AlMgSiCu合金轧制工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的迅速发展,Al-Mg-Si合金在车辆上的应用越来越受到重视。为了降低成本、改善Al-Mg-Si合金力学性能,本文在6111合金成分基础上,确定了一种成分为Al-0.8Mg-1.0Si-0.8Cu-0.3Mn-0.5Fe-0.15Zr (wt%)的铝合金。通过对合金变形行为、轧制工艺、热处理工艺的组织及性能的研究,优化了工艺参数,获得了一种综合性能较好的Al-Mg-Si-Cu合金。
     合金铸锭采用凝固过程施加电磁搅拌获得,晶粒为等轴晶,第二相主要为β-Al2FeSi、Al9Fe0.84Mn2.16Si及Al4Cu2Mg8Si7(Q相),并伴有极少量的Si和Mg2Si相,其抗拉强度、屈服强度、伸长率和硬度分别为158.6MPa、106.7MPa、5.8%、33.8HB;经均匀化退火后,第二相质点分布均匀,Mg2Si相、Al4Cu2Mg8Si7相消失;Mn元素替代了部分Fe元素,使针状β-Al2FeSi相转变为颗粒状的α-(FeMn)1.7Al4Si相。
     在热压缩变形时,Al-Mg-Si-Cu合金的流变应力随变形温度升高和应变速率降低而降低。在变形温度较高、应变速率较低、应变量较大时,在合金的变形区晶界附近生成大量新等轴状晶粒,亚晶合并、晶界弓出形核机制是Al-Mg-Si-Cu合金的主要动态再结晶机制;在应变速率较高、变形温度较低、应变量较小时,合金的动态软化机制是动态回复。通过计算得到合金的热压缩流变应力方程为:
     ε&=1.89×1010[sinh(0.024σ)]7.46×exp[166.85×103/(RT)]研究了总变形量相同条件下,首道次压下量分别为13%、33%和47%时,三种轧制工艺下合金的组织及性能。结果表明:首道次压下量对Al-Mg-Si-Cu合金的微观组织和力学性能影响显著,并且这种影响具有遗传性。在首道次压下量为47%时,析出相的破碎程度最大、组织最细小、均匀,其综合力学性能最好,抗拉强度、屈服强度、伸长率和硬度分别为398.4MPa、325.8MPa、20%、112HB;轧制终了时第二相主要为Mg2Si、Al9Fe0.84Mn2.16Si、Al8Fe2Si及Al3Zr等。经T6热处理后Mg2Si、Al8Fe2Si、Al9Fe0.84Mn2.16Si、Al3Zr相未发生变化,但出现了AlCu、(AlCuMgSi)相。
     经升温固溶处理和高温预析出固溶处理的合金布氏硬度均随固溶温度的升高呈先增大后减少的趋势。与单级固溶处理相比,硬度普遍得到提高,但提高的幅度较小。升温固溶处理合金在540℃×30min+580℃×30min时硬度最高;高温预析出固溶处理合金在570℃×30min+540℃×30min时硬度最高。
     经自然时效+人工时效处理后的合金的硬度呈双峰特征。在人工时效180℃×0.5h,自然时效2d和4d时出现硬度峰值;在人工时效180℃×5h,自然时效1d和4d时出现硬度峰值。在相同自然时效条件下,人工时效180℃×5h的合金硬化效果优于人工时效180℃×0.5h。
     采用适当的热处理工艺可提高焊接接头的强度和硬度;几种热处理工艺相比,焊后进行固溶+时效处理后焊接接头强度和硬度最高,接头强度系数83%;焊前热处理较未处理的焊件接头强度有所增加,但对焊件接头强度系数影响不大。
     晶间腐蚀实验表明:合金腐蚀后截面均未出现晶间腐蚀的形貌特征,但时效状态不同,出现不同程度的点蚀现象;在人工时效180℃×0.5h条件下,自然时效48h时合金抗晶间腐蚀性最好;在人工时效180℃×5h条件下,自然时效15h时合金抗晶间腐蚀性最好。剥落腐蚀实验表明:不同条件下剥落腐蚀速度出现一定波动,但总体上波动幅度不大,与腐蚀表观形貌基本吻合。
The use of Al-Mg-Si alloy in vehicles has been an irresistible trend with the rapiddevelopment of automobile industry. On the base of6111aluminum alloy,an Al-Mg-Si-Cualloy with the composition of Al-0.8Mg-1.0Si-0.8Cu-0.3Mn-0.5Fe-0.15Zr (wt%) wasdesigned in order to reduce the cost, improve the mechanical properties of Al-Mg-Si alloy. AnAl-Mg-Si-Cu alloy with high tensile strength and toughness was obtained through themicrostructure and properties of deformation behavior, rolling process and heat treatmentprocess.
     The grain of Al-Mg-Si-Cu alloy casting ingot fabricated by electromagnetic stirringshows equiaxed crystal, the second phases mainly existing in casting alloy are β-Al2FeSi,Al9Fe0.84Mn2.16Si, Al4Cu2Mg8Si7(Q phase) and traces of Mg2Si and Si. The tensile strength,yield strength, elongation and hardness of casting alloy are158.6MPa,106.7MPa,5.8%and33.8HB respectively. After homogenization, the second phase particles distribute moreuniformly, Mg2Si and Al4Cu2Mg8Si7phases are not found duing to resolving, Part of Feelement is substituded by Mn element, acicular β-Al2FeSi phase translates into particleα-(FeMn)1.7Al4Si phase, and the (AlFeMnSi) phase increases.
     The flow stress of Al-Mg-Si-Cu alloy decreases with the increase of deformationtemperature and the decrease of strain rate during the hot compression deformation. Withincreasing the deformation temperature, decreasing the strain rate and large strain, new nearlyequiaxed grains, coalescence of sub-grain and nucleation mechanism of grain boundary boware the main dynamic recrystallization mechanism of Al-Mg-Si-Cu alloy. With increasing thedeformation rate, decreasing the deformation temperature and small strain, dynamic recoveryis the softening mechanism of the alloy. The hot compression flow stress equation of alloy bycalculating is:
     ε&=1.89×1010[sinh(0.024σ)]7.46×exp[166.85×103/(RT)]The microstructure and mechanical properties of alloy on three rolling processes with13%,33%and47%first pressing volumes at the same total deformation are researched. Theresults show that the effect of the first pressing volume on microstructure and mechanicalproperties of Al-Mg-Si-Cu alloy sheet is significant, and the effect is geneticallyinherited.Degree of grain refinement precipitates fragmentation and tissue uniformity in the47%first pressing volume of alloy is obviously superior to that of13%and33%in contrast.The comprehensive mechanical properties of the47%first pressing volume of alloy is the best rolling sheet, the tensile strength is398.4MPa, the yield strength is325.8MPa, the elongationis20%and the hardness is112HB. The precipitations mainly existing in alloy sheet are Mg2Si,Al9Fe0.84Mn2.16Si, Al8Fe2Si and Al3Zr after rolling. After T6heat treatment, the grains are closeto equiaxed fine re-crystallization ones, and the precipitation phase is refined into smallparticle, distributing uniformly in the grain, and Mg2Si, Al9Fe0.84Mn2.16Si, Al8Fe2Si, Al3Zrphases can be observed mainly in the alloy sheet, the little AlCu and (AlCuMgSi) phases ofsheet also exist in alloy.
     The hardness of alloy after heating up solid solution treatment and high-temperature preprecipitation of solid solution processing increase firstly with higher of solution temperaturethen decrease. The hardness of alloy higher at large than the single solid solution treatment,but with a smaller increase.The alloy on540℃×30min+580℃×30minheating up solidsolution treatment and570℃×30min+540℃×30min high-temperature pre precipitation ofsolid solution processing have the best comprehensive mechanical properties.
     The hardness of alloy after natural aging and artificial aging treatment shows the doublepeaks feature. The alloy sample after180℃×0.5h artificial aging treatment appears hardnesspeak after natural aging2d and4d, The alloy sample after180℃×5h artificial aging treatmentappears hardness peak after natural aging1d and4d. At the same natural aging, the hardness ofalloy after180℃×5h artificial aging treatment is higher than that after180℃×0.5h artificialaging treatment.
     The strength and hardness of welded joints can be improved after proper heat treatment.The strength and hardness of welded joints after solid solution+aging treatment is the best bycomparing several kinds of heat treatment, the joint strength coefficient is83%. The strengthof welded joints with heat treatment before welding is higher than that of without heattreatment before welding, but the joint strength coefficient is not change obviously.
     For intergranular corrosion, the cross of corrosion specimen show no morphologicalfeatures of intergranular corrosion, but can be observed different size, different amount ofcorrosion pits depth in section of samples. The corrosion resistance of sample is the best after180℃×0.5h artificial aging and natural aging48h treatment. The corrosion resistances ofsamples are excellent after artificial aging180℃×5h and the15h natural aging treatment. Forthe exfoliation corrosion, the exfoliation corrosion rate of the alloys have certain fluctuations,but small fluctuations under different conditions, and consistent with corrosion morphology.
引文
[1]丁向群,何国求,陈成澍等.6000系汽车车用铝合金的研究应用进展[J].材料科学与工程学报,2005,23(2):302-305.
    [2] Sarkar J, Kutty T R G, Wilkinson D S, et al. Tensile properties and bend ability of T4treated AA6111aluminum alloys[J]. Materials Science and Engineering,2004,369:258-266.
    [3]刘静安.汽车工业用铝材的开发应用趋势与对策(1)[J].铝加工,2002,25(5):1-6.
    [4]关绍康,姚波,王迎新.汽车铝合金车身板材研究现状及发展趋势[J].机械工程材料,2001,25(5):12-19.
    [5]武仲河,战中学,孙全喜等.铝合金在汽车工业中的应用与发展前景[J].内蒙古科技与经济,2008(9):59-60.
    [6] Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotiveindustry[J]. Materials Science and Engineering A,2000,280(1):37-49.
    [7]邵光杰,张恒华,许洛萍等.汽车用铝合金材料及热处理进展[J].金属热处理,2004,29(l):29-32.
    [8]刘世友.铝在汽车工业中的应用前景[J].有色金属,1999,51(3):96-98.
    [9] Stuart Birch. The new plantom of rolls royce[J]. Automotive Engineering.2003(4):30-34.
    [10] Lora J. Binghan.A materials odyssey[J]. Automotive Industries,2001(10):83-89.
    [11] Andrew M.Sherman. Trend in automotive application for aluminum[C]. The7th InternationalConference on Aluminum Alloy. Charlottesville, Virginia, April2000.
    [12] Luo Alen. Automotive application of aluminium and magnesium alloys[J]. Gereral Motors R&DCenter,2003(3):231-236.
    [13]许可勤.合金元素和热处理对Al-Mg-Si基汽车车身板材组织和性能的影响[D].长沙:中南大学,2004.
    [14]孙爱民.Al-Mg-Si合金的合金化及热处理工艺研究[D].镇江:江苏大学,2008.
    [15] Kaneko R S, Bakow L. Lee E W. Alumintun alloy6013sheet for new U.S.navy airraft[J]. JOM,1990(1):16-18.
    [16] Olaf Engler, Jurgen Hirsch. Texture control by thermomechanical processing of AA6xxx A1-Mg-Sisheet alloys for automotive applications[J]. Material Science and Engineering,2002,357:249-262.
    [17] Bergsma,Gralg S. High strength Mg-Si type aluminum alloy. European Patent95105316.4[P],1995-08-05.
    [18] Bottema J, Lahaye C, Baartman R, et al. Recent developments in AA60l6aluminium type body sheetproduct[J]. Transaction J. Mater and Manuf Sections,1998,107:900-907.
    [19]刘宏,刘艳华,赵刚等.6xxx系汽车车身板铝合金的合金化及组织性能的研究[J].轻合金加工技术,2004,32(2):44-46.
    [20] Kaneko R S, Bakow L, Lee E W. Aluminum alloy6013sheet for new U.S.navy aircraft[J]. JOM,1990(1):16-18.
    [21] Short T. Finishes for aluminium in automotive products[J]. LMA,1999,(10):8-23.
    [22]黄佩贤.轻质材料铝合金在汽车上的应用[J].上海汽车,2002,(1):37-38.
    [23]彭志辉,甘卫平.汽车工业用铝材的开发与应用[J].汽车工艺与材料,1999,(4):1-6.
    [24]陆树荪.有色铸造合金及熔炼[M].北京:国防工业出版社,1983.
    [25]刘艳华.汽车车身用6000系铝合金板材的研究[D].沈阳:东北大学.2004.
    [26] Fruehling J W, Hanawalt J D. Protective atmospheres for melting magnesium alloys[J]. AFS Trans,1996,77:59-67.
    [27] Gupta A K, Marois P H, Lloyd D J. Study of the precipitation kinetics in a6000series automotivesheet material[J]. Materials Science Forum,1996,217:801-808.
    [28]刘宏,赵刚,刘春明等.6000系铝合金组织性能的研究进展[J].机械工程材料,2004,28(6):1-4.
    [29] Dutta I, Allen S M. A calorimetric study of precipitation in commercial aluminium alloy6061[J].J.Mater. Sci.Letter,1991(10):323-332.
    [30] Dutta I, Allen S M, Hafley J L. Effect of reinforcement on the aging response of cast6061Al-Al2O3particulate composites[J]. Met. Trans. A,1991,22A:2553-2261.
    [31] Edwards, Stiller G A, Dunlop K, et al. ComPosition of fine-scale percipitates in Al-Mg-Si alloys[J].Materials Science Forum,1996,217:713-718.
    [32] Massuda K. High-resolution electro microscopy on the structure of Guinier-Preston zones in anAl-l.6mass pct Mg2Si alloy[J]. Metal.&Mater. Trans,1998,29A:1161-1167.
    [33] Kenji Mstsuda, Yasuhiro Uetani, Tatsuo Sato, et al. Metastable phases in an Al-Mg-Si a1loycontaining Copper[J]. Metallurgical and Materials Transaction A,2001,32(A):1293-1298.
    [34] Lynch J P, Brown L M, Jacobs M H. Microanalysis of age-hardening precipitates in aluminiumalloys[J]. Acta metall,1982,30:1389-1397.
    [35] N.Maruyama, Uemori R, Hashimoto N, et al. Effect of silicon addition on the composition andstructure of fine-scale precipitates in Al-Mg-Si alloys[J]. Script Mater,1997,36(1):89-94.
    [36] Dumolt S D, Laughlin D E, Williams J C. Formation of a modified β′phase in aluminumalloy6061[J]. Scripta Metall.,1984,18:1347-1356.
    [37] Matsuda K, Taniguchi K S, Kido K, et al. Effect of addition of copper and chromium on precipitatesin Al-Mg-Si alloys[J]. Materials Science Forum,2002,223:941-946.
    [38]松田健二,多マ靜夫,池野進.Al-1.0mass%Mg2Si-0.4mass%Si合金の板狀析出物の形態と母相との結晶方位關系[J].日本金屬學會志,1994,58(3):252-263.
    [39]松田健二,池野進.6000系フルミニウム合金の時效現象に关すゐ最近の研究[J].轻金属,2000,50(1):23-36.
    [40]何立子.Al-Mg-Si系合金组织性能[D].沈阳:东北大学.2001.
    [41]高英俊,王庆松,王娜.Al-Mg-Si合金GP区的原子键络与强化作用[J].矿冶工程,2006(5):90-91.
    [42]张建新,高爱华,陈昊.合金元素对Al-Mg-Si系铝合金组织及性能的影响[J].铸造技术,2007,28(3):373-374.
    [43] Andersen S K, Marioara C D, A Froseth, et al. Crystal structure of precipitate in the Al-Mg-Si alloysystem and its relate to the phase[J]. Mater Sci A,2005,390:129-133.
    [44] Zhen L, Fei W D. Precipitation behaviour of Al-Mg-Si alloys with high silicon content[J]. Joural ofMaterials Science,1997,32:1895-1902.
    [45] Hirth S M, Marrshal IG J. Effects of Si on the aging behaviour and form ability of aluminiumalloys based on AA6016materials[J]. Science and Engineering,2001,319:452-456.
    [46]邵光杰,许珞萍,王庆宇等.前悬架铝合金部件材料和工艺、性能研究[R].上海汽车科技发展基金会项目鉴定会资料,1998.
    [47] Sakurai, Takeo, Eto, et al. Eeffet of Cu dadition on mechanical properties of Al-Mg-Si alloys[J].Reseach and Development.1993,43(2):95-98.
    [48] Chakrabarti D J, Peng Yingguo, Laughlin, et al. Precipitation in Al-Mg-Si alloys with Cu additionsand the role of the Q prime and related phases[J]. Materials Science Forum,2002,223:857-862.
    [49] Matsuda K, Uetnai Y, Sato T, et al. Metastable phases in an Al-Mg-Si alloy containing copper et al[J].Metallurgical and Materials Transactions A,2001,32(6):1293-1299.
    [50] Kido K, Matsuda K, Kawabata T, et al. HRTEM obsevration of precipitates in Al-Mg-Si alloyecontaining copper at early satge during aging[J]. Materials Science Forum,2002,223:953-958.
    [51]刘亚妮.Cu含量及时效工艺对A1MgSi(Cu)合金微观组织影响的研究[D].长沙:湖南大学,2010.
    [52] Chakrabarti D J, Cheong B K, Laughlin D E. Precipitation in Al-Mg-Si-Cu alloys and the role of theQ phase and its precursors [J]. Symposium on Automotive Alloys,1998(2):15-19.
    [53] Esmaeili S, Wang X, Lloyd D J,et al. On the precipitationhardening behaviour of the Al-Mg-Si-Cualloy AA6111[J]. Metall Mater Trans A,2003,34A:751-63.
    [54] Reinhold Braun. Investigations on the long-term stability of6013-T6sheet[J]. MaterialsCharacterization,2006,56:85-95.
    [55] Chakrabarti D J, Laughlin D E. Phase relations and precipitation in Al-Mg-Si alloys with Cuadditions[J]. Prog Mater Sci.2004,49:389-410.
    [56] Edwards G A, Stiller K, Dunlop G L, et al. The precipitation sequence in Al-Mg-Si alloys[J]. ActaMater1998,46:3893-3904.
    [57] Miao W F, Laughlin D E. Effects of Cu content and preaging on precipitation characteristics inaluminum alloy6022[J]. Metall Mater Trans A2000,31A:361-371.
    [58] Sagalowicz L, Hug G, Bechet D, et al. A study of the structural precipitation in the Al-Mg-Si-Cusystem[C]. The4th Int. Conf. on Aluminum Alloys (ICAA4). American: Atlanta,1994:11-16.
    [59] Liu Y L, Kang S B, Kim H W. The complex microstructures in an as-cast Al-Mg-Si alloy[J].Materials letters,1999,41:267-272.
    [60] Tanihata H, Sugawara T, Mat suda K, et al. Effect of casting and homogenizing treatment conditionson the formation of Al-Fe-Si intermetallic compounds in6063Al-Mg-Si alloys[J]. Journal ofMaterials Science,1999,34:1205-1210.
    [61] Kim H Y, Park T Y, Han S W, et al. Effects of Mn on the crystal structure of α-Al (Mn,Fe) Siparticles in A356alloys[J]. Journal of Crystal Growth,2006,291:207-211.
    [62]纪艳丽,潘琰峰,郭富安.一种Al-Mg-Si-Cu合金的铸态组织研究[J].铸造技术,2007,28(11):1489-1493.
    [63]付大军.Al-Fe合金轧制工艺及组织性能[D].沈阳:沈阳工业大学.2012.
    [64]周振平,马建民,李荣德.Fe含量对金属型铸造Al-Fe合金组织形态的影响[J].中国铸造装备与技术,2004(5):12-15.
    [65] Lodgaard Lars, Ryum Nils. Precipitation of dispersoids containing Mn and/or Cr in Al-Mg-Sialloys[J]. Properties, Microstructure and Processing,2000,283(2):144-152.
    [66] Bhattamishra A K, Lal Kishori. Microstructure sutdies on the effect of Si and Cr on the intergranularcorrosion in Al-Mg-Si alloys[J]. Materials&Design,1997,18(l):25-28.
    [67]潘青林,李绍禄,邹景霞等.微量Mn对Al-Mg-Si合金微观组织与拉伸性能的影响[J].中国有色金属学报,2002,12(5):972-976.
    [68]邹景霞,潘青林,彭志辉.AlMgSiMnCr合金的显微组织与拉伸牲能[J].轻合金加工技术,2001(5):47-50.
    [69] Dorward R C, Beemtsen D J. Grain structure and quench-rate effect on stuength and toughness ofAA7050Al-Zn-Mg-Cu-Zr alloy plate[J]. Metall and Mater Trans A,1995,26A(9):2481-2484.
    [70] Nes E. Precipitation of the metastable cubic Al3Zr-Phase in subpeiitectic Al-Zr Alloys[J]. Acta Metall,1972,20:499-503.
    [71] Ocenasek V, Slamova M. Resistance to recrystallization due to Sc and Zr additi on to Al-Mg alloys[J].Mater. Characterization,2001,47:157-162.
    [72]余琨,李松瑞,黎文献等.微量Sc和Zr对2618铝合金再结晶行为的影响[J].中国有色金属学报,1999,9(4):709-713.
    [73]余琨,李松瑞,黎文献.过渡金属Fe、Ni、Sc、Zr对2618铝合金组织和性能的影响[J].稀有金属材料与工程,2000,29(3):177-181.
    [74]桂治元,张兴国,郝海等.Zr对电磁连续铸造Al-4.0Cu-1.4Mg-0.5Mn合金铸态组织与力学性能的影响[J].铸造,2007,56(11):1155-1158.
    [75]谢优华,扬守杰,戴圣龙等.含锆超高强铝合金的研究及发展概况[J].材料导报,2002,16(5):8-10.
    [76]谢优华,杨守杰,戴圣龙等.锆元素在铝合金中的应用[J].航空材料学报,2002,22(4):56-61.
    [77]金曼,孙保良,李晶等.微量元素Zr对6082铝合金高温软化性能的影响[J].金属热处理,2005,30(7):6-9.
    [78]关绍康,姚波.预时效及预应变对AlMgSi基汽车板材性能的影响[J].机械工程材料,2001,25(12):17-28.
    [79] Pan fusheng, Ding peidao, Zhou shouze, et al. Effects of misch metal addition on the hot plasticity ofan Al-Mg-Si wrought alloy[J]. Journal of Alloys and Compounds,1991,177(2):175-181.
    [80]饶克,钟建华,张建新等.稀土对Al-Mg-Si合金组织性能影响的分析[J].铝加工,2001,24(6):38-4l.
    [81]周守则,潘复生.我国稀土铝合金的研究和应用[J].轻合金加工技术,1990(4):11-14.
    [82]孙孝华,汪明朴.稀土6061Al合金车身板材的时效特性[J].中国有色金属学报,1992,2(5):97-110.
    [83]贺素霞.稀土及时效工艺对Al-Mg-Si汽车板材组织和性能的影响[D].郑州:郑州大学.2007.
    [84] Leitermann W. Innovative forming technology for spaces frames[J]. Advanced technology ofplasticity,1999,2:1165-1170.
    [85]戴晓元,夏长清,孙振起等.强化固溶对Al-7.6Zn-2.1Mg-1.3Cu-0.15Zr-0.30Sc合金组织与性能的影响[J].稀有金属材料与工程,2007,36(S3):195-199.
    [86]刘红卫,陈康华,刘允中.强化固溶对7075铝合金组织与性能的影响[J].金属热处理,2000(25),9:16-17.
    [87]林高用,彭大暑,魏圣明等.强化固溶处理对7075铝合金组织的影响[J].金属热处理,2002,27(11):30-35.
    [88]尚勇,张立武.高强铝合金的热处理技术[J].上海有色金属,2005,26(2):97-102.
    [89]陈康华,刘允中,刘红卫.7075和2024铝合金的固溶组织与力学性能[J].中国有色金属学报,2000,10(6):819-822.
    [90]肖代红,陈康华,罗伟红.固溶热处理对AA7085铝合金组织与性能的影响[J].稀有金属材料与工程,2010,39(3):494-497.
    [91]陈康华,刘红卫,刘允中.升温固溶对Al-Zn-Mg-Cu合金组织与力学性能的影响[J].中南工业大学学报,2000,31(4):339-341.
    [92]陈康华,刘红卫,刘允中.强化固溶对7055铝合金力学性能和断裂行为的影响[J].中南工业大学学报,2000,31(6):528-531.
    [93]陈康华,刘红卫,刘允中.强化固溶对AI-Zn-Mg-Cu合金力学性能和断裂行为的影响[J].金属学报,2001,37(1):29-33.
    [94]张茁,陈康华,刘红卫等.高温预析出对Al-Zn-Mg-Cu铝合金显微组织、强度和应力腐蚀抗力的影响[J].金属热处理,2003,28(7):13-16.
    [95]李杰,宋仁国,陈小明等.7050高强铝合金强化固溶处理研究[J].热加工工艺,2009,38(6):125-128.
    [96]戴晓元,夏长清,刘昌斌等.固溶处理及时效对7xxx铝合金组织与性能的影响[J].材料热处理学报,2007,28(4):59-63.
    [97]张新明,黄振宝,刘胜胆等.双级固溶处理对7A55铝合金组织与力学性能的影响[J].中国有色金属学报,2006,16(9):1527-1533.
    [98]张新明,张小艳,刘胜胆等.固溶后降温预析出对7A55铝合金力学及腐蚀性能的影响[J].中南大学学报(自然科学版),2007,38(5):789-794.
    [99]邓至谦,周善初.金属材料及热处理[M].长沙:中南工业大学出版社,1989.
    [100]董新平.电解加钛汽车Al-Mg-Si板材的组织和性能研究[D].郑州:郑州大学.2006.
    [101] Zhen L, Kang S B. Effect of natural aging and preaging on subsequent precipitation process ofAl-Mg-Si alloy with high excess silicon[J]. Mater Sci&Tech,1997,13:905-910.
    [102] Zhen L, Kang S B. The effet of pre-aging on microstructure and tensile properties of Al-Mg-Sialloys[J]. Scripta Materialia,1997,36(10):1089-1094.
    [103] Lorimer G W, Nicholson R B. Further results on the nucleation of precipitates in the Al-Zn-Mgsystem[J]. Acta Met.,1966,14:1009-1016.
    [104] Pashley D W, Jacobs M H, Vietz J T. The basic processes affecting two-step ageing in an Al-Mg-Sialloy[J]. Philo. Mag.,1967,16:51-56.
    [105]刘宏,宋文举,赵刚等.6000系铝合金汽车板预时效及组织性能[J].机械工程材料,2004,28(6):270-276.
    [106]张译中.国外汽车用非钢材料的开发及应用[J].汽车工艺与材料,2002(10):37-38.
    [107]薛学功.6013铝合金性能与组织研究[D].长沙:中南大学,2002.
    [108] Murayama M, Hono K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys[J].Acta Materialia,1999,47(5):1537-l548.
    [109] Buha J, Lumley R N, Crosky A G. Secondary precipitation in an Al-Mg-Si-Cu alloy[J]. ActaMaterialia,2007,55:3015-3024.
    [110] Russo E Di, Conserva M, Gatto F,et al. Thermomechanical treatments on high strengthAl-Zn-Mg(-Cu) alloys[J]. Met. Trans.,1973,4(4):1133-1137.
    [111] Joseph C,Benedyk. Retrogression heat treatment applied to aluminum extrusions for difficultforming applications[J]. Light Metal Age,1996(10):8-12.
    [112] Maldman J, Sulinski H, Markus H. The effect of ingot processing treatments on the grain size andproperties of Al alloy7075[J]. Met.Trans.,1974,5(3):573-576.
    [113] Adler P N, Deiasi R, Geschwind C. Influence of microstructure on the mechanical properties andstress corrosion susceptibility of7075aluminum alloy[J]. Met.Trans.,1972,3(12):3191-3195.
    [114]刘凯.现代化汽车壳体铝合金结构部件制造[J].铝加工,2000,23(4):4-6.
    [115]桂满昌,王殿斌,张洪.颗粒增强铝基复合材料在汽车上的应用[J].机械工程材料,1996,20(5):30-33.
    [116]胡治流,曹乃光,沈燕.LY12铝合金FTMT强化工艺的探讨[J].中国有色金属学报,1995,5(1):72-75.
    [117] Zhen L, Kang S R. Effect of predeformation on microstructure and tensile properties of Al-Mg-Sialloys with high cilicon content[J]. Mater Sci&Tech,1998,14:317-321.
    [118] Siegert K, Leiber R. Thixoforming of aluminum[J]. SAE Special Publications,1998,13(2):39-46.
    [119] Burleigh T D. The mechanisms of SCC of aluminium[J]. Corrosion,1991,47(2):2-5.
    [120]庞兴志,何国强,郑进城等.热处理制度对铸造Al-Si-Mg合金腐蚀性能的影响[J].特种铸造及有色合金,2008,28(6):488-490.
    [121] Guillaumin V, Mankowski G. Influence of overageing treatment on localized corrosion of Al6056[J]. Corrosion,2000,56(1):12-23.
    [122] Svenningsen G, Larsen M H, Nordlien J H,et al. Effect of high heat treatment on intergranularcorrosion of AlMgSi(Cu)model alloy[J]. Corrosion Science,2006,48(1):258-272.
    [123] Svenningsen G, Larsen M H, Walmsley J C,et al. Effect of artificial aging on intergranular corrosionof AlMgSi model alloy with small Cu content[J]. Corrosion Science,2006,48(6):1528-1543.
    [124] Svenningsen G, Lein J E, Bjorgum A,et al. Effect of low copper content and heat treatment onintergranular corrosion of AlMgSi(Cu)model alloy[J]. Corrosion Science,2006,48(1):226-242.
    [125] Larsen M H, Walmsley J C, Lunder O T,et al. Significance of low copper content on grain boundarynanostructure and intergranular corrosion of AlMgSi(Cu)model alloys[J]. Materials Science Forum,2006,519:667-672.
    [126] Bhattamishra A K, Lal K. Influence of ageing on corrosion behavior of Al-Mg-Si alloys in chlorideand acid media[J]. Z Metallkd,1998,89(11):743-746.
    [127] Svenningsen G, Larsen M H, Lein J E, et al. Intergranular corrosion of extruded AA6000-seriesmodel alloys[C]. Proceedings of the9th International Conference on Aluminum Alloys(ICAA9).Brisbane. Australia Institute of Materials Engineering,2004:818-823.
    [128] Delmas F, Vivas M, Lours P,et al. Straining mechanisms in aluminum alloy6056.Insituinvestigation by transmission electron microscopy[J]. Mater Sci Eng A,2003,340(1):286-291.
    [129] Williams J C, Starke E A. Progress in structural materials for aerospace systems[J]. Acta Material,2003,51:5775-5799.
    [130]苏景新,张昭,曹楚南等.铝合金的晶间腐蚀与剥蚀[J].中国腐蚀与防护学报,2005,25(3):187-192.
    [131] Brown R H, Fink W L, Hunter M S. Measurement of irreversible potentials as a metallurgicalresearch tool[J].Trans. AIME,1941,143:115-121.
    [132] Maitra S, English G C. Mechanism of localized corrosion of7075alloy plate[J]. Met.Trans.,1981,12A:535-539.
    [133] Galvele J R, De Micheli S M. Mechanism of intergranular corrosion of Al-Cu alloys[J]. CorrosionScience,1970,10:795-801.
    [134] Buchheit R G, Morgan J P, Stoner G E. Electrochemical behavior of the T1(Al2CuLi) intermetalliccompound and its role in localized corrosion of Al-2%Li-3%Cu alloys[J]. Corrosion,1994,50:120-123.
    [135] Buchheit R G, Wall F D, Stoner G E. Anodic dissolution-based mechanism for the rapidcrack-ing,preexposure phenomenon demonstrated by aluminum-lithium-copper alloys[J]. Corrosion,1995,51:417-421.
    [136] Tan C Y, Zheng Z Q, Pan Y, et al. Effect of exfoliation corrosion on mechanical properties of Al-Lialloy[C]. Proceedings of the2nd National Symposium on Al-Li Alloys. Chang sha:Central SouthUniversity of Technology Press,1993:154-157.
    [137] Robinson M J. The role of wedging stresses in the exfoliation corrosion of high strength aluminumalloys[J]. Corros.Sci.,1981,23(8):887-899.
    [138] Robinson M J,Jackson N C. Exfoliation corrosion of high strength Al-Cu-Mg alloys:effect of grainstructure[J]. Br.Corros.J.,1999,34(1):45-49.
    [139] Kelly D J, Robinson M J. Influence of heat treatment and grain shape on exfoliation corrosion ofAl-Li alloy8090[J]. Corrosion,1993,49(10):787-795.
    [140] Robinson M J. Mathematical modeling of exfoliation corrosion in high strength aluminum alloys[J].Corros. Sci.,1982,22(8):775-790.
    [141] Psada M, Murr L E, Niou C S,et al. Exfoliation and related microstructures in2024aluminum bodyskins on aging aircraft[J]. Materials Characterization,1997,38:259-272.
    [142]潘道召,王芝秀,李海等.双级时效对6061铝合金拉伸性能和晶间腐蚀性能的影响[J].中国有色金属学报,2010,20(3):435-441.
    [143]张福豹,许晓静,吴桂潮等.锆微合金化6013型铝合金的抗晶间腐蚀性能[J].航空材料学报,2011,31(1):52-55.
    [144]吴明富.轧制工艺对AlMgSi合金组织及性能的影响[D].沈阳:沈阳工业大学,2010.
    [145]盛晓菲,杨文超,汪明朴等.人工时效对6005A铝合金晶间腐蚀性能的影响[J].中国有色金属学报,2012,22(8):2174-2180.
    [146]李祥亮,陈江华,刘春辉等.T6和T78时效工艺对Al-Mg-Si-Cu合金显微结构和性能的影响[J].金属学报,2013,49(2):243-250.
    [147] Liu Y, Zhou X, Thompson G E, et al. Precipitation in an AA6111aluminium alloy and cosmeticcorrosion[J]. Acta Materialia,2007,55:353-360.
    [148]李朝兴.Al-Mg-Si-(Cu)合金晶间腐蚀机理的模拟研究[D].长沙:中南大学,2010.
    [149]刘静安,谢水生.铝合金材料的应用与技术开发[M].北京:冶金工业出版社,2004:36-40.
    [150]甘卫平,许可勤,范洪涛.汽车车身铝化的研究及其发展[J].轻合金加工技术,2003,31(6):14-20.
    [151]赵志业.金属塑性变形与轧制理论[M].北京:冶金工业出版社,2004:3-4.
    [152]朱长华.我国板带钢生产及发展趋势分析[J].涟钢科技与管理,2001(14):47-53.
    [153]雷正平,麻惠丽.中国铝箔工业强盛之路[J].轻合金加工技术,2006,34(9):11-17.
    [154]程志彦.轧钢机和轧钢技术的发展[J].科技情报开发与经济,2005,15(13):120-123.
    [155]盛春磊,刘静安,朱英.我国铝及铝合金轧制设备现状与发展趋向[J].铝加工,2005(5):18-23.
    [156]刘静安,尹晓辉.我国铝轧制工业的发展现状及与国际先进水平的差距(续)[J].有色金属加工,2008,37(2):1-3.
    [157]蒙春彪.3104铝合金热轧组织演变的数值模拟研究[D].长沙:湖南大学,2009.
    [158]蒋树农.高纯多晶铝动态再结晶的实验研究[D].长沙:中南大学,2004.
    [159] Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel[J]. J Appl Phys,1944,15(1):22-32.
    [160] Shi H, McLaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress ofaluminum alloys[J]. Mater Sci Eng.,1997,13(3):210-216.
    [161]甘卫平,范洪涛,许可勤.Al-Zn-Mg-Cu系高强铝合金研究进展[J].铝加工,2003,3:6-12.
    [162]潘琰峰,纪艳丽,郭富安.汽车车身板用6022铝合金组织及性能研究[J].南京航空航天大学学报,2008,40(2):255-259.
    [163] Murtha S J. New6xxx Aluminum alloy for automotive body sheet applieations[J]. Society ofAutomotive Engineers, Inc.1995(8):657-666.
    [164]周振平.过共晶铝铁合金铸态组织细化途径的探讨[D].沈阳:沈阳工业大学,2002.
    [165]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南工业大学出版杜,1989.
    [166]董新平,刘忠侠,贺素霞等.化学成分及热处理对Al-Mg-Si合金汽车板材力学性能的影响[J].金属热处理,2006,31(6):20-24.
    [167]邹景霞.Al-Mg-Si-Mn-Cr合金组织与性能的研究[D].长沙:中南大学,2002.
    [168]瞿学良.工艺因素对铸造Al-Si-Mg合金机械性能的影响[J].江苏广播电视大学学报,2001,12(6):50-52.
    [169]杨守杰,谢优华,陆政等.Zr对超高强铝合金时效过程的影响[J].中国有色金属学报,2002,12(2):226-230.
    [170]谢优华,杨守杰,戴圣龙等.Zr对超高强铝合金铸态组织及晶粒度的影响[J].中国有色金属学报,2002,12(S1):131-135.
    [171]王少华,杨守杰,房灿峰等.电磁铸造2E12铝合金的铸态组织与力学性能[J].特种铸造及有色合金,2009,29(11):1042-1045.
    [172]李业欣,崔建忠,秦克.电磁场频率对电磁铸造4045合金微观组织的影响[J].特种铸造及有色合金,2005,25(4):243-245.
    [173]房灿峰.高性能镁合金电磁改性技术研究[D].大连:大连理工大学,2006.
    [174]王少华,杨守杰,房灿峰等.电磁铸造对Al-Zn-Mg-Cu-Zr合金微观组织及晶内固溶度的影响[J].中国有色金属学报,2009,19(12):2083-2089.
    [175] Liu Hong, Zhao Gang, Zuo Liang. Effects of magnesium content on phase constituents ofAl-Mg-Si-Cu alloys[J]. Trans. Nonferrous Met. Soc. China,2006,16(4):376-381.
    [176]刘相法,边秀房,刘玉先等.铝合金中Fe相形态的遗传性及球化机制的研究[J].金属学报,1997,33(10):1062-1068.
    [177]王文焱.电解加钛Al-Mg-Si合金板材组织和性能的研究[D].郑州:郑州大学,2007.
    [178] Kleiner S, Henkel Ch, Schulz P, et al. Paint bakee response of aluminium alloy6016[J]. Aluminium,2001,77(3):185-189.
    [179]黄勇,刘心宇,曾中明.1050铝合金热轧流变应力研究[J].轻合金加工技术,2002,30(9):15-17.
    [180]吴文祥,孙德勤,张辉等.3003铝合金热变形流变应力特征[J].热加工工艺,2007,36(6):6-14.
    [181]张小刚,潘清林,梁文杰.01570铝合金热压缩变形的流变应力本构方程[J].锻压技术,2009,34(1):139-142.
    [182]黄光杰,程虎.3104铝合金流变应力行为[J].重庆大学学报(自然科学版),2007,30(1):70-72.
    [183]黎文献,杨军军,肖于德.Al-Fe-V-Si合金高温变形热模拟[J].中南工业大学学报,2000,31(1):56-59.
    [184]胡卓超,张德芬,黄涛等.3104铝合金的流变应力行为与动态再结晶[J].机械工程材料,2005,29(2):6-9.
    [185]张毅,刘平,田保红等.Cu-Ni-Si-P合金动态再结晶研究及组织转变[J].功能材料,2008,39(3):388-391.
    [186]张继祥,冯伟,文辉等.6016铝合金高温流变应力行为研究[J].热加工工艺,2012,41(22):5-9.
    [187]袁东,刘诗安,张辉等.新型Al-Mg-Si-Cu合金热压缩流变应力研究[J].湖南科技大学学报(自然科学版),2005,20(1):25-28.
    [188] Mcqueen H J, Celliers O C. Application of hot workability studies to extrusion processing(PartⅢ:Physical and mechanical metallurgy of Al-Mg-Si and Al-Zn-Mg alloys)[J]. Canadian Metallurgical,1997,36:73-86.
    [189] Mcqueen H J, Ryan N D. Constitutive analysis in hot working[J]. Materials Science andEngineering,2002, A322:43-63.
    [190]李文意,杨伏良,马政等.新型Al-Mg-Si-Cu合金的热变形行为及力学性能[J].中国有色金属学报,2010,20(8):1501-1507.
    [191]甘卫平,刘泓,杨伏良等.Al-Mg-Si-Cu合金在热压缩变形中的流变应力[J].中南大学学报,2006,37(5):721-724.
    [192] Chen Z Y, Xu S Q, Dong X H. Deformation behavior of AA6063aluminium alloy after removingfriction effect under hot working conditions[J]. Acta Metallurgica Sinica,2008,21(6):451-458.
    [193]李雪松,陈军,张鸿冰.6082铝合金热变形的本构模型[J].中国有色金属学报,2008,18(10):1769-1775.
    [194] Hansen N. Replyto.The microstrueture of deformed metals[J].Seripta Metall,1992,27(11):1453-1458.
    [195] Bay B, Hansen N, Hughes D A, et al. Evolution off C.e.deformation structures in polyslip[J]. ActaMetall. Mater.1992,40(2):205-219.
    [196] Lin J P, Lei T C, An X Y. Dynamic recrystallization during hot compression in Al-Mg alloy[J].Scripta Metallurgicaet Materialia,1992,26(12):1896-1874.
    [197]沈健.AA7005铝合金的热加工变形特性[J].中国有色金属学报,2001,11(4):593-597.
    [198]刘楚明.高纯铝箔形变和再结晶行为及织构的研究[D].长沙:中南大学,2007.
    [199] Gourdet S, Montheillet F. Effect of dynamic grain boundary migration during the hot compressionof high stacking fault energymetals[J]. ActaMater,2002,50(11):2801-2812.
    [200]李慧,梁霄鹏,陈健美等.工业纯铝的热变形组织演化[J].特种铸造及有色合金,2009,29(1):88-90.
    [201] Yamagata H, Ohuchida Y, Saiton, et al. Nucleation of new grains during discontinuous dynamicrecrystallization of99.998%aluminum at453K[J]. Scripta Mater,2001,45(9):1055-1061.
    [202]张星,李保成,张治民.温变形对AZ31镁合金组织的影响[J].塑性工程学报,2004,11(3):52-54.
    [203]丁桦,崔建忠.对再结晶形核模型的修正[J].东北工学院学报,1993,14(3):269-271.
    [204]刘志义,崔建忠,白光润.8090Al-Li合金亚晶倾转的动态再结晶模型[J].材料科学进展,1992,6(6):472-475.
    [205] Kim W J, Wang D Y, Choi S O, et al. Synthesis of utra high strength Al-Mg-Si alloy sheets bydifferential speed rolling[J]. Materials Science and Engineering A,2009,520:23-28.
    [206] Shang shuzhen, Lu guimin, Tang xiao1ing, et al.Deformation mechanism and forming propertiesof6061A1alloys during compressioninsemi-solidstate[J]. Trans. Nonferrous Met. Soc. China,2010,20(6):1725-1730.
    [207]王冠,李落星,刘波等.6061铝合金高温流变应力方程参数反求[J].中国有色金属学报,2011,21(12):3011-3018.
    [208] Zhang hui, Li luoxing, Yuan deng, et al. Hot deformation behavior of the new Al-Mg-Si-Cualuminum alloy during compression at elevated temperatures[J]. Materials Characterization,2007,58:168-173.
    [209]宋颖刚,Cross M D J,Rainforth W M等.AA6111合金在热轧过程中保持时间对晶体织构的影响[J].材料工程,2009(11):23-26.
    [210]高琪妹,杨静生,于晓丹.6111铝合金板材加工过程中组织的演变[J].热加工工艺,2008(12):28-30.
    [211]林丹,陈扬,宋鸿等.道次压下率及几何因素对A1-Mg-Si合金冷轧织构的影响[J].辽宁工学院学报,2005,25(5):306-310.
    [212]费玥,金曼,李晶等.固溶后冷变形对6082Al-Mg-Si合金时效析出过程的影响[J].金属热处理,2006,31(5):68-71.
    [213]冯博.铝铁基合金变形行为及轧制工艺[D].沈阳:沈阳工业大学,2010.
    [214]王书生.轧制工艺对Al-5Fe基合金组织和性能的影响[D].沈阳:沈阳工业大学,2009.
    [215]雷正平,王国军,徐忠艳.5383铝合金热轧工艺的确定[J].轻合金加工技术,2007,35(8):39-41.
    [216]马英义,宛亚坤,王景新.6082铝合金热轧工艺研究[J].轻合金加工技术,2000,28(6):11-12.
    [217]李曼云.钢的控制轧制和控制冷却技术手册[M].北京:冶金工业出版社,1990.
    [218]王祝堂.铝及铝合金热轧时组织的变化[J].轻合金加工技术,2002,30(3):8-14.
    [219] Humphreysm F J. The nucleation of recrystallization at second phase particles in deformedaluminum[J]. Acta Metallurgica,1977,25:1323-1344.
    [220]梁叔全,官迪凯,毛志伟等.轧制温度和道次变形量对铝阳极Al-Mg-Sn-Bi-Ga-In性能的影响[J].中南大学学报(自然科学版),2010,41(3):906-911.
    [221]孙卫国,徐贺年,姜文举等.改善5A06铝合金板材性能的研究[J].轻合金加工技术,2006,34(12):26-28.
    [222]吕新宇.5083铝合金热轧板研究[J].轻合金加工技术,2002,30(3):15-19.
    [223]陈康华,陈送义,彭国胜等.变形程度对7150铝合金再结晶及性能的影响[J].特种铸造及有色合金,2010,30(2):103-107.
    [224]卞之.电磁铸造及其材料宏观组织的形成机制[J].铸造技术,2004,25(7):496-497.
    [225]崔晶磊.低频电磁场半连铸铝合金微观组织结构的研究[D].沈阳:东北大学,2005.
    [226]陈康华,张茁,刘红卫等.近固溶度高温析出对7055铝合金时效强化和应力腐蚀的影响[J].中南工业大学学报(自然科学版),2003,34(2):114-118.
    [227]高琪妹,闫绍峰,熊晓航.6111铝合金的时效硬化研究[J].金属热处理,2009,34(8):86-88.
    [228]李普超,汪明朴,孙孝华等.Al-Mg-Si合金的时效研究[J].中南工业大学学报,1998,29(3):262-265.
    [229]刘宏,赵刚,刘春明等.自然时效及预时效6000系合金人工时效析出行为[J].材料热处理学报,2008,29(4):74-78.
    [230] Weatherly G C, Perovic A, Mukhopadhyay N K, et al. The precipitation of the Q phase in anAA6111alloy[J]. Metallurgica and Materials Transactions A,2001,32A:213-218.
    [231] Wang X, Esmaeili S, Lloyd D J. The sequence of precipitation in the Al-Mg-Si-Cu alloy AA6111[J].Metallurgical and MaterialsTransactions A,2006,37A:2691-2699.
    [232]金曼,邵光杰.Cu对6082A1-Mg-Si合金时效初期析出相的影响[J].中国有色金属学报,2009,19(1):1-7.
    [233]刘亚妮,陈江华,尹美杰等.自然时效和Cu含量对AlMgSi(Cu)合金时效硬化行为的影响[J].电子显微学报,2010,29(3):280-286.
    [234]许良红,田志凌,彭云等.微量元素对高强铝合金焊缝组织和力学性能的影响[J].中国有色金属学报,2008,18(6):959-967.
    [235]王春生,赵力东,殷世强等.2091Al-Li合金TIG焊焊接接头组织与强度[J].焊接学报,1998,19(3):154-158.
    [236]李睿.6063铝合金型材焊接性能的研究[J].轻合金加工技术,1999,27(4):41-44.
    [237]周振丰.金属熔焊原理及工艺(下册)[M].北京:机械工业出版社,1981,156.
    [238]刘敬福.材料腐蚀及控制工程[M].北京:北京大学出版社,2010.
    [239]田尻胜纪,王秩信(译).铝及其合金的腐蚀与防蚀[J].设备管理&维修,2000(7):38-40.
    [240]李荻,张琦,王第珍等.LY12CZ铝合金晶间腐蚀模拟实验研究[J].北京航空航天大学学报,1998,24(1):1-4.
    [241]单长智.稳定化退火工艺对铝镁钪合金组织和性能的影响[C].第十二届中国有色金属学会材料科学与合金加工学术研讨会文集,2007:85-94.
    [242] Najjar D, Magnin T, Warner T J. Influence of critical surface defects and localized competitionbetween anodic dissolution and hydrogen effects during stress corrosion cracking of a7050aluminum alloy[J]. Material Science Engineering A,1997,238(2):293-302.
    [243] Brown R H, Fink W L, Hunter M S. Measurement of irreversible potentials as a metallurgicalresearch tool[J]. Trans AIME,1941,143:115-123.
    [244] Maitra S, English G C. Mechanism of localized corrosion of7075alloy plate[J]. Met Trans.,1981,12A:535-545.
    [245]李国峰,张新明,刘胜胆.淬火转移时间对7055铝合金抗晶间腐蚀能力的影响[J].特种铸造及有色合金,2008,28(10):743-745.
    [246]张新明,刘胜胆,刘瑛等.淬火速率和锆含量对7055型铝合金晶间腐蚀的影响[J].中南大学学报(自然科学版),2007,38(2):181-185.
    [247]路贵民,王兆文,李冰.铝合金腐蚀与表面处理[M].沈阳:东北大学出版社,2000(4):24.
    [248]杨胜,易丹青,钟利.航空Al-Cu-Mg合金剥落腐蚀行为[J].北京科技大学学报,2007,29(2):216-219.
    [249]贺斌,孙有朝,樊蔚勋.剥蚀对铝合金疲劳性能的影响[J].南京航空航天大学学报,1998,30(3):306-310.
    [250]许晓静,吴桂潮,王彬等.含Sr7085型铝合金的晶间腐蚀和剥落腐蚀性能[J].材料热处理学报,2011,32(5):22-26.
    [251]李芳芳.高强铝合金剥落腐蚀的研究综述[J].海南冶金职业技术学院学报,2009,9(2):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700