系及其对合金显微硬度的影响;探讨了Cu、Mg元素对富Ni耐热相演变行为的影响和富Mo耐热相演变行为,同时分析了这些组织样本行为对合金高温强化作用;提出耐热相与a-Al协同强化机制。基于此机制,制备一种新型Al-Si多元活塞合金。全文主要研究内容如下:
     (1)Al-Si多元合金中合金相的析出及演变行为研究
     通对研究Al-Si多元活塞合金中合金化元素存在形式和合金相演变行为的关系及其对合金显微硬度的影响,发现有效控制Si相析出是提高合金综合性能的重要手段;其次,通过合金化和合理热处理工艺来控制富Cu、Ni、Mg相尺寸、分布,使其沿晶界弥散分布,能有效发挥合金相的强化作用。
     (2)富Cu富Ni相的演变及其高温强化行为研究
     系统研究了富Cu富Ni相演变行为及其对Al-Si多元活塞合金强化作用与机制。结果表明,Cu含量增加促使合金中耐热相由条带状Al3CuNi相为主共晶组织逐渐演变为团聚状Al7Cu4Ni相为主多元共晶组织或包共晶组织。这种组织演变促使合金室温拉伸强度逐渐升高,而350℃拉伸强度则先升高后降低。而Mg含量增加基本不影响合金富Cu富Ni相析出种类和形貌,其高温强化效果不明显;但会促使合金中Mg2Si相体积分数逐渐增加,导致合金室温下显微硬度和拉伸强度呈现先升高后降低趋势。
     (3)富Mo耐热相演变及其高温强化研究
     研制出一种Al-Ni-Mo中间合金,解决了元素Mo难于添加到Al-Si多元活塞合金进行强化的问题;探讨了富Mo耐热相演变行为及对合金高温强化行为与机制。研究发现,添加0.7、wt.%Mo能促使活塞合金350℃拉伸强度提高27.6%,与常规强化元素Mg、Cu和Ni相比,Mo具有更高的高温强化效率。其高温强化机制为:Mo在合金中形成α-Al(Fe,Mo)Si强化相,与富Ni相有机地结合形成网状组织结构,包裹住α-Al晶粒,最终形成封闭和半封闭式复杂网状结构,有效地阻止高温条件下晶界滑移,促使合金350℃拉伸强度得到明显提高。
     (4)Al-Si多元合金中耐热相与α-Al协同强化机制
     Al-Si多元合金α-Al的细化,促使长轴状树枝晶转化为近等轴状,同时导致二次枝晶之间分布的合金耐热相聚集粗化。基于活塞合金室温和高温断裂机制差异,这种细化基体和粗化合金相的组织演变,使合金室温拉伸强度升高,而高温拉伸强度有所降低。基于此现象,提出了活塞合金中耐热相及α-Al协同强化机制:适度细化α-Al,协调合金耐热相分布,促使合金具有良好室温和高温强度。基于此机制,制备了一种高温(350℃)和室温强度分别达到103.7MPa和363.9MPa的新型Al-Si多元活塞合金。
The evolution of heat-resistant phases in piston alloy and its effect on the High-Tem strengthening were systematically studied by high scope video microscope (HSVM), electron probe micro-analyzer (EPMA), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC), conventional transmission electron microscope (TEM), and Thermodynamics Calculation (Thermo Calc), etc. The relationship between existing form of alloying elements and the evolution of precipitating phases was researched, and its effect on the microhardness were studied. Effect of Cu and Mg contents on the evolution of Ni-rich phase, and that of Mo-rich phase in Al-Si piston alloy were investigated, and the High-Tem strengthening mechanism were revealed. The collaborative strengthening mechanism between a-Al and heat-resistant phase of multicomponent Al-Si piston alloy was put forward, which lead to a new type of Al-Si multicomponent piston alloy is made. The main subjects of this article are as below:
     (1) Precipitation and evolution of alloy phases in Al-Si piston alloy
     The relationship between existing form of alloying elements and the evolution of precipitating phases was researched, which has higher effect on the microhardness of alloy. It is found that effective controlling the precipitation of Si phase is the important way to improve the performance of the piston alloy. Furthermore, the Cu-rich and Ni-rich phases with better distribution and smaller size dispersing around the grain boundary by alloying and the following heat treatment, which has much more important impact on the alloy's comprehensive performance.
     (2) Evolution of Cu-rich and Ni-rich phases and its High-Tem strengthening effect
     The strengthening process and mechanism of evolution of Cu-rich and Ni-rich phases in Al-Si multicomponent piston alloy were studied. It is found that the strip or cluster-like Al3CuNi phase could be transformed into connection microstructure between Al3CuNi and Al3Cu4Ni phase as the increase of Cu content, which lead to the tensile strength at room temperature increasing gradually, but the tensile strength at 350℃increasing firstly and then decreasing. At the same time, the increasing content of Mg has little influence on the properties and morphologies of the Cu-rich and Ni-rich phases, which has little effect on High-Tem strengthening behavior. But the volume fraction of Mg2Si phase increases gradually. The performance test shows that the microhardness and tensile strength at room temperature of tested alloy has a trend of increasing firstly and then decreasing.
     (3) Evolution of Mo-rich phase and its effect on high-temperature strength
     A new Al-Ni-Mo master alloy was developed, which can be easily add the Mo element to the melts of Al-Si multicomponent piston alloy. And then, evolution of Mo-rich phase and its High-Tem strengthening mechanism of the piston alloy is revealed. It is found that the addition of0.7wt.%of Mo can increase piston alloy's High-Tem strength by27.6%at the temperature350℃, showing a higher strengthening efficiency, compared to the conventional strengthening elements Mg, Cu and Ni. The formation of a-Al (Fe, Mo) Si phase created by addition of Mo acts as a secondary strengthening phase grows into a kind of net-form microstructures, combined with the main strengthening phase Ni-rich phases. It wrapps u-Al matrix and forms a closed and semi-closed mesh eutectic microstructure. This special microstructures could prevent grain boundary sliding at high temperatures, and then greatly improve the tensile strength of alloy at35O℃
     (4) Collaborative strengthening mechanism between u-Al and heat-resistant phases in Al-Si piston alloy
     The grain refinement of a-Al matrix in Al-Si piston alloy makes the long-axis dendrites be transformed into almost equiaxed shape, which reduces the dispersion of heat-resistant phases between different second dendrites. Due to the difference between the fracture mechanism at room temperature and high temperature, the effect of matrix refinement and alloy phases dispersion will make the tensile strength at room temperature increase, but that of high temperature will decrease. Based on this, the collaborative strengthening mechanism between heat-resistant phase and a-Al matrix phase in piston alloy is put forward. That is to properly refine a-Al matrix phase and coordinate the distribution of refining alloy phase to improve tensile strength of alloy both at room temperature and at high temperature. This mechanism can help us to create a new piston alloy, whose tensile strength can be103.7MPa at high temperature and363.9MPa at room temperature.
引文
[1]K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan. Encyclopedia of Materials:Science and Technology, 2009
    [2]武玉英.几种含硅合金中富硅相形核与生长机制的研究,山东大学博士学位论文,2008
    [3]蒋德明.内燃机技术最新的进展,内燃机,1998,3:3-4
    [4]铃木孝(日)著;赵淑琴译.发动机的浪漫,北京:北京理工大学出版社,1996
    [5]刘永长.内燃机原理,武汉:华中理工大学出版社,1990
    [6]彭涛.内燃机活塞材料的发展与前景,山西科技,2007,3:91-95
    [7]郭领军,李贺军,石振海.内燃机活塞材料的研究及应用述评,铸造,2003,52(9):657-659
    [8]黄德明,刘红梅,陈云贵.耐热铸造镁合金的研究应用进展,轻金属,2005,8:49-52
    [9]郭领军等.内燃机用碳/碳复合材料活塞,高科技纤维与应用,2001,28(1):39-42
    [10]傅国兰.铸铁活塞的研究与开发,汽车与配件,1994,3:20-23
    [11]三原健治,山本幸雄,清水羲秋.高速柴油机球墨铸铁活塞的开发,国外内燃机车,1994,7:25-28
    [12]刘世英,翟鹏,王志明.高负荷柴油机锻钢活塞的研究开发,内燃机工程,2006,27(6):30-34
    [13]马勒技术投资(中国)有限公司.新型钢制活塞:适用于重型发动机的MONOTHERM,现代零部件,2007,7:40-45
    [14]钱人一.高载荷商用车发动机钢活塞,汽车与配件,2006,52:48-52
    [15]刘达利,齐丕襄.新型活塞合金,北京:国防工业出版社,1999,8:418-421
    [16]任书冲.汽车发动机活塞用铝合金,汽车技术,1994,4:32-51
    [17]陈长江,王渠东,尹冬弟,丁文江.内燃机活塞材料的研究进展,材料导报,2009,23(8):62-65
    [18]Pacz. USA Patent, 1387900, 1920
    [19]王杰芳,谢敬佩,刘忠侠等.国内外Al-Si活塞合金的研究及应用述评,铸造,2005,54(1):24-26
    [21]郭领军,李贺军,石振海.活塞材料的研究及应用述评,铸造,2003,52(9):657-659
    [21]李逸民.铝硅共晶的形态及其对合金性能的影响,机械工程材料,1981,3:41-48
    [22]郭国庆,谢敬佩,王杰芳等.内燃机活塞材料及其相关技术,拖拉机与农用运输车, 2004,(3):9-13
    [23]任树坤.汽车发动机活塞用铝合金,汽车技术,1994,4:32-51
    [24]L.F.蒙多尔福著,王祝堂,张振禄,郑璇等译.铝合金的组织与性能,北京:冶金工业出版社,1988
    [25]《铸造合金及其熔炼》联合编写组.铸造合金及其熔炼,北京:国防工业出版社,1980,2:9-46
    [26]中国机械工程学会铸造分会.铸造手册,北京:机械工业出版社,2002,96:633-663
    [27]陆文华,李隆盛,黄良余.铸造合金及其熔炼,北京:机械工业出版社,2002,262-339
    [28]康积行,傅高升,黄利光等.Al-Si合金中Si细化的现状与初探,福州大学学报,1996,24(6):46-51
    [29]王明星.电解低钛铝合金工业试验及其组织与性能的研究,合肥:中国科学院合肥等离子研究所,2002,1-36
    [30]李树索,郑承利,王德仁等.共晶 Al-Si合金Sr、RE以及P变质处理的研究,热加工工艺,1998,(3):15-16
    [31]黄兴波.稀土钡磷复合变质剂对ZL108合金变质效果的研究,铸造,1997,5:6-8
    [32]齐广慧,刘相法.杨志强等.绿色高效Al-Si合金变质剂Al-P中间合金,材料科学与工艺,2001,9(2):211-214
    [33]安继儒.中外常用金属材料手册,西安:西安交通大学出版社,1990
    [34]蔡东德.过共品Al-Si合金的生产及其应用,特种铸造及有色合金,1990,4:37-39
    [35]中国机械工程学会铸造分会.铸造手册.第3卷,铸造非铁合金(第2版),北京:机械工业出版社,2001
    [36]李元元,郭国文,罗宗强等.高强韧铸造铝合金材料研究进展,特种铸造及有包合金,2000.6:45~47
    [37]李学朝.铝合金材料组织与金相图谱,北京:冶金工业出版社,2010.7
    [38]王祝堂. 田荣璋.铝合金及其加工手册,长沙:中南工业大学出版社,1988,9
    [39]李润霞,李荣德,杨秀英,李晨曦,胡壮麒.高强度铸造Al-Si-Cu-Mg合金时效特性的研究,铸造,2003,52(6):390-395
    [40]N.A.Belov, D.G.Eskin, N.N.Avxentieva. Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys, Acta Materialia,2005,53:4709-4723
    [41]L.F. Mondolfo. Aluminium alloys:structure and properties, London:Butterworths, 1976
    [42]N.A. Belov, D.G. Eskin, A.A. Aksenov. Multicomponent phase diagrams:applications for commercial aluminium alloys, Oxford:Elsevier; 2005
    [43]J.G. Qiao, X.F. Liu, X.J. Liu, X.F. Bian. Relationship between microstructures and contents of Ca/P in near eutectie A1-Si piston alloys, Materials Letters, 2005,59 (14-15):1790-1794
    [44]X.F. Liu, J.G. Qiao, Y.Y. Wu, X.J. Liu, X.F. Bian. EPMA analysis of calcium-rich compounds in near eutecfie Al-Si alloys, Journal of Alloys and Compounds, 2005,388 (2): 83-90
    [45]J. Zhou, J. Duszczyk, B.M. Korevaar. As-spray-deposited structure of an Al-20Si-5Fe Osprey preform and its development during subsequent processing, Journal of Material Science, 1991,26:5275-91
    [46]A.K.. Srivastava, V.C.Srivastava, A. Gloter, S.N. Ojha. Microstructural features induced by spray processing and hot extrusion of an Al-18% Si-5% Fe-1.5% Cu alloy, Acta Materialia, 2006,54(7):1741-1748
    [47]A.Mocellin, R.Fougeres, P.F. Gobin. A study of damage under tensile loading in a new Al-Si-Fe alloy processed by the Osprey route, Journal of Material Science,1993,28:4855-61
    [48]V.C. Srivastava, R.K. Mandal, S.N. Ojha, K.V. enkateswarlu. Microstructural modifications induced during spray deposition of Al-Si-Fe alloys and their mechanical properties, Materials Science and Engeering A, 2007, 471:38-49
    [49]F. Wang, J.S. Zhang, B.Q. Xiong, Y.A. Zhang. Effect of Fe and Mn additions on microstructure andmechanical properties of spray-deposited Al-20Si-3Cu-1Mg alloy, Materials characterization,2009,60:384-388
    [50]K. Asano, H.Yoneda. Microstructure and strength of a squeeze cast aluminium piston alloy composite reinforced with alumina short fibre using A12O3 binder, International Journal of Cast Metals Research, 2004,17 (6):351
    [51]钱钊,刘相法,魏作山,李勇铖,王丽艳.挤压铸造BH122活塞合金的显微组织与力学性能,特种铸造及有色合金,2008,28(1):40-42.
    [52]L.N. Yu, X.F. Liu. The relationship between viscosity and refinement efficiency of pure aluminum by AI-Ti-B refiner, Journal of Alloys and Compounds,2006,425:245-250
    [53]Z.H. Zhang, X.F. Bian, Z.Q. Wang, X.F. Liu, Y. Wang. Microstructures and grain refinement performance of rapidly solidified Al-Ti-C master alloys, Journal of Alloys and Compounds, 2002,339: 180-188
    [54]H. E. Vantne, R. Sunndals. Efficient grain refinement of ingots of commercial wrought aluminum alloys. Aluminum,1999,75:84-90
    [55]G. k. Sigworth, M.M.Guzowski. Grain refining of hypoeutectie Al-Si alloys, AFS Transactions,1985,93:907-912
    [56]刘操.Al-Ti-C、Al-Ti-B晶粒细化剂对变形时铝合金的细化效果评定,兰州理大学硕士学位论文,2006
    [57]P. S. Mohanty, J.E. Gruzleski. Grain refinement mechanism of hypoeutectie Al-Si alloy, Acta Materialia,1996,44 (9); 3749-3760
    [58]M.M. Guzowiki, G.K. Sigworh, D. A. Sentner. The role of boron in the grain refinement of aluminum with Titanium, Metallurgical and Materials Transactions A,1987,18A (4):603-619
    [59]P. Kapranos, D.H. Kirkwood, H.V. Atkinson. Thixo form ing of an automotive part in A390 hypereutectic Al-Si alloy. Journal of Materials Processing Technology.2003,135:271-277
    [60]宋西贵.高强耐磨活塞合金BH135变质工艺与变质机理的研究,山东大学硕士学位论艾,2002
    [61]刘相法,边秀房.铝合金组织细化用中间合金,长沙:中南大学出版社,2012,6
    [62]刘相法,乔进国,刘玉先等.Al-P中间合金对共晶和过共晶 Al-Si合金的变质机制,金属学报,2004,40(5):471-476
    [63]刘相法:,乔进国,宋西贵等.Al-P中国合金在Al-Si活塞合金的应用,特种铸造及有色合金.2002.6:43-45
    [64]刘相法,乔进国,刘相俊等.新型Al-P中间合金对活塞合金中初晶Si的团球化,内燃机配件,2004,4:3-6
    [65]H.S. Park, J.H. Kim, K.M. Kim, E.P. Yoon. A study on the simultaneous refinement of primary and eutectie Si and the mechanical properties in B390 alloys, Journal of the Korean Institute of Metals and Materials,1997,35 (10):365-368
    [66]J.M. Lee, S. B. Kang. A study on the change of microstruetures with phosphorus and/or strontium treatment in A390 alloy, Journal of the Korean Institute of Metals and Materials, 1995,33 (11):1406-1413
    [67]J.I. Park, B. J. Yoo, Y. S. Kim, G. Kim. Efleets ofmelt treatment conditions on the simultaneous refinement of primary and eutectie silicon in hypereutectie A1-Si alloys, Journal of the Korean Institute of Metals and Materials,1994,32 (6):665-672
    [68]H. Zhao, J. Cai. Inoculating an aluminum-silicon alloy with phosphorus. Rare earths, and sulfur, JOM,1994,46 (11):42-47
    [69]Y. Wang, S. Yu, D. Jin, B. Gin. Rare earth modified hypereutectic Ai-Si alloy of high strength for piston, Jounal of China Rare Earth Society,1989,7 (1):44-48
    [70]K. Haruyasu, H. Akio, K. Sanji, S. Mamoru, S. Masahiko. Critical temperature for grain refining of primary Si in hypereutectic Al-Si alloy with phosphrous addition, Journal of Japan Institute of Light Metals, 2002, 52 (1):18-23
    [71]A. Richter, C.L. Chen, R. Smith, E. McGee, R.C. Thomson, S.D. Kenny. Hot stage nanoindentation in multi-component Al-Ni-Si alloys: Experiment and simulation, Materials Science and Engineering A,2008,494:367-379
    [72]Z. Asghar, G.Requena, F.Kubel, The role of Ni and Fe aluminides on the elevated temperature strength of an AlSi12 alloy, Materials Science and Engineering A,2010,527:5691-5698
    [73]Z. Asghar, G. Requena, H.P. Degischer, P. Cloetens. Three-dimensional study of Ni aluminides in an AlSi12 alloy by means of light optical and synchrotron microtomography, Acta Materialia,2009,57:4125-4132
    [74]M. Zeren. Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mg alloys, Journal of Materials Processing Technology,2005,169:292-298
    [75]F.Y. Xie, T. Kraft, Y. Zuo, C.H. Moon, Y. A. Chang. Microstructure and microsegregation in Al-Rich Al-Cu-Mg alloys, Acta Materialia, 1999, 47 (2):489-500
    [76]L. Lasa, J.M. Rodriguez-Ibabe. Characterization of the dissolution of the Al2Cu phase in two Al-Si-Cu-Mg casting alloys using calorimetry, Materials Characterization,2002,48:371-78
    [77]A. Cibula.The Mechanism of Grain Refinement of Sand Casting in Aluminum Alloys, Journal of the Institute of Metals,1949-1960,76:321-325
    [78]D.H. Xiao, J.N. Wang, D.Y. Ding, S.P. Chen. Effect of Cu content on the mechanical properties of an Al-Cu-Mg-Ag alloy, Journal of Alloys and Compounds, 2002, 343:77-81
    [79]Y.J. Li, S. Brusethaug, A. Olsen. Influence of Cu on the mechanical properties and precipitation behavior of AlSi7Mg0.5 alloy during aging treatment, Scripta Materialia,2006, 54:99-103
    [80]F. H. Samuel, A. M. Samuel. Effect of magnesium content on the ageing behaviour of water-chilled Al-Si-Cu-Mg-Fe-Mn (380) alloy castings, Journal of Materials Science, 1995, 30:2531-2510
    [81]F.H. Aamuel, P. Quellet. Effect of Mg and Sr additions on the formation of Intermetallics in Al-6 wt% Si-3.5 wt% Cu-(0.45-0.8) wt% Fe 319-type alloy, Metallurgical and Materials Transactions A,1998,29A:2871-2884
    [82]F.H. Aamuel, A.M. Aamuel. Modification of iron intermetallics by magnesium and Strontium in Al-Si alloys, Journal of the Institute of Cast Metals Research,1997,10:147-157
    [83]A.Richard, J.R. Jeniski. The Effect of iron and Manganese on the recrystallization behavior of hot-rolled and solution-heat-treated aluminum alloy 6013, Metallurgical and Materials Transactions A,1996,27A:19-27
    [84]Z. Qian, X.F. Liu, D.G. Zhao, G.H.Zhang. Effect of trace Mn addition on the elevated temperature tensile strength and microstructure of a low-iron Al-Si piston alloy, Materials Letters,2008,62:2146-2149
    [85]M.M. Haque, M.A. Maleque. Effect of process variables on structure and properties of aluminium-silicon piston alloy, Journal of Materials Processing Technology, 1998, 77: 122-128
    [86]C.M. Styles, P.A.S. Reed, in:E.A. Starke, T.H. Sanders, W.A. Cassada,(Eds.), Proc 1CAA-7, Aluminium Alloys:Their Physical and Mechanical Properties, Trans Tech Publications Ltd., Switzerland, 2000,1457-1462
    [87]Y.L. Cai, Y.R. Zheng. Metallographic Study on High Temperature Alloys, Military Industry Press, Beijing,1986
    [88]D.L. Shu. Mechanical Properties of Engineering Materials, China Machine Press, Beijing, 2004
    [89]P.N. Crepeau. Effect of Iron in Al-Si Casting Alloys:A Critical Reviw, AFS Transactions, 1995,103:361-365
    [90]A.M. Samuel, F.H. Samuel. Observations on the formation of β-AlsFeSi Phase in 319 Type Al-Si alloys, Journal of Materials Science, 1996, 31:5529-5539
    [91]L.Wang. Iron-bearing compounds in Al-Si diecasting aloys:Morphology and Conditions Under Which They Form, AFS Transactions, 1999, 107:231-238
    [92]P.S. Wang, S.L. Lee, J. C. Lin. Effect of solution temperature on mechanical properties of 319.0 aluminum casting alloys contaioning trace beryllium, Journal of Materials Research, 2000,15:2027-2035
    [93]F.H. Samuel, A.M. Samuel. Decomposition of Fe-Intermetallics in Sr-Modified Cast 6xxx Type Aluminum Alloys for Automotive Skin, Metallurgical and Materials Transactions A, 2001,32A:2061-2075
    [94]周惠久,黄明志.金属材料强度学,北京:科学出版社,1989.3
    [95]黄明志,石德珂,金志浩.金属力学性能,西安:西安交通大学出版社,1986.10
    [96]王从曾.材料性能学,北京:北京工业大学出版社,2001.6
    [97]苏学常.铝合金的强化,轻合金加工技术,1996,24(9):2-5
    [98]张俊善.材料的高温变形与断裂,北京:科学出版社,2010.7
    [99]C.L. Chen, R.C. Thomson. Study on thermal expansion of intermetallics in multicomponent Al-Si alloys by high temperature X-ray diffraction, Intermetallics, 2010, 18:1750-1757
    [100]C.L. Chen, G. West and R.C.Thomson. Characterisation of intermetallic phases in multicomponent Al-Si casting alloys for engineering applications, Materials Science Forum, 2006,519-521:359-364
    [101]W. Bonsack. Discussion on the effect of minor alloying elements on Al casting alloys, ASTM Bulleton,1949,117(8):45-59
    [102]A. Couture. Iron in Al casting alloys-Aliterature survey AFS inter, Cast Metals Journal,1981, 12:74-80
    [103]L.Grand. Influence of some inpurities on the quality of Al alloys, Foundary, 1964, 3 (217): 95-100
    [104]L.A. Narayanan. Crystallization behavior of iron-containing intermetallic compounds in 391 aluminium alloy, Metallurgical and Materials Transactions, 1994, 8:1761-1773
    [105]S. Gowri, F.H. Samue. Effect of alloying elements on solidification characteristic and microstrucyure of Al-Si-Cu-Mg-Fe 380 alloy, Metallurgical and Materials Transactions, 1994,25A:437-448
    [106]Y.H. Cho, D.H. Joo, C.H. Kim. The effect of alloy addition on the high temperature properties of over aged AISi(CuNiMg) cast alloys, Materials Science Forum,2006, 519-521):461-466
    [107]刘伏梅,刘志坚.Fe在Al合金中的有害作用及其控制,内燃机配件,2002,04:7-10
    [108]S. Murali, K. S. Raman, K.S. S. Murthy. The formation of P-FeSiA15 and β-Fe phases in AI-7Si-0.3Mg alloy containing Be, Material Science and Engineering, 1995, A 190(1-2): 165-172
    [109]印飞,杨江波,孙宝德.高含Fe量Al合合金中Fe相的凝固行为与形貌控制,上海交通大学学报,2002,01:43-46
    [110]印飞,杨江波,王亦新,王国祥,孙宝德,李振,王定国.消除Al-Si合金中铁相有害作用的方法分析,热加工工艺,2001,3:61-63
    [111]陈东风,曹志强,张婷.锰加入量对铝合金中富铁相形貌和电磁过滤的影响,机械工程材料,2007,31(6):42-45
    [112]钱钊,刘相法,冯增建,赵德铡,边秀房.微量混合RE对Al-Si多元活塞合金的高温强化及组织分析,铸造,2007,56(2):141-144
    [113]边秀房,付茂华,张国华,马家骥.铝合金球化剂,发明专利,CN1081720A,1994,2
    [114]钱钊.高强耐热Al-Si活塞合金的研究,山东大学硕士论文,2009
    [115]李云国Al-Si-Cu-Ni-Mg系活塞合金高温强化相的研究,山东大学硕士论文,2011
    [116]D.G McCartney, Grain refining of aluminium and its alloys using inoculants, International Materials Reviews, 1989, 34 (5):247
    [117]H.E Vatne, Sunndalsora. Efficient grain refinement of ingot of commerical wrought aluminium alloys, PartTi:methods for refining, Alumium,1999,(1/2):84-87
    [118]韩行霖.Al-Ti-B对铝合金细化过程的研究和理论分析,轻合金加工技术,1986,6:12-16
    [119]刘相法.Al-Ti-B 中间合金的遗传性研究,山东工业大学博士学位论文,1997
    [120]姜文辉,韩行霖.Al-Ti-C中间合金晶粒细化剂的的合成及其晶粒细化作用,中国有色金属学报,1998,6,2:268
    [121]余贵春,张柏清,马洪涛等.铝热反应制备Al-Ti-C中间合金的研究,金属热处理,2000,5:14
    [122]张柏清,马洪涛,李建国,方鸿生Al-Ti-C中间合金细化剂的的组织及其细化一性能,金属学报,2000,36(4):341
    [123]姜文辉,韩行霖Al-Ti-C-B中间合金细化剂的研究,特种铸造及有色合金,1997,01:19-22
    [124]J.F. Nie, X.G. Ma, H.M. Ding, X.F. Liu. Microstructure and grain refining performance of a new Al-Ti-C-B master alloy, Journal of Alloys and Compounds, 2009,486:185-190
    [125]J.F. Nie, X.F. Liu, X.G. Ma. Influence of trace boron on the morphology of titanium carbide in an Al-Ti-C-B master alloy, Journal of Alloys and Compounds, 2010, 491:113-117
    [126]P.T. Li, X.G. Ma, Y.G. Li, J.F. Nie, X.F. Liu. Effect of trace C addition on the microstructure and refining efficiency of Al-Ti-B master alloy, Journal of Alloys and Compounds,2010,503: 286-290
    [127]J.F. Nie, X.G. Ma, P.T. Li, X.F. Liu. Effect of B/C ratio on the microstructure and grain refining efficiency of Al-Ti-C-B master alloy, Journal of Alloys and Compounds,2011,509: 1119-1123
    [128]A.Cibula, R.W.Ruddle. The effect of grain size on the tensile properties of high-strength cast aluminium alloys, Journal of the Institute of Metals,1949-50, 76:361-371
    [129]M. Zeren, Erdem Karakulak. Influence of Ti addition on the microstructure and hardness properties of near-eutectic Al-Si alloys, Journal of Alloys and Compounds, 2008, 450: 255-259
    [130]陈越.稀土在铝及铝合金中的应用,上海有色金属,1998,3:19-24
    [131]张卫文.稀上在共晶Al-Si合金中合金化作用,理化检测-物理分析,1994,3:12-14
    [1]张忠华.快速凝固铝基中间合金的研究,山东大学博士学位论文,2003
    [2]神户博太郎编.刘振海译,热分析,北京:化学出版社,1985
    [3]于伯龄,姜胶东.实用热分析,北京:纺织工业出版社,1990
    [4]马海建.元素添加对铁基非晶形成能力晶化及性能的影响,山东大学博士学位论文,2011
    [5]李冲.铝合金中Mg2Si相演变行为及析出长大机制的研究,山东大学博士学位论文,2012
    [1]王杰芳,谢敬佩,刘忠侠等.国内外Al-Si活塞合金的研究及应用评述,铸造,2005,54(1):24.27
    [2]赖华清.活塞材料的应用与发展,上海汽车,2005,12:33.35
    [3]彭涛.内燃机活塞材料的发展与前景,山西科技,2007,3:91-92
    [4]钱钊.高强耐热Al-Si活塞合金的研究,山东大学硕士学位论文,2009
    [5]N.A. Belov, D.G. Eskin, N.N. Avxentieva. Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys, Acta Materialia,2005,53:4709-22
    [6]A.Richer, C.L.Chen, R.Smith.. Hot stage naniindentation in muliti-conponcnt Al-Ni-Si alloys: Experi,rnt and simulation, Materials Science and Engineering A,2008, 494: 367-379
    [7]李云国Al-Si-Cu-Ni-Mg系活塞合金高温强化相的研究,山东大学硕士论文,2011
    [8]R.C.Thomson. The combined of EBSD and EDX analysis for the identification of complex intermetallic phases in multicomponent Al-Si piston alloys, Journal of Alloys and Compounds 2009,388:83-90
    [9]Y.G Li, Y.Y Wu, Z. Qianm X.F Liu. Effect of co-addition of RE,Fe and Mn on the microstructure and performance of A390 alloy, Materials Science and Engineering A,2009, 527:146-149
    [10]R.M. Gomes, T. Sato, M.Tezuka. Precipitation strengthening and mechanical properties of hypereutectic P/M Al-Si-Cu-Mg alloys containing Fe and Ni, Materials Science Forum,1996: 217-222
    [11]M. Murayama, K. Hono, M. Saga, M. Kikushi. Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys, Materials Science and Engineering A,1998, 250:127-32
    [12]Z. Li, A.M. Samuelm F.H. Samuel, C. Ravindran. Valtierra S. Effect of alloying elements on the segregation and dissolution of AI2Cu phase in Al-Si-Cu 319 alloys, Journal of Material Science,2003,38:1203-18
    [13]C.L. Chen, G. West, R.C Thomson. The effect of alloy addition on the high temperature properities of over-aged Al-Si(CuNiMg) cast alloys. Materials Science Forum,2006,519-521: 359-64
    [14]B. Sundman, B. Jansson, J.O. Andersson. The database used, TTAL7, is specifically designed for use with aluminum alloys, CALPI IAD 9,1985,153
    [15]N. Saunders. TTA1, TT Al-based Alloys Database, ThermoTech Ltd, Surrey Technology Center, Guildford, UK,2002
    [16]N.A. Belov, D.G. Eskin, A.A. Aksenov. Multicomponent phase diagrams:applications for commercial aluminium alloys, Oxford:Elsevier; 2005
    [17]M. Zeren. Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mg alloys, Journal of Materials Processing Technology, 2005, 169:292-298
    [18]P. Liu, B.X. Kang, X.G. Caol. Aging precipitation and recrystallization of rapidly solidified Cu-Cr-Zr-Mg alloy, Materials Science and Engineering A,1999,265:262-267.
    [19]M.Kusy, P.Riello, L.Battezzati. A comparative study of primary Al precipitation in amorphous A187Ni7La5Zr by means of WAXS, SAXS, TEM and DSC techniques, Acta Materialia, 2004, 52:5031-41
    [20]A. Bendijk, R. Delhez, L. Katgerman. Characterization of Al-Si-alloys rapidly quenched from the melt, Journal of Material Science,1980,2803:10-15
    [21]Y. Birol. Microstructural characterization of a rapidly solidified Al-12wt.% Si alloy, Journal of Material Science,1996,31:2139-2143.
    [22]N. Unlua, A. Gene, M.L. Ovecoglua, N. Eruslua, F.H. Froesb. Characterization investigations of melt-spun ternary Al-xSi-3.3Fe (x510,20 wt.%) alloys, Journal of Alloys and Compounds, 2001,322: 249-56
    [23]C.L. Chen, A. Richter, R.C.Thomson. Mechanical properties of intermetallics phases in multi-component A1-Si alloys using nanoindentation, Intermetallics, 2009, 17:634-41
    [24]S.W. Youn, P.K. Seo, C.G. Kang. A study on nano-deformation behaviour of rheoformed Al-Si alloy based on depth-sensing indentation with three-dimensional surface analysis, Journal of Materials Processing Technology,2005,162-163:260-266
    [25]J.Jang, M.J.Lance, S.Q. Wen, T.Y. Tsui, G.M. Pharr. Indentation-induced phase transformations in silicon:influences of load rate and indenter angle on the transformations behaviour, Acta Materialia,2005,53:1759-70
    [26]L.F. Mondolfo. Aluminium alloys:structure and properties, London:Butter-worth; 1976
    [27]K.P. Cooper, H.N. Jones. Mirostructural evolution in rapidly solidified Al-Cu-Si ternary alloys, Journal of Material Science,2001,36:5315-23.
    [28]刘伏梅,刘汉川.镁、铜、镍在活塞合金中的强化作用,内燃机配件,2007,4:4-6
    [29]Hayrettin Ahlatci. Wear and corrosion behaviours of extruded Al-12Si-XMg alloys, Materials Letters,2008,62:3490-3492
    [30]M.M. Haque, A. Sharif. Study on wear properties of aluminium-silicon piston alloy, Journal of Materials Processing Technology,2001,118:69-73
    [31]X.F. Liu, J.G. Qiao, Y.Y. Wu. EPMA analysis of calcium-rich compounds in near eutectic Al-Si alloys, Journal of Alloys and Compounds, 2005,388:83-90
    [32]J. Qiao, X.Liu, X. Bian. Relationship between microstructuresand contents of Ca/P in ncar-eulectic Al-Si piston alloys. Materials Letters, 2005, 59: 1790-1794
    [1]L.N. Yu, X.F. Liu. The relationship between viscosity and refinement efficiency of pure aluminum by Al-Ti-B refiner, Journal of Alloys and Compounds, 2006, 425:245-250
    [2]Z.H. Zhang, X.F. Bian, Z.Q. Wang, X.F. Liu, Y. Wang. Microstructures and grain refinement performance of rapidly solidified Al-Ti-C master alloys, Journal of Alloys and Compounds, 2002,339:180-188
    [3]H. E.Vantne, R.Sunndals. Efficient Grain Refinement of Ingots of Commercial Wrought Aluminum Alloys, Aluminum, 1999,75:84-90
    [5]G. k. Sigworth, M.M. Guzowski. Grain refining of hypoeutectie Al-Si alloys, AFS Trans, 1985, 93:907-912
    [6]刘操Al-Ti-C. Al-Ti-B晶粒细化剂对变形铝合金的细化效果评定,兰州理工大学硕士学 位论文,2006
    [7]P.S. Mohanty, J.E. Gruzleski. Grain refinement mechanism of hypoeutectic Al-Si alloy, Acta Materialia,1996,44(9):3749-3760
    [8]M.M. Guzowiki, G.K. Sigworh, D. A. Sentner. The Role of Boron in the Grain Refinement of
    Aluminum with Titanium, Metallurgical Transactions,1987,18A(4):603-619
    [9]P. Kapranos, D.H. Kirkwood, H.V. Atkinson. Thixoforming of an automotive part in A390 hypereutectic Al-Si alloy, Journal of Materials Processing Technology,2003,135:271-277
    [10]宋西贵.高强耐磨活塞合金BH135变质工艺与变质机理的研究,山东大学硕士学位论文,2002
    [11]刘相法.铝合金组织细化用中间合金,长沙:中南大学出版社,2012
    [12]刘相法,乔国,刘玉先.Al-P中间合金对共晶和过共晶Al-Si合金的变质机制,金属学报,2004,40(5):471-476
    [13]刘相法,乔进国,宋西贵.Al-P中间合金在Al-Si活塞合金的应用,特种铸造及有色合金,2002,6:43-45
    [14]刘相法,乔国,刘玉先.新型Al-P中间合金对活塞合金中初晶Si的团球化,内燃机配件,2004,4:3-6
    [15]H.S. Park, J.H.Kim, K. M.Kim, E.P. Yoon. A study on the simultaneous refinement of primary and eutectie Si and the mechanical properties in B390 alloys, Journal of the Korean Institute of Metals and Materials,1997,35(10):320-324
    [16]J.M. Lee, S.B.Kang. A study on the change of microstruetures with phosphorus and/or strontium treatment in A390 alloy. Journal of the Korean Institute of Metals and Materials, 1995,33(11):1406-1413
    [17]J.I. Park, B. J. Yoo, Y.S. Kim, G. Kim. Efleets of melt treatment conditions on the simultaneous refinement of primary and eutectie silicon in hypereutectie Al-Si Hoys, Journal of the Korean Institute of Metals and Materials,1994,32(6):665-672
    [18]A. Richter, C.L.Chen, R. Smith, E. McGee, R.C. Thomson, S.D. Kenny. Hot stage nanoindentation in multi-component Al-Ni-Si alloys:Experiment and simulation, Materials Science and Engineering A,2008, 494:367-379
    [19]Z. Asghar, G.Requena, F.Kubel. The role of Ni and Fe aluminides on the elevated temperature strength of an AlSi 12 alloy, Materials ScienceandEngineering A,2010,527:5691-698
    [20]Z. Asghar, G. Requena, H.P. Degischer, P. Cloetens, Three-dimensional study of Ni aluminides in an AISi 12 alloy by means of light optical and synchrotron microtomography, Acta Materialia, 2009,57:4125-4132
    [21]M. Zeren. Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mg alloys, Journal of Materials Processing Technology, 2005,169:292-298
    [22]F.Y. Xie, T. Kraft, Y. Zuo, C.H. Moon, Y. A. Chang. Microstructure and microsegregation in Al-Rich Al-Cu-Mg alloys, Acta materialia,1999,47 (2):489-500,
    [23]L. Lasa, J.M. Rodriguez-Ibabe. Characterization of the dissolution of the Al2Cu phase in two Al-Si-Cu-Mg casting alloys using calorimetry, Materials Characterization,2002,48:371-378
    [24]F. H. Samuel, A.M. Samuel. Effect of magnesium content on the ageing behaviour of water-chilled Al-Si-Cu-Mg-Fe-Mn(380) alloy castings, Journal of Materials Science, 1995, 30:2531-2510
    [25]D.H. Xiao, J.N. Wang, D.Y. Ding, S.P. Chen. Effect of Cu content on the mechanical properties of an Al-Cu-Mg-Ag alloy, Journal of Alloys and Compounds, 2002, 343:77-81
    [26]Y.J. Li a, S. Brusethaug, A. Olsen. Influence of Cu on the mechanical properties and precipitation behavior of AlSi7Mg0.5 alloy during aging treatment, Scripta Materialia,,2006, 54:99-103
    [27]F. Wang, Y.S. Jin, D.Y. Hu, J.S. Zhang. Effect of precipitating phases on tensile strength and microstructural stability of a spray-deposited A1-Si-Fe-Mn-Cu-Mg alloy, Journal of Materials Processing Technology,2003,137:191-194
    [28]Y.L. Cai, Y.R. Zheng. Metallographic Study on High Temperature Alloys, Military Industry Press, Beijing, 1986
    [29]A. Richard, J.R. Jeniski. The Effect of Iron and Manganese on the Recrystallization Behavior of Hot-Rolled and Solution-Heat-Treated Aluminum Alloy 6013, Metallurgical and Materials Transactions A,1996,27A:19-27
    [30]Q. Zhao, X.F. Liu, D.G. Zhao, G.H. Zhang. Effect of trace Mn addition on the elevated temperature tensile strength and microstructure of a low-iron Al-Si piston alloy, Materials Letters,2008,62:2146-2149
    [31]G. Gustafsson, T. Thorvaldsson, G.L. Dunlop. The influence of Fe and Cr on the microstructures of cast Al-Si-Mg alloy, Metallurgical and Materials Transactions, 1985, 17A(1):45-52
    [32]L.A.Narayanan. Crystallization behavior of iron-containing intermetallic compounds in 391 aluminium alloy, Metallurgical and Materials Transactions, 1994, 8:1761-1773
    [33]S. Gowri, F.H. Samuel. Effect of alloying elements on solidification characteristic and microstrucyure of Al-Si-Cu-Mg-Fe 380 alloy, Metallurgical and Materials Transactions,1994, 25A:437-448
    [34]N.Belov, D.Eskin, A.Aksenov. Multicomponent phase diagrams:applications for commercial aluminum alloys, Oxford:Elsevier,2005
    [35]N.A. Belov, D.G. Eskin, N.N. Avxentieva. Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys, Acta Materialia, 2005,53:4709-4722
    [36]N.A. Belov, E.A. Naumova, D.G. Eskin. Casting alloys of the Al-Ce-Ni system: microstructural approach to alloy design, Materials Science and Engineering A,1999,271: 134-142
    [37]李云国Al-Si-Cu-Ni-Mg系活塞合金高温强化相的研究,山东大学硕士学位论文,2011
    [38]M.R. Joyce, C.M. Styles, P.A.S. Reed. Elevated temperature short crack fatigue behaviour in near eutectic Al-Si alloys. International Journal of Fatigue,2003,25:863-869
    [39]M.M.1 laque, M.A. Maleque. Effect of process variables on structure and properties of aluminium-silicon piston alloy, Journal of Materials Processing Technology, 1998, 77: 122-128
    [40]L.F.Mondolfo. Aluminum Alloys:Structure and Properties, London:Buttervvorths,1976
    [41]C.L. Chen, R.C. Thomson. The combined use of EBSD and EDX analyses for the identification of complex intermetallic phases in multicomponent Al-Si piston alloys, Journal of Alloys and Compounds, 2008:275-279
    [42]C.L. Chen, A. Richter, R.C. Thomson. Mechanical properties of intermetallic phases in multicomponent Al-Si alloys using nanoindentation, Intermetallics, 2009, 17:634-641
    [43]钱钊,刘相法,魏作山等.挤压铸造BH122活塞合金的显微组织与力学性能,特种铸造及有色合金,2008,28:40-43
    [44]钱钊.高强耐热Al-Si活塞合金的研究,山东大学硕士学位论文,2009
    [45]M. Zeren, The effect of heat-treatment on aluminum-based piston alloys, Materials and Design,2007,28:2511-2517
    [46]A. J. Moffat, B. G. Mellor, I. Sinclair and P. A. S. Reed. The mechanisms of long fatigue crack growth behaviour in Al-Si casting alloys at room and elevated temperature, Materials Science and Technology, 2007, 23:1396-1401
    [47]A.J. Moffat, B.G. Mellor, C.L. Chen, R.C.Thomson, P.A.S. Reed. Microstructural analysis of fatigue initiation in Al-Si casting alloys, Materials Science Forum, 2006, 519-521:1083-1088
    [1]Z. Qian, X.F. Liu, D.G. Zhao, G.H. Zhang. Effect of trace Mn addition on the elevated temperature tensile strength and microstructure of a low-iron Al-Si piston alloy, Materials Letters,2008,62 (14):2146-2149
    [2]李云国Al-Si-Cu-Ni-Mg系活塞合金高温强化相的研究,山东大学硕士论文,2011
    [3]李润霞,于洪江,袁晓光等.Cr和Mo对过共晶Al-Si合金组织与性能的影响,铸造,2009,58(8):839-842
    [4]W. Bonsack. Discussion on the effect of minor alloying elements on Al casting alloys, ASTM Bulleton,117,1949,8:45-59
    [5]S. Murali, K. S. Raman, K.S. S. Murthy. The formation of β-FeSiA15 and (3-Fe phases in Al-7Si-0.3Mg alloy containing Be, Material Science and Engineering, 1995, A 190(1-2): 165-172
    [6]L.A. Narayanan. Crystallization behavior of iron-containing intermetallic compounds in 391 aluminium alloy, Metallurgical and Materials Transactions, 1994,8:1761-1773
    [7]Z. Asghar, G.Requena, F.Kubel. The role of Ni and Fe aluminides on the elevated temperature strength of an AlSi12 alloy, Materials Science and EngineeringA,2010,527:5691-698
    [8]S. Gowri, F.H. Samuel. Effect of alloying elements on solidification characteristic and microstrucyure of Al-Si-Cu-Mg-Fe 380 alloy, Metallurgical and Materials Transactions, 1994, 25A: 437-448
    [9]N.A. Belov, D.G. Eskin, N.N. Avxentieva. Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys, Acta Materialia,2005,53:4709-4722
    [10]N.Belov, D.Eskin, A.Aksenov. Multicomponent phase diagrams:applications for commercial aluminum alloys, Oxford:Elsevier, 2005
    [11]虞莲莲,曾正明.实用钢铁手册,北京:机械工业出版礼,2001
    [12]V.N. Vigdorovich, V.M. Glazov, N.N. Glagoleva. An Investigation of the Solubility of Cr, Mo and W in Al by the Microhardness Method, Izvestiya VUZ Tsvetnaya Metallurgiya, 1960, 2: 143-146
    [13]V.M. Glazov. The Al-Mo Phase Diagram:Binary Alloy Phase Diagrams, the second edition, ASM International,1998
    [14]米少波.含过渡金属的富Al三元合金相的形成规律,大连理工大学博士学位论文,2003
    [15]Y.L. Cai, Y.R. Zheng. Metallographic Study on High Temperature Alloys, Military Industry Press, Beijing,1986
    [16]L.F. Mondolfo. Aluminium Alloys:Structure and properties. Butter Worths, 1976
    [17]L.G. Hou, H. Cui, Y.H. Cai, J.S. Zhang. Effect of (Mn+Cr) addition on the microstructure and thermal stability of spray-formed hypereutectic Al-Si alloys, Materials Science and Engineering A,2009, 527:85-92
    [18]F. Wang, Y.S. Jin, D.Y. Hu, J.S. Zhang. Effect of precipitating phases on tensile strength and microstructural stability of a spray-deposited Al-Si-Fe-Mn-Cu-Mg alloy, Journal of Materials Processing Technology, 2003137:191-194
    [1]P. Kapranos, D.H. Kirkwood,11. V. Atkinson. Thixoforming of an automotive part in A390 hypereutectic Al-Si alloy, Journal of Materials Processing Technology,2003,135:271-277
    [2]宋西贵.高强耐磨活塞合金BH135变质工艺与变质机理的研究,山东大学硕士学位论文,2002
    [3]刘相法.铝合金组织细化用中间合金,长沙:中南大学了版社,2012
    [4]刘相法,乔进国,刘玉先.Al-P中间合金对共晶和过共晶Al-Si合金的变质机制,金属学报.2004,40(5):471-476
    [5]刘相法,乔进国,宋西贵,Al-P中间合金在Al-Si活塞合金的应用,特种铸造及有色合金,2002,(6):43-45
    [6]刘相法,乔进国,刘相俊.新型Al-P中间合金对活塞合金中实晶Si的团球化,内燃机配件,2004,(4):3-6
    [7]M.S. Park, J.H. Kim. K.M. Kim. E.P. Yoon. A study on the simultaneous refinement of primary and eutectie Si and the mechanical properties in B390 alloys, Journal of the Korean Institute of Metals and Materials,1997,35 (10):365-368
    [8]J.M. Lee, S. B. Kang. A study on the change of niierostruetures with phosphorus and/or strontium treatment in A390 alloy, Journal of the Korean Institute of Metals and Materials, 1995,33(11):1406-1413
    [9]J.I. Park, B. J. Yoo, Y. S. Kim, G. Kim. Efleets of melt treatment conditions on the simultaneous refinement of primary and eutectic silicon in hypereutectie Al-Si alloys, Journal of the Korean Institute of Metals and Materials,1994,32 (6):665-672
    [10]H. Zhao, J. Cai. Inoculating an aluminum-silicon alloy with phosphorus rare earths and sulfur, Journal of the Minerals and Materials Society,1994, 46 (11):42-47
    [11]Y. Wang, S. Yu, D. Jin, B. Gin. Rare earth modified hypereutectic Al-Si alloy of high strength for piston, Journal of the Chinese Rare Earth Society, 1989,7 (1):44-48
    [12]Katto Haruyasu, Hashimoto Akio, Kitaoka Sanji, Sayashi Mamoru, Shioda Masahiko. Critical temperature for grain refining of primary Si in hypereutectic Al-Si alloy with phosphrous addition, Journal of Japan Institute of Light Metals, 2002, 52 (1):18-23
    [13]A. Richter, C.L. Chen, R. Smith, E. McGee, R.C. Thomson, S.D. Kenny. Hot stage nanoindentation in multi-component Al-Ni-Si alloys:Experiment and simulation, Materials Science and Engineering A,2008, 494:367-379
    [14]Z. Asghar, G.Requena, F.Kubel. The role of Ni and Fe aluminides on the elevated temperature strength of an AlSi12 alloy, Materials Science and Engineering A,2010,527:5691-5698
    [15]Z. Asghar, G. Requena, H.P. Degischer, P. Cloetens. Three-dimensional study of Ni aluminides in an AlSi12 alloy by means of light optical and synchrotron microtomography, Acta Materialia, 2009,57:4125-4132
    [16]M. Zeren. Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mg alloys, Journal of Materials Processing Technology,2005,169:292-298
    [17]F. Y. Xie, T. Kraft, Y. Zuo, C.h. Moon, Y. A. Chang. Microstructure and microsegregation in Al-Rich A1-Cu-Mg alloys, Acta Materialia, 1999, 47 (2):489-500,
    [18]L. Lasa, J.M. Rodriguez-Ibabe. Characterization of the dissolution of the A12Cu phase in two Al-Si-Cu-Mg casting alloys using calorimetry, Materials Characterization, 2002, 48:371-378
    [19]F.C.Robles Hernandez, J.H.Sokolowski. Thermal analysis and microscopical characterization of Al-Si hypereutectic alloy, Journal of Alloys and Compounds, 2006, 419:180-190
    [20]D.H. Xiao, J.N. Wang, D.Y. Ding, S.P. Chen. Effect of Cu content on the mechanical properties of an AI-Cu-Mg-Ag alloy, Journal of Alloys and Compounds, 2002, 343:77-81
    [21]Y.J. Li, S. Brusethaug, A. Olsen. Influence of Cu on the mechanical properties and precipitation behavior of AISi7Mg0.5 alloy during aging treatment, Scripta Materialia,2006, 54:99-103
    [22]F. H. Samuel, A. M. Samuel. Effect of magnesium content on the ageing behaviour of water-chilled Al-Si-Cu-Mg-Fe-Mn (380) alloy castings, Journal of Materials Science,1995, 30:2531-2510
    [23]F.H. Samuel, P. Quellet. Effect of Mgand Sr Additions on the Formation of Intermetallics in Al-6% Si-3.5% Cu-0.45-0.8%) Fe 319-Tpe Alloy, Metallurgical and Materials Transactions A, 1998,29A:2871-2884
    [24]F.H. Aamuel, A.M. Aamuel. Modification of Iron Intermetallics by Magnesium and Strontium in Al-Si Alloys, International Jounal of Cast Metals Research,1997,10:147-157
    [25]A.Richard, J.R. Jeniski. The Effect of Iron and Manganese on the Recrystallization Behavior of Hot-Rolled and Solution-Heat-Treated Aluminum Alloy 6013, Metallurgical and Materials Transactions A,1996,27A:19-27
    [26]Z. Qian, X.F. Liu, D.G. Zhao, G.H. Zhang. Effect of trace Mn addition on the elevated temperature tensile strength and microstructure of a low-iron Al-Si piston alloy, Materials Letters,2008,62:2146-2149
    [27]N.Belov, D.Eskin, A.Aksenov. Multicoinponent phase diagrams:applications for commercial aluminum alloys. Oxford:Elsevier,2005.
    [28]N.A. Belov, D.G. Eskin, N.N. Avxentieva. Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys, Acta Materialia,2005,53:4709-4722
    [29]张俊善.材料的高温变形与断裂,北京:科学出版社,2010.7
    [30]D.L. Shu. Mechanical Properties of Engineering Materials, China Machine Press, Beijing, 2004.
    [31]P.N. Crepeau. Effect of Iron in Al-Si Casting Alloys:A Critical Reviw, AFS Transactions, 1995,103:361-365
    [32]A.M. Samuel, F.H. Samuel. Observations on the formation ofβ-A15FeSi Phase in 319 Type Al-Si alloys, Journal of Materials Science, 1996, 31:5529-5539
    [33]L.Wang. Iron-Bearing Compounds in Al-Si Diecasting Alloys:Morphology and Conditions Under Which They Form, AFS Transactions, 1999,107:231-238
    [34]P.S. Wang, S.L. Lee, J.C. Lin. Effect of solution temperature on mechanical properties of 319.0 aluminum casting alloys contaioning trace beryllium, Journal of Materials Research, 2000,15:2027-2035
    [35]F.H. Samuel, A.M. Samuel. Decomposition of Fe-Intermetallics in Sr-Modified Cast 6xxx Type Aluminum Alloys for Automotive Skin, Metallurgical and Materials Transactions A, 2001,32A:2061-2075
    [36]束德林.工程材料力学性能,北京:机械工业出版社,2003
    [37]J.S. Zhang, High temperature deformation and fracture of materials, Beijing,Scinece press, 2010
    [38]Y.L. Cai, Y.R. Zheng. Metallographic Study on High Temperature Alloys, Military Industry Press, Beijing,1986
    [39]M.R. Joyce, C.M. Styles, P.A.S. Reed. Elevated temperature short crack fatigue behaviour in near eutectic Al-Si alloys, International Journal of Fatigue,2003,25:863-869
    [40]A.J. Moffat, B.G. Mellor, C.L. Chen, R.C.Thomson, P.A.S. Reed. Microstructural analysis of fatigue initiation in Al-Si casting alloys, Materials Science Forum, 2006, 519-521:1083-1088
    [41]A. J. Moffat, B. G. Mellor, I. Sinclair and P. A. S. Reed. The mechanisms of long fatigue crack growth behaviour in Al-Si casting alloys at room and elevated temperature, Materials Science and Technology, 2007, 23:1396-1401
    [42]M.X Wang, S.J Wang, Z.Y. Liu. Effect of B/Ti mass ratio on grain refining of low-titanium aluminum produced by electrolysis, Materials Science and Engineering A, 2006, 416: 312-320
    [43]B. Yucel. Production of Al morphology variation of TiB particles, Journal of Alloys and Compounds, 2007, 440:108-114
    [44]C.P. Liu, F.S.Pan, W.Q.Wang. Phase analysis of Al morphology and are independent with compounds in the AZ magnesium alloys, Materials Science Forum, 2007, 546:453-442
    [45]P.L.Schaffer, A.K.Dahle. Settling behaviour of different grain refiners in aluminium, Materials Science and Engineering A,2005,413-414:373-378
    [46]M.Emamy, M.Mahta, J.Rasizadeh. Formation of TiB2 particles during dissolution of composite using an in situ technique, Composites Science and Technology, 2006, 66: 1063-1072
    [47]J. Fjellstedt, A.E.W. Jarfors. On the precipitation of TiB2 in aluminum melts from the reaction with KBF4and K2TiF6, Materials Science and Engineering A,2005,413-414:527-532
    [48]P.S. Mohanty, J.E. Gruzleski. Mechanism of grain refinementin aluminium, Acta Metallurgica et Materialia,1995,43:2001-2009
    [49]M. A. Easton, D. H. Stjohn. A model of grain refinement in corporating alloy constitution and potency of heterogeneous nucleant particles, Acta Material ia, 2001,49:1867-1873
    [50]Y. Birol. A novel, Al-Ti-B alloy for grain refining Al-Si foundry alloys, Jounal of Alloys and Compounds,2009,486:219-222
    [51]Z. Qian, X.F. Liu, D.G. Zhao, G.H. Zhang. Effect of trace Mn addition on the elevated temperature tensile strength and microstructure of a low-iron Al-Si piston alloy, Materials Letters,2008,62:2146-2149
    [52]M.M Haque, M.A Maleque, Effect of process variables on structure and properties of aluminium-silicon piston alloy, Journal of Materials Processing Technology, 1998,77: 122-128
    [53]李云国Al-Si-Cu-Ni-Mg系活塞合金高温性化相的研究,山东大学硕士论文,2011
    [54]M.M. Haque, M.A. Maleque. Effect of process variables on structure and properties of aluminium-silicon piston alloy, Journal of Materials Processing Technology,1998,77: 122-128
    [55]M.R. Joyce, C.M. Styles, P.A.S. Reed. Elevated temperature short crack fatigue behaviour in near eutectic Al-Si alloys, International Journal of Fatigue, 2003,25:863-869.
    [56]A.J. Moffat, B.G. Mellor, C.L. Chen, R.C.Thomson, P.A.S. Reed. Microstructural analysis of fatigue initiation in Al-Si casting alloys, Materials Science Forum Vols,2006,519-521: 1083-1088
    [57]T.M.Chandrashekharaiah, S.A.Kori. Effect of grain refinement and modification on the dry sliding wear behaviour of eutectic Al-Si alloys, Tribology International,2009,42:59-65
    [58]H.C. Liao, Y. Sun, G.X. Sun. Correlation between mechanical properties and amount of dendritic a-Al phase in as-cast near-eutectic Al-11.6% Si alloys modified with strontium, Materials Science and Engineering A,2002,335:62-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700