FCC过程中MgO基硫转移剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在环境保护加强的形势下,SOx污染的延续性引起了世界各国的普遍重视。SOx污染的来源极其广泛,其中工业生产中产生的SOx气体是环境污染的主要源头。从炼油厂产生的SOx占总SOx排放量的6~7%,其中催化裂化过程所排放的SOx约占5%,因此研究FCC脱硫技术具有重要的意义。
     本论文采用共沉淀法制备出MgO基助剂掺杂型硫转移剂,围绕硫转移剂结构与性能的关系这一关键问题,来探索硫转移剂的脱硫性和再生性,探讨影响硫转移剂性能的物理化学及结构因素。
     选择稀土元素Ce、La和过渡金属Fe、Cu、Zn、Mn分别作为助剂掺杂到MgO基硫转移剂中,以SO2为目标污染物质进行SOx吸附性能研究。结果表明,稀土元素Ce的掺杂其脱硫活性是纯MgO和其它元素掺杂的10倍左右,Fe、Cu、Zn的效果次之;设计一阶响应面试验,在MgO中同时掺入Ce和Fe、Cu、Zn两种金属氧化物,得到MgO-Ce-Fe类硫转移剂的SO2吸附效果最好,最大硫容为1.60 gSO2/g absorbent。
     研究了MgO-Ce-Fe、MgO-Ce-Cu和MgO-Ce-Zn三种硫转移剂的再生性能,发现MgO-Ce-Cu、MgO-Ce-Zn的再生温度较高、再生速率低,不适于循环脱硫使用。而MgO-Ce-Fe可在480℃~580℃最低的温度下再生速率最快、再生彻底;利用H2进行10次脱硫后再生,仍然保持着62.2%的SO2吸附性水平;MgO-Ce-Fe的再生循环性能优越。
     利用XRD、比表面积和孔结构以及FT-IR等表征手段对上述硫转移剂反应前后结构进行了分析。与纯MgO相比,掺杂助剂的MgO基硫转移剂粒径减小,比表面积和孔容增大,特别地掺杂Fe的硫转移剂粒径减小、表面积和孔容增加程度为最大;并且有明显的CeO2出现,这些都有利于SO2气体的吸附和硫转移剂的还原再生。吸附SOx的硫转移剂由于出现闭孔现象,所以其比表面积和孔容减小,团聚现象严重;再生的MgO-Ce-Fe硫转移剂晶粒尺寸、比表积和孔容与新鲜的硫转移剂相比均变化不大。
     结果表明,MgO是吸附SO2的唯一活性组元,最后形成了稳定的MgSO4; CeO2是一种很好的氧化SO2的促进剂,但对MgSO4的还原没有贡献;Fe2O3既是氧化SO2的促进剂又是还原MgSO4的促进剂;CuO与ZnO对氧化吸硫与还原脱硫贡献较小。MgO-Ce-Fe类硫转移剂是兼具SO2吸附性和再生性优良的硫转移剂。
     本论文的工作为FCC硫转移剂的应用研究提供了有意义的数据和理论参考。
In recent years,with the enhancement in environmental protection, the SOx incremental pollutions brought about the widely attention in every country. Sources of SOx pollution are very popullar, among which main roots are from industrial production process. SOx from refinery factories is about 6-7%of total SOx releases in atmosphere, but SOx from the feed stock of fluld catalytic cracking(FCC) process is about 5%. So the reasearch of desulfurization techniques in FCC is significant.
     In the paper, coprecipitations were adopted in the preparation of MgO based sulfur transfer absorbents(STC) added with minor promoters, based on the key issue of construction and performance of sulfur-transfer absorbents, the performance of desulfurization and regeneration of sulfur transfer absorbents were studied, and physical and chemical, as well as structural factors that affect desulfurization performance(DP) were discussed.
     Rare earth elements cerium(Ce), lanthanum(La), and transient metal elements iron(Fe), copper(Cu), zinc(Zn) and manganese(Mn) were respectively doped into MgO as the additive to study the DP of them, and SO2 was chosen as object contamination. The results indicated that, the DP of MgO indoped with Ce is about 10 times of undoped and indoped with other elements.The DP of MgO indoped with Fe, Cu, Zn is better. Using one step response surface method(RSM) to choose the optimal composition of the STCs of MgO indoped with two promoters of Ce and Fe, Cu, Zn when the STCs DP is best. Finally, the DP of MgO-Ce-Fe is best and its sulfur capacity is 1.60 gSO2/g absorbent.
     In the research on the regeneration performance(RP) of MgO-Ce-Fe, MgO-Ce-Cu and MgO-Ce-Zn, it could be found that beacause regeneration temperature of MgO-Ce-Cu and MgO-Ce-Zn are higher, and their regeneration rate are smaller, so they are unsuitable as STCs. But MgO-Ce-Fe can be regenerated in lower temperature quickly and completely. The sulfur capacities were 62.2%of fresh STCs after ten times sulfuration and regeneration. MgO-Ce-Fe has best regeneration performance.
     X ray diffraction(XRD), Special surface area, pore structure and FT-IR and other characterization means were adopted in the structure analysis of the upper three STCs before and after reaction. Compared with pure MgO, MgO indoped with promoters decreased in particle size, and increased in special surface area and pore volume. Especially the exchange extent is very obvious adulterating Fe2O3. Morever, there was CeO2. All of characteristics are positive to improve the STCs DP and RP. On the contrary, because of emerging blocks in STCs pores, special surface area and pore capacity decrease much after first desulfurization, and there is much particles reunion in them. There is much difference MgO-Ce-Fe after regeneration desulfurization.After the regeneration of MgO-Ce-Fe, the average pore size, species states, special surface area and pore capacity doesn't change obviously comparing with fresh STCs.
     Results showed that MgO was the only active material for SOx adsorption, Fe2O3 was not only the absorbent for oxidatlng SO2 to SO3, but also the absorbent for reducing MgSO4, CeO2 was a very nice absorbent for oxidating SO2 to SO3, but had no contribute to the reduction of MgSO4.
     This work will provide the valued data and theoretie bases for the application in reasearch of sulfur transfer additive.
引文
[1]朱根权,夏道宏,阙国和.催化裂化过程中硫化物的分布及转化规律[J].石油化工高等学校学报,2000,13(2):40-44
    [2]范维唐.能源现状与发展趋势[J].山西能源与节能,2004,34(3):1-4
    [3]林西平.石油催化裂化概论[A].北京:石油工业出版社,2008
    [4]杨一青.催化裂化催化剂新材料的合成、表征及其裂化反应性能的研究.西北师范大学博士学位论文,2009
    [5]陈俊武.催化裂化工艺与工程[A].第2版.北京:中国石化出版社,2005
    [6]胡锐.硫转移剂在催化裂化装置中的运用[J].广东化工,2003,2:69-71
    [7]汤海涛,凌珑,王龙延.含硫原油加工过程中的硫转化规律[J].炼油设计,1999,29(8):9-15
    [8]徐志达,单石灵.加工含硫原油的设备腐蚀与对策[J].腐蚀科学与防护技术,2004,16(4):250-252
    [9]杨一青,庞新梅,刘从华,等.催化裂化烟气硫转移助剂的研究进展[J].炼油与化工,2008,19(3):1-4
    [10]温斌,何鸣元,宋家庆,等.硫化催化裂化中DeSOx催化剂的研究[J].环境化学,2000,19(3):197-203
    [11]刘涛,孙书红,庞新梅,等.催化裂化烟气硫转移助剂的研究进展[J].中外能源,2007,12(2):64-67
    [12]张玉.铁屑法烟气脱硫工艺及Fe(n)催化氧化S(W)动力学研究.大连理工大学博士学位论文,2003
    [13]高鹏,马新灵,毛金波,等.金属氧化物在烟气脱硫技术中的应用及发展前景[J].华中电力,2005,18(5):1-4
    [14]罗永刚.易再生高比表面脱硫脱硝剂的设计及其机理性研究.东南大学博士学位论文,2003
    [15]杨年兴,王勇,韩德武.催化裂化沉降器结焦过程的研究进展[J].广州化工,2008,36(1):15-17
    [16]钱伯章.催化裂化硫转移助剂发展现状[J].天然气与石油,2003,66
    [17]杨嘉谟,苏青青,高凤,等.吸附法脱除烟气中二氧化硫的实验研究[J].武汉工程大学学报,2008,30(2):54-57,
    [18]张义玲,胡文宾,唐昭峥.硫回收技术进展[J].硫酸工业,23(3):1-5
    [19]刘忠生,林大泉.催化裂化装置排放的二氧化硫问题及对策[J].石油炼制与化工,1999,30(3):44-49
    [20]秦新超.含氧条件下还原脱硫催化剂的性能研究.天津大学硕士学位论文,2005
    [21]颜志茂,毛卉.催化裂化原料加氢预处理技术的应用.石油炼制与化工,1997,28(3):17-20
    [22]梁美生.铁酸锌高温煤气脱硫行为及气氛效应研究.太原理工大学博士学位论文,2005
    [23]于心玉.新型FCC再生烟气硫转移剂的制备、表征及其性能的研究.华东师范大学博士论文,2007
    [24]Lee Soo Jae, Hee Kwon Jun, Suk Yong Jung, et al. Regenerable MgO-Based SOx Removal Sorbents Promoted with Cerium and Iron Oxide in RFCC [J]. Ind. Eng. Chem. Res.2005,44:9973-9978
    [25]Wang J. A., Chen L. F., C. L.. Roles of cerium oxide and the reducibility and recoverability of the surface oxygen spcies in the CeO2/MgAl2O4 absorbents[J]. Mol. Catal. A 1999,139,315. . absorbent.Appl.Surf.Sci.2000,161,406.
    [26]Wang J. A., Li C. L..SO2 adsorption and thermal stability reducibility of sulfates formed on the magnesium-aluminate spinel sulfur-transfer absorbent[J]. Applied surface Science,2000,161:406-416
    [27]Manuel Cantu, Esteban LoPez-Salinas, Jaime S. Valente, Ramon Montiel, Environ. Sci. Technol. 2005,39:9715
    [28]罗珍.减少催化裂化SOx排放的硫转移助剂[J].炼油设计,2000,30(11):60-62
    [29]LT-8催化裂化硫转移助剂[J].中国环保产业,2002
    [30]冯明,杨彬.HL-9硫转移剂的工业应用[J].齐鲁石油化工,2002,30(1):16-18
    [31]W. P. Cheng, X. Y. Yu,W. J. Wang. Synthesis, characterization and evaluation of Cu/MgAlFe as novel transfer absorbent for SOx removal[J]. Catalysis Communications,2008,9:1505-1509
    [32]程文萍,王雯娟,刘玲,等.FCC硫转移剂MgAlCuFe复合氧化物的结构与性能:金属盐前体的影响[J].催化学报,2007,28(12):1112-1116
    [33]程文萍,梁学正,杨建国,等.FCC硫转移剂MgAlCuFe复合氧化物的结构与性能:Fe和Cu含量的影响[J].催化学报,2009,30(1):31-36
    [34]陈银飞,卓广澜,葛忠华,等.MgAlFe复合氧化物高温下脱除低浓度SO2的性能[J].高校化学工程学报,2000,14(4):346-350
    [35]Wen Ping cheng, Jian Guo Yang, Ming Yuan He. Evaluation of crystalline structure and SO2 Removal capacity of a series of MgAlFeCu mixed oxides as sulfur transfer absorbents[J]. Catalysis Communications,2009,10:784-787
    [36]李晓,谭乐成,李承烈.镁铝尖晶石作为催化裂化双功能助剂的研究[J].石油学报,2001,17(3):57-61
    [37]Jin S. Yoo, A. A. Bhatacharyya, C. A. Radlowski, etc. Mixed Spinels with cerium-SOx emission control from fluid catalytic cracking (FCC) regenerator[J], New Frontiers in catalysis,1992,1391-1403
    [38]Kim G. SOx control compositions. U. S. Patent 5,627,123,1997
    [39]Carla Maria Salerno Polato, Cristiane Assumpcao Henriques, Alexandre Carlos Camacho Rodrigues. De-SOx additives based on mixed oxides derived from Mg,Al-hydrotalcite-like compounds containing Fe, Cu, Co or Cr[J]. Catalysis Today,2008,133-135-534-540
    [40]Palomares A. E., Lopez-Nieto J. M., Lazaro F. J., etc..Reactivity in the removal of SO2 and NOx on Co/Mg/Al mixed oxides derived form hydrotalcites[J]. Appl. Catal. B,1999,20,257
    [41]Yoo J. S., Bhattacharyya A. A., Radlowski C. A.. Advanced De-SOx absorbent:Mixed solid solution spinels with cerium oxide[J]. Appl. Catal. B,1992,1:169-189.
    [42]Corma A., Palomares A. E., Rey F.. Optimization of SOx additives of FCC absorbents based on MgO-Al2O3 mixed oxides produced form hydrotalcites[J]. Appl. Catal. B,1994,4:29-43
    [43]Yoo J. S., Bhattacharyya A. A., Radlowski C. A.. De-SOx absorbent:an XRD study of magnesium aluminate spinel and its solid solutions[J]. Ind. Eng. Chem. Res.,1991,30:1444
    [44]Albers E. W.. Hydrotalcite contact materials. U. S. Patent 6,338,831,2000
    [45]Strehlau W.. Storage material for sulfur oxides. U. S. Patent 6,338,945,2002
    [46]Chen S. L. F.. Layered SOx tolerant NOx trap absorbents and methods of making and using the same. U. S. Patent 6,923,945,2005
    [47]Lisa Kylhammar, Per-Anders carlsson, Hanna Harelind Ingelsten, etc.. Regengerable ceria-based SOX traps for sulfur removal in lean exhausts[J]. Applied Catalysis B:Environmental,2008,84:268-276
    [48]赵月昌,刘玲,程文萍,等.MgAlZnFeCe类水滑石水热合成、表征及其FCC硫转移性能的研究[J].无机材料学报,2009,24(1):171-174
    [49]陈银飞,黄海凤,吕德伟.一种可循环吸附SO2的复合氧化物[J].煤矿环境保护,2000,14(5):33-35
    [50]Palomares A. E., Lopez-Nieto J. M., Lazaro F. J., etc...Reactivity in the removal of SO2 and NOx on Co/Mg/Al mixed oxides derived form hydrotalcites[J]. Appl. Catal. B,1999,20:257
    [51]Joh annessen T., Koutsopoulos S.. One-Step Flame Synthesis of an Active Pt/TiO2 Absorbent for SO2 Oxidation-A Possible Alternative to Traditional Methods for Parallel Screening[J]. Catal.,2001, 205-404
    [52]Dawody J., Skoglundh M.. The effect of metal oxide additives (WO3, MoO3, V2O5, Ga2O3) on the oxidation of NO and SO2 over Pt/Al2O3 and Pt/BaO/Al2O3 absorbents[J]. Mol. Catal. A,2004,209-215
    [53]Wang Y., Liu Z., Zhan L., Huang Z., etc., Performance of an activated carbon honeycomb supported V2O5 absorbent in simultaneous SO2 and NO removal[J]. Chem. Eng. Sci.,2004,59,5283
    [54]Corma A., Palomares A. E., Rey F.. Optimization of SOx additives of FCC absorbents based on MgO-Al2O3 mixed oxides produced form hydrotalcites[J]. Appl. Catal. B,1994,4,29
    [55]Yoo J. S., Bhattacharyya A. A., Radlowski C. A.. De-SOx absorbent:an XRD study of magnesium aluminate spinel and its solid solutions[J]. Ind. Eng. Chem. Res.,1991,30,1444
    [56]McCauley J. R.. Catalytic cracking with reduced emission of sulfur oxide. U. S. Patent 6,129,833, 2000
    [57]Wang J. A., Chen L. F., Limas-Ballesteros. R.. Evaluation of crystalline structure and SO2 storage capacity of a series of composition-sensitive De-SO2 absorbents[J]. Mol. Catal. A,2003,194-181
    [58]崔秋凯,张强,李春义,等.再生条件对硫转移剂脱硫性能的影响[J].中国石油大学学报,2009,33(5):151-155
    [59]王斌,王涛.催化裂化再生烟气SOx转移剂RFS的开发[J].石油炼制与化工,2002,33(6):37-40
    [60]郭如新.轻烧氧化镁和氢氧化镁在环保领域中的应用[J].化工环保,1997,17(4):206-210
    [61]H.Mizutani,Y.Korai,I.Mochida, Behavior of sulfur species present in atmospheric residue in fluid catalytic Cracking, Fuel 86(2007)2898-2905
    [62]Yoo Jin S., Radlowski Ceeelia A., Karch Joln A.. Metal-containing spinel composition and proeess of using same [P]. Bhattacharyya Alakananda.Katalistiks International, Inc., USP 4,790,982,1988,12
    [63]陈银飞,葛忠华,吕德伟.不同制备方法对MgAl氧化物催化吸附SO2性能的影响[J].化工学报,2001,52(5):429-433
    [64]郑淑琴,索继栓,张永明,等.钒对裂化催化剂的影响及流化催化裂化抗钒助剂的开发[J].现代化工,2002,22(2):29
    [65]桂跃强.抑制裂化催化剂钒中毒的固钒剂[J].炼油设计,2001,3(4):56
    [66]王芳珠,卓润生,孙在春,等.稀土钝钒剂对钒污染催化剂活性与再生性能的影响[J].石油大学学报,1998,22(5):79
    [67]于心玉.新型FCC再生烟气硫转移剂的制备、表征及其性能的研究[D].华东师范大学理工学院化学系,2007:19-22
    [68]李芬.纳米锌基脱硫剂室温脱硫效能及再生研究.哈尔滨工业大学博士学位论文,2007
    [69]靳春玲,张志海,刘应杰,等.应用于工业催化剂表征中的几种表面分析技术[J].山西化工, 2006,26(6):34-36
    [70]卢伟光,龙军,田辉平.镧和铈改性对氧化铝性质的影响[J].催化学报,2003,24(8):574
    [71]蒋政,李进军,郝郑平,等.斓掺杂粘土源含铜氧化物催化剂的制备、表征及催化性能[J].中国稀土学报,2004,22(4):532
    [72]陈吉祥,邱业君,张继炎,等.La2O3和CeO2对CH4-CO2重整Ni/MgO催化剂结构和性能的影响[J].物理化学学报,2004,20(1):76
    [73]程文萍,FCC再生烟气硫转移剂CuMgAlFe的制备、表征及其性能的研究,华东师范大学博士学位论文,2008
    [74]陈良,施力.燃料化学学报,2005,33(1):83
    [75]朱仁发,戴亚,李承烈.脱硫助剂氧化吸硫原位还原研究[J].安徽师范大学学报,1999,22(4):342-344
    [76]Hugo B. Pereira, Carla M. S. Polato, Jose Luiz F. Monterio, etc.. Mn/Mg/Al-spinels as absorbents for SOx abatement Influence of CeO2 incorporation and catalytic stability[J]. Catalysis Today,2010,149: 309-315
    [77]杨庆利,海滨棉葵种子油脂提取剂制备生物柴油研究[D].中国科学院博士学位论文,2008
    [78]Jun H. K., Lee T. J., Kim J. C.. Role of Iron Oxide in the Promotion of Zn-Ti-Based Desulfurization Sorbents during Regeneration at Middle Temperatures [J]. Ind. Eng. Chem.Res.,2002,41(19):4733
    [79]沈本贤,陈清.提高USY型FCC催化剂硫转移和催化裂化活性的研究[J].燃料化学学报,2006,34(2):166-169
    [80]朱仁发,王思玉,李承烈,等.酸法Ce-Mg-Al-Fe-O脱硫添加剂的活性及性能研究[J].石油学报(石油加工),2001,17(2):18-23
    [81]赵月昌.MgAlznFeCe类水滑石材料的制备、表征及其在FCC再生烟气硫转移中的应用.华东师范大学硕士论文,2008
    [82]陈银飞,刘华彦.MgFe氧化物催化氧化吸附SO2的研究[J].宁夏大学学报,2001,22(2):178-180
    [83]王雁,CuO/y-Al2O3干法烟气脱硫研究.华中科技大学博士学位论文,2005
    [84]Douglas C. Montgomery. Desigh and analysis of experiments.实验设计与分析[M].汪仁宫,陈荣昭.中国统计出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700