AZ91D镁合金微弧氧化ZrO_2-Y_2O_3复合陶瓷膜层的制备、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有许多优良的物理和力学性能,在航空航天、汽车制造、电子通讯、军事及核能等诸多领域应用广泛。然而,镁合金的耐蚀、耐热及耐磨性能较差,严重阻碍了其进一步应用。微弧氧化(MAO)是在普通阳极氧化基础上发展而来的一种表面处理新技术,因能在Al、Mg、Ti等阀金属及其合金表面原位形成陶瓷膜层,极大地提高金属的耐蚀、耐磨等性能,而被公认为最有前途的镁合金表面处理技术。目前,对镁合金MAO的研究多集中在提高耐蚀性能方面,且采用的电解液主盐多为硅酸盐、磷酸盐或铝酸盐,膜层成分单一、综合性能一般。此外,对镁合金MAO的工艺原理、膜层的形成机制以及膜层的组成、结构与性能之间的内在联系尚缺乏系统、深入的研究。因此,开发新的电解液体系、改善膜层的组成与结构,深入探讨MAO的处理工艺、膜层的形成机制,系统研究膜层的组成、结构与性能之间的关系,对镁合金MAO的进一步发展和应用具有十分重要的意义。
     本文在综合分析国内外电解液特性的基础上,开发出了两种新型的电解液体系(Si-Zr-Y体系和Al-Zr-Y体系),首次在碱性电解液中于AZ91D镁合金表面原位制备了ZrO_2-Y_2O_3陶瓷膜层,并与已开发的硅酸盐-磷酸盐复合电解液体系(Si-P体系)作对比,系统研究了三种膜层(Si-P film、Si-Zr-Y film和Al-Zr-Y film)的厚度、表面粗糙度、组成、结构以及耐蚀、耐热、耐磨等性能之间的关系,为开发新的MAO膜层、进一步提高AZ91D的综合性能奠定了良好的基础。
     研究了添加剂(NaPO_3)_6的浓度对硅酸盐电解液中AZ91D镁合金MAO膜层的组成、结构及耐蚀性能的影响。结果表明,随着(NaPO_3)_6浓度的增加,膜层中MgO和Mg_2SiO_4的含量分别在0~3 g·L~(-1)和0~7 g·L~(-1)浓度范围内增加,在3~10 g·L~(-1)和7~10g·L~(-1)浓度范围内减少;而MgAl_2O_4含量逐渐减少。添加(NaPO_3)_6后,MAO膜层(Si-Pfilm)的耐电化学腐蚀性能提高,这主要是因为(NaPO_3)_6增加了MAO反应过程中基体镁合金表面的“氧空位”和溶液中PO_4~(3-)含量,促使Mg在金属/膜层界面上快速形成相应的化合物,增加了陶瓷膜层的厚度和致密性,从而提高了其耐腐蚀性能。
     系统研究了Si-Zr-Y film和Al-Zr-Y film的生长过程、膜层结构和化学组成。结果表明,随着氧化时间的延长,膜层的厚度逐渐增加,但生长速率逐渐减小。两种膜层均具有双层结构,即外部的多孔层和内部的致密层。Si-Zr-Y film主要由t-ZrO_2、Y_2O_3、SiO_2、MgO、MgF_2和Mg_2SiO_4组成,膜层表面的陶瓷颗粒尺寸较大,分布不均匀,粗糙度相对较大(~3.495μm),但孔隙率很低(~0.9%);而Al-Zr-Y film主要由c-ZrO_2、t-ZrO_2、Y_2O_3、Al_2O_3、MgO、MgF_2和MgAl_2O_4组成,膜层表面的陶瓷颗粒多而细小,分布均匀,粗糙度相对较小(~2.128μm),但孔隙率较高(~39.4%)。
     研究分析了三种膜层的耐蚀性能。结果表明,Si-P film和Si-Zr-Y film耐点滴腐蚀的能力较强,而Al-Zr-Y film的较差,但均好于未处理的AZ91D镁合金。三种膜层在3.5 wt.%NaCl溶液中均表现出很好的耐蚀性,其耐蚀能力较基体合金提高了3个数量级。分析表明在较长时间的电化学反应过程中,膜层的耐蚀性能主要取决于内部致密层的厚度和致密性,而对于短时间的电化学反应过程来说,膜层表面的孔隙率和孔洞的大小对其耐蚀性能也存在较大影响。
     高温氧化及热冲击研究结果表明,三种膜层的高温抗氧化能力明显好于未处理的AZ91D镁合金;Si-Zr-Y film和Al-Zr-Y film耐热冲击性能好于Si-P film,其主要原因是膜层中含有Y_2O_3稳定的ZrO_2以及Al_2O_3等高温稳定相,在加热过程中其相组成变化较小,对温度变化敏感度较低;此外,膜层的内层具有一定厚度且相对致密,与基体间的结合强度较高,因而在热冲击过程中不易产生裂纹和膜层脱落。
     系统研究了三种膜层的硬度、耐磨及拉伸性能。结果表明,微弧氧化处理后,镁合金的表面硬度明显增加,这主要是因为MAO膜层的主体相为陶瓷相,其硬度高于基体,因而能显著提高基体的硬度。由于MAO膜层的存在,使得镁合金的磨损机制发生了改变,粘着磨损和磨粒磨损损伤减轻,因而其耐磨性能显著提高。镁合金在拉伸实验中发生了准解理断裂和韧窝断裂相结合的混合断裂,但以准解理断裂为主;而MAO膜层拉伸实验后在膜层/基体的界面结合处未出现明显的分层现象,且无大的、贯穿性的裂纹出现,抗拉伸性能良好。
Magnesium and its alloy have many excellent physical and mechanical properties,which make it valuable in a number of applications including aeronautics and astronautics,automobile manufacture, electronic communications, military affairs and nuclear power, etal. However, their corrosion resistance, heat resistance and wear resistance are rather poor,which seriously hinder their further applications. Microarc oxidation (MAO) is a novelsurface treatment technique developed from the common anodic oxidation. By use of thistechnique, a ceramic coating can be in situ formed on Al, Mg, Ti and their alloys. Thus,this method has been generally recognized as the most promising surface treatmenttechnique for magnesium alloy. At present, the researches on MAO for Mg alloy aremainly focused on the improvement of corrosion resistance, and the electrolytes used aremainly silicate, phosphate and aluminate, the coating components are single and thecomprehensive properties of the coating are not good enough. In addition, there are nosystematic and in-depth researches on the fundamental theory of MAO process, theformation mechanism of the coating, as well as the internal relations between the coatingcompositon, structure and its properties. Therefore, the development of new electrolytesystem for improve coating composition and structure, the further study of the MAOtreatment process and the coating formation mechanism, the systematic study of therelations between the coating composition, structure and its integrated performaces, willhave a very important significance for the further development and application of MAOtechnique.
     Based on the comprehensive analysis of the electrolyte characteristics at home andabroad, two novel electrolyte systems (Si-Zr-Y system and Al-Zr-Y system) have beendeveloped and the ZrO_2-Y_2O_3 composite ceramic coatings have been firstly prepared on AZ91D magnesium alloy in the alkaline electrolyte. For comparison, a silicate-phosphatecomposite electrolyte system (Si-P system) has been developed. This work systematicallystudied the thickness, surface roughness, composition and microstructure of the threedifferent coatings, as well as the relations between them and the corrosion resistacne, heatresistance and wear resistance, et al. A good foundation for the development of novelMAO coatings and further improvement of the integrated performances of AZ91Dmagnesium alloy was established by this research.
     Effect of (NaPO_3)_6 concentrations on composition, microstructure and corrosionresistance of MAO coatings formed on AZ91D Mg alloy in silicate electrolyte was studied.The results showed that with the increase of (NaPO_3)_6 concentration, the contents of MgOand Mg_2SiO_4 was increased in the concentratin range of 0~3 g·L~(-1) and 0~7 g·L~(-1), and thendecreased in the range of 3~10 g·L~(-1) and 7~10 g·L~(-1), respectively. But the content ofMgAl_2O_4 was decreased gradually. After adding (NaPO_3)_6 to the electrolyte, theelectrochemical corrosion resistance of Si-P films had been significantly improved. Themain cause was that (NaPO_3)_6 increased oxygen vacancies on the Mg substrate surfaceand the content of PO_4~(3-), which speeded up the formation of magnesium compounds at theinterface between metal and coating, increased the thickness and compactness of thecoatings, and then improved their corrosion resistance.
     The gowth process, microstructure and chemical compositon of Si-Zr-Y film andAl-Zr-Y film have been systematically studied. The results showed that the coatingthickness incresed, but the gowth rate was decreased as the oxidation time increased. Thetwo coatings both had double-layer structures, namely the outer porous layer and the innerdense layer. The Si-Zr-Y film was mainly composed of t-ZrO_2, Y_2O_3, SiO_2, MgO, MgF_2and Mg_2SiO_4, the ceramic particales of the coating were relatively large and distributedunevenly. It has a high surface roughness (~3.495μm) and a low porosity (~0.9%).However, the Al-Zr-Y film was mainly composed of c-ZrO_2, t-ZrO_2, Y_2O_3, Al_2O_3, MgO,MgF_2 and MgAl_2O_4, the ceramic particales of the coating were numerous and fine and distributed evenly. It had a low surface roughness (~2.128μm) and a high porosity(~39.4%).
     The corrosion resistances of three coatings were studied. The results showed that thedropping corrosion resistance of the Si-P film and Si-Zr-Y film were better, but that of theAl-Zr-Y film was poor. However, they all were better than untreated AZ91D magnesiumalloy. The three coatings showed a good corrosion resistance in 3.5 wt. % NaCl solution,the corrosion resistances of which were improved by 3 orders of magnititude comparedwith that of untreated AZ91D alloy. The analysis results showed that the corrosionresistance of coating was mainly determined by thickness and compactness of the innerlayer in the long-time electrochemical reaction process, but in the short-time reactionprocess, the corrosion resistance of the coating was also influnced by coating surfaceporosity and hole size.
     The results of high temperature oxidation and thermal shock test showed that the threeMAO coatings had better high temperature oxidation resistance than that of untreatedAZ91D magnesium alloy. The thermal shock resistance of Si-Zr-Y film and Al-Zr-Y filmwere better than that of Si-P film, which was mainly attributed that the coatings containedthe high-temperature stable phsases of Y_2O_3 stablized ZrO_2, Al_2O_3 and so on. During theheating process, the coatings had little change in the phase composition and less sensitvieto temperature change. In addition, the inner layer of the coating was thick and compact,and with a high bonding strength, which made the formation of crackes and abhesion ofthe coating difficult during the thermal shock process.
     The hardness, wear resistance and tensile properties of three coatings weresysmatically studied. The results showed that the coating hardness was significantlyimproved after MAO treatment. This was mainly attributed that the main phases of thecoating were ceramic phases, the hardness of which were higher than that of Mg, whichmade the hardness of Mg substrate improved. Due to the presence of MAO coating, thetribological mechanism of Mg alloy was changed, the adhesive wear and abrasive wear were reduced, and then the wear resistance was significantly improved. During the tensiletest, a mixed fracture including quasi-cleavage fracture and dimple fracture had takenplace in AZ91D magnesium alloy. But quasi-cleavage fracture was the main fracture form.However, there was no obvious layer seperation occurring in the interface of coating andsubstrate, and there was no large and perfoliate crack in the interface. Therefore, the MAOcoatings have very good anti-tensile properties.
引文
[1] 黎文献.镁及镁合金.长沙:中南大学出版社,2005:1-7.
    [2] Mordike B L, Ebert T. Magnesium properties-applications-potential. Materials Science and Engineering A, 2001, 302: 37-45.
    [3] 曾荣昌,柯伟,徐永波等.Mg合金的最新发展及应用前景.金属学报,2001,37(7):673-685.
    [4] Gray J E, Luan B. Protective coatings on magnesium and its alloys-a critical review.Journal of Alloys & Compounds, 2002, 336: 88-113.
    [5] 王燕华.镁合金微弧氧化膜的形成过程及腐蚀行为研究:[博士学位论文].北京:中国科学院研究生院,2005.
    [6] 胡凤翔.变形镁合金触变挤压试验及数值模拟.热加工工艺,2008,37(13):70-72.
    [7] 杨培霞,郭洪飞,安茂忠等.镁合金表面微弧氧化陶瓷膜耐蚀性能评价.航空材料学报,2007,27(3):33-37.
    [8] 张诗昌,蔡启舟,王立世等.钇和混合稀土对AZ91D合金高温力学性能的影响.特种铸造及有色合金,2005,25(5):287-290.
    [9] 张静,潘复生,李忠盛.耐热镁合金材料的研究和应用现状.铸造,2004,53(10):770-774
    [10] Humble P. Towards cheap resistant magnesium alloy. Materials Forum, 1997, 21:45-56.
    [11] Hoche H, Scheerer H, Probst D, et al. Plasma anodism as an enviorenmental harmless method for the corrosion protection of magnesium alloys. Surface & Coatings Technology, 2003, 174-175: 1002-1007.
    [12] Hoche H, Scheerer H, Probst D, et al. Development of a plasma surface treatment for magnesium alloys to ensure sufficient wear and corrosion resistance. Surface & Coatings Technology, 2003, 174-175: 1018-1023.
    [13] 高志,潘红良.表面科学与工程.上海:华东理工大学出版社,2006.
    [14] Nobuto Y, Hiroshi N,Ari I. Characteristics of ion beam modified magnesium oxidation films. Thin Solid Films, 2004, 447-448: 377-382.
    [15] Frank H, Renate W, Jana S. Characteristics of PVD-coatings on AZ31 magnesium alloys. Surface & Coatings Technology, 2003, 162(2-3): 261-268.
    [16] Krysmann W, Schneider H G. Application fields of ANOF layers and composites.Crystal Research & Technology, 1987, 21(12): 1603-1609.
    [17] 冯忠信,张建中,陈新增.ZM1 Mg合金的表面滚压强化.金属学报,1994,30(9):422-426.
    [18] Gao B, Hao S, Zou J, et al. High Current Pulsed Electron Treatment of AZ31 Mg Alloy.Journal of Vacuum Science & Technology, 2004, 33(12): 29-35.
    [19] Yerokhin A L, Snizhko L O, Gurevina N L, et al. Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminium alloy. Surface & Coatings Technology, 2004, 177: 779-783.
    [20] Cao F H, Cao J L, Zhang Z, et al. Plasma electrolytic oxidation of AZ91D magnesium alloy with different additives and its corrosion behavior. Materials and Corrosion-Werkstoffe Und Korrosion, 2007, 58: 676-683.
    [21] Yao Z P, Jiang Y L, Jia F Z, et al. Growth characteristics of plasma electrolytic oxidation ceramic coatings on Ti-6A1-4V alloy. Applied Surface Science, 2008, 254:4084-4091.
    [22] http://ec.europa.eu/research/transport/pdf/turin1009_1450_en.pdf
    [23] Yerokhin A L, Lyubimov V V, Ashitkov R V. Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloys. Ceramics International, 1998,24: 1-6.
    [24] Van T B, Brown S D, Wirtz G P. Mechanism of anodic spark depostion. Ceramic Bullentin, 1997, 56(6): 563-566.
    [25] Wirtz G P, Brown S D, Kriven W M. Ceramic coatings by anodic spark deposition.Materials & Manufacturing processes, 1991, 6(1): 87-115.
    [26] Lu F H, Wu C T, Hung C Y. Barium titanate films synthesized by an anodic oxidation-based electrochemical method. Surface & Coatings Technology, 2002, 153:276-283.
    [27] Kurze P, Krysmann W, Schreckenbach J, et al. Coloured ANOF layer on aluminum.Crystal Research & Technology, 1987, 22(1): 53-58.
    [28] Kurze P, Krysmann W, Schneider H G. Application Filed of ANOF layers and composites. Crystal Research & Technology, 1986, 21 (12): 1603-1609.
    [29] Nie X, Leyland A, Song H W, et al. Thickness effects on the michanical properties of micro-arc discharge oxidation coatings on aluminum alloys. Surface & Coatings Technology, 1999, 116-119: 1055-1060.
    [30] Nie X, Wilsonn A, Leyland A, et al. Depostion of duplex Al_2O_3/DLC coatings on Al alloys for tribological applications using a combined micro-arc oxidation and plasma-immersion ion implantation technique. Surface & Coatings Technology, 2000,121: 506-503.
    [31] Nie X, Leyland A, Matthews A. Deposition of layered bilceramic hydroxyapatite/TiO_2 coatings on titanium alloys using a hybrid technique of micro-arc oxidatin and electrophoresis. Surface & Coatings Technology, 2000, 125: 407-414.
    [32] Gerasimov M V, Nikolaev V A, Scherbakov A N. Microplasma oxidation of metals and alloys. Metallurgist, 1994, 38(7-8): 179.
    [33] Magurova Y V, Timoshenko A V. The effect of a cathodic component on ac microplasma oxidation of aluminum-alloys. Protection Metals, 1995, 34(4): 377-380.
    [34] http://www.rsd.cam.ac.uk/documents/local/events/downloads/mh/1.3_Clyne.pdf
    [35] Sluginov N P, Zh. Russ. Fiz-Khim. O-va, Chast Fiz., 1878, 10(8): 241-245.
    [36] Sluginov N P, Zh. Russ. Fiz-Khim. O-va, Chast Fiz., 1880, 12(1-2): 193-198.
    [37] Guntershulze A, Betz H. Elecktroliticheskie Kondensatory (Electrolytic Capacitors), Moscow: Obornizidat, 1938.
    [38] Tomashov N D, Tyukina M N, Zalivalov F P. Tolstosloinoe anodirovanie alyuminya i.Aluminievykh splavov.-M.: Mashinistroenie, 1968.
    [39] Markov G A. USSR Inventor's Certificate no.522691, Byull. Izobret., 1976, 32: 163.
    [40] Nikolaev A V, Markov G A, Peshchevitskii B I. Izv. Sib. Otd. Akad. Nauk SSSR, Ser.Khim. Nauk, 1977, Issue 5, 12: 32-36.
    [41] Hradsovsky R, Kozako O. US Patent 383499, 1974.
    [42] Hradsovsky R. US Patent 4082626, 1978.
    [43] Van T B, Brown S D, Wirtz G P. Anode spark reaction products in aluminate, tungstate and silicate. American Ceramic.Society of Bulletins, 1977, 56 (6): 563-566.
    [44] Dittrich K H, Krysmann W, Kurze P, et al. Structure and Properties of ANOF layers.Crystal Research & Technology, 1984, 19(1): 93-99.
    [45] Markov G A. USSR Inventor's Certificate no.522691, Byull. Izobret., 1976, 32: 163.
    [46] Kurze P. Magnesium legierungen electrochemisch beschichten. Metalloberflach, 1994,48(2): 101-105.
    [47] Voevodin A A, Yerokhin A L, Lyubimov V V, et al. Characterization of wear protective Al-Si-O coatings formed on Al-based alloys by micro-arc discharge treatment. Surface & Coatings Technology, 1996, 86-87: 516-521.
    [48] Blawert C, Dietzel W, Ghali E, et al. Anodizing treatments for magnesium alloy and their effect on corrosion resistance in various environments. Advanced Engineering Materials, 2006, 8(6): 533.
    [49] Nie X, Leyland A, Song H W, et al. Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys. Surface & Coatings Technology, 1999, 116-119: 1055-1060.
    [50] Yerokhin A L, Voevodin A A, Lyubimov V V, et al. Plasma electrolytic fabrication of oxide ceramic surface layers for tribotechnical purposes on aluminium alloys. Surface & Coatings Technology, 1998, 110: 140-146.
    [51] 邓志威,薛文彬,汪新福等.铝合金表面微弧氧化技术.材料保护,1996,29(2):15-16.
    [52] 薛文彬,邓志威,汪新福等.铝合金微弧氧化陶瓷膜的形貌及相组成分析.北京师范大学学报(自然科学版),1996,32(1):67-70.
    [53] Wang Y M, Jiang B L, Guo L X, et al. Tribological behavior of microarc oxidation coatings formed on titanium alloys against steel in dry and solid lubricating sliding.Applied Surface Science, 2006, 252: 2989-2998.
    [54] Han Y, Chen D H, Sun J F, et al. UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings. Acta Biomaterialia, 2008, 4:1518-1529.
    [55] Li J M, Cai H, Jiang B L. Growth mechanism of black ceramic layers formed by microarc oxidation. Surface & Coatings Technology, 2007, 201: 8702-8708.
    [56] Wu H H, Lu X Y, Long B H, et al. The effects of cathodic and anodic voltages on the characteristics of porous nanocrystalline titania coatings fabricated by microarc oxidation. Materialia Letters, 2005, 59: 370-375.
    [57] Duan H P, Yan C W, Wang F H. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magensium alloy AZ91D.Electrochemica Acta, 2007, 52(11): 3785-3793.
    [58] 薛文彬,邓志威,陈如意等.微弧氧化表面处理对铝合金拉伸性能的影响.金属热处理学报,1999,4:1-5.
    [59] Parfenov E V, Yerokhin A L, Matthews A. Impedance spectroscopy characterisation of PEO process and coatings on aluminium. Thin Solid Films, 2007, 516: 428-432.
    [60] Wang L S, Cai Q Z, Wei B K, et al. Characterization of oxide films formed on magnesium alloys using bipolar pulse microarc oxidation in phosphate solution.Transactions of Nonferrous Metals Society of China, 2005, 15(3): 600-605.
    [61] Wu Z D, Yao Z P, Jiang Z H. Preparation and structure ofmicroarc oxidation ceremic coatings containing ZrO_2 grown on LY12 Al alloy. Rare Metals, 2008, 27(1): 55-58.
    [62] Jin FY, Wang K, Zhu M, et al. Infrared reflection by alumina films produced on aluminum alloy by plasma electrolytic oxidation. Materials Chemistry & Physics, 2009,114: 398-401.
    [63] Asquith D T, Yerokhin A L, Yates J R, et al. Effect of combined shot-peening and PEO treatment on fatigue life of 2024 Al alloy. Thin Solid Films, 2006, 515:1187-1191.
    [64] Lonyuk B, Apachitei I, Duszczyk J. The effect of oxide coatings on fatigue properties of 7475-T6 aluminium alloy. Surface & Coatings Technology, 2007, 201: 8688-8694.
    [65] 金玲,杨忠,李高宏等.SiCp/ZL109铝基复合材料微弧氧化层的微观组织特征.兵器材料科学与工程,2003,26(3):31-35.
    [66] Wei D Q, Zhou Y, Wang Y M, et al. Effect of dehydration on structure and induction capability for apatite formation of microarc oxidized TiO_2-based film with chemical modification. Thin Solid Films, 2008, 516: 6413-6420.
    [67] Shin Y K, Chae W S, Song Y W, et al. Formation of titania photocatalyst by microarc oxidation of Ti and Ti-6Al-4V alloys. Electrochemistry Communications, 2006, 8:465-470.
    [68] Shi P, Ng W F, Wong M H, et al. Improvement of corrosion resistance of pure magnesium in Hanks' solution by microarc oxidation with sol-gel TiO_2 sealing. Journal of Alloys & Compounds, 2009, 469(1-2): 286-292.
    [69] Barchiche C E, Rocca E, Hazan J. Corrosion behaviour of Sn-containing oxidation layer on AZ91D alloy formed by plasma electrolytic oxidation. Surface & Coatings Technology, 2008, 202(17): 4145-4152.
    [70] Lee Y K, Lee K S, Jung T. Study on microarc oxidation of AZ31B magnesium alloy in alkaline metal silicate solution. Electrochemistry Communications, 2008, 10(1):1716-1719.
    [71] Verdier S, Boinet M, Maximovitch S, et al. Formatin, structure and composition of anodic films on AM60 magnesium alloy obtained by DC plasma anodising. Corrosion Science, 2005, 47(6): 1429-1444.
    [72] Wang Y Q, Zhang M Y, Wu K. Microarc oxidation coating formed on SiCw/AZ91 magnesium matrix composite and its corrosion resistance. Materials Letters, 2005, 59(14-15): 1727-1731.
    [73] 周慧,李争显,杜继红等.锆合金表面交流微弧氧化膜组织与性能的研究.稀有金属与材料工程,2005,34(8):1330-1333.
    [74] Yan Y Y, Han Y. Structure and bioactivity of micro-arc oxidized zirconia films. Surface & Coatings Technology, 2007, 201: 5692-5695.
    [75] Liu L, Liu Z, Chan K C, et al. Surface modification and biocompatibility of Ni-free Zr-based bulk metalic glass. Scripta Materialia, 2008, 58:231-234.
    [76] Gu W C, Lv G H, Chen H, et al. Preparation of ceramic coatings on inner surface of steel tubes using a combined technique of hot-dipping and plasma electrolytic oxidation.Journal of Alloys & Compounds, 2007, 430:308-312.
    [77] Wu Z Q, Xia Y, Li G, et al. Structure and mechanical properties of ceramic coatings fabricated by plasma electrolytic oxidation on aluminized steel. Applied Surface Science,2007, 253: 8398-8403.
    [78] 王立世.两种电解液中镁合金等离子体电解氧化过程及膜层特性研究:[博士学位论文].武汉:华中科技大学图书馆,2005.
    [79] 王亚明.Ti6Al4V合金微弧氧化涂层的形成机制与摩擦学行为:[博士学位论文].哈尔滨:哈尔滨工业大学图书馆,2006.
    [80] Vijh A K. Sparking voltages and side reactions during anodization of valve metals in terms of electron tunneling. Corrosion Science, 1971, 11(6): 411-417.
    [81] Yahalom J. Proc shmp oxic-Electrolyte Interfaces (Edited by Alnitt R S). The Journal of Electrochemical Inc. 1973, 10: 503.
    [82] Van T B, Brown S D, Wirtz G P. Mechanism of anodic spark deposition. Journal of the American Ceramic Society, 1977, 56(6): 563-566.
    [83] Ikonopisov S. Electronic conduction of anodized aluminium electrodes. Electrochimica Acta, 1969, 14(8): 716-771.
    [84] Kadary V, Klein N. Reverse avalanche breakdown in gated diodes. Journal of the Electrochemical Society, 1980, 127 (1): 139-151.
    [85] Kadary V, Klein N. Experimental determination of the electron-avalanche and the electron-ion recombination coefficient. Journal of the Electrochemical Society, 1980,127(1): 152-155.
    [86] Albella J M, Montero I. Electron injection sand avalanche during the anoxic oxidation of tantalum. Journal of the Electrochemical Society, 1984, 131: 1101-1104.
    [87] Montero I, Albella J M, Martinez-Duart J M. Anodization and breakdown model of Ta_2O_5 films. Journal of the Electrochemical Society, 1985, 132(4): 814-818.
    [88] Krysmann W, Kurze P, Dittrich K H, et al. Process characteristics and parameters of anodic oxidation by spark discharge (ANOF). Crystal Research & Technology, 1984,19(7): 973-979.
    [89] Nikolaev A V, Markov G A, Peshchevitskii B I. A new phenomenon electrolysis. Izv Sib Otd Akad Nauk SSSR, Ser Khim, 1977, (5): 32-35.
    [90] http://www.daksonline.dk/Program%20June%202006/JAC%20-%20DAKS%20Copenhagen.pdf.
    [91] Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering.Surface & Coatings Technology, 1999, 122: 73-93.
    [92] Liang J, Guo B G, Tian J, et al. Effects of NaAlO_2 on structure and corrosion resistance of microarc oxidation coatings formed on AM60B magnesium alloy in phosphate-KOH electrolyte. Surface & Coatings Technology, 2005, 199: 121-126.
    [93] Yerokhin A L, Leyland A, Mattews A. Kinetic aspects of aluminum titanate layer formation on titanium alloys by plasma electrolytic oxidation. Applied Surface Science,2002, 200: 172-184.
    [94] 李均明,蒋百灵,井晓天等.溶液电导率对LY12铝合金微弧氧化陶瓷层的生长速度和致密度的影响.材料热处理学报,2003,24(1):63-65.
    [95] 马跃洲,马凤杰,陈明等.电解液温度对镁合金微弧氧化成膜过程的影响.兰州理工大学学报,2008,34(3):25-28.
    [96] 李淑华,程金生,尹玉军等.LY12Al合金微弧氧化过程中电流和电压变化规律.腐蚀科学与防护技术,2001,13(6):362-364.
    [97] 朱瑞富,王志刚,肖桂勇等.电极电压对纯钛表面微弧氧化陶瓷膜结构及性能的影响.硅酸盐学报,2008,36(5):631-635.
    [98] 何宏辉,曾庆圣,王天石等.镁合金等离子体微弧氧化过程负电压调控的研究.材料热处理学报,2006,27(2):118-121.
    [99] 梁军,郝京诚.电流密度对镁合金微弧氧化膜结构和性能的影响.材料保护,2007,40(8):24-29.
    [100] 魏同波,张学俊,王博等.电流密度对铝合金微弧氧化膜的生长及结合力的影响.材料保护,2004,37(4):4-6.
    [101] 魏同波,田军.液相等离子体电沉积表面处理技术.材料科学与工程学报,2003,21(3):450-455.
    [102] 王亚明,雷廷权,蒋百灵等.交流窄脉冲占空比调制对钛合金微弧氧化陶瓷涂层的影响.稀有金属材料与工程,2005,34(2):329-333.
    [103] Timoshenko A V, Magurova Y V. Microplasma oxidation of Al-Cu alloys. Zashch Met.,1995, 31(5): 523-529 (in Russian).
    [104] He J, Cai Q Z, Luo H H, et al. Influence of silicon on growth process of plasma electrolytic oxidation coating on Al-Si alloy. Journal of Alloys & Compounds, 2009,471: 395-399.
    [105] 薛文斌,邓志威,张通和等.铸造镁合金微弧氧化机理.稀有金属材料与工程,1999,28(6):353-356.
    [106] 吴汉华,于松楠,龙北玉等.处理时间对铝合金微弧氧化陶瓷膜特性的影响.材料科学与工艺,2008,16(5):605-608
    [107] Cao F H, Lin L Y, Zhang Z, et al. Environmental friendly plasma electrolytic oxidation of AM60 magnesium alloy and its corrosion resistance. Transactions of Nonferrous Metals Society of China, 2008, 18(2): 240-247.
    [108] Srinivasan P Bala , Blawert C, Dietzel W. Effect of plasma electrolytic oxidation treatment on the corrosion and stress corrosion cracking behavior of AM50 magnesium alloy. Materials Science & Engineering A, 2008, 494: 401-406.
    [109] Ghasemi A, Raja V S, Blawert C, et al. Study of the structure and corrosion behavior of PEO coatings on AM50 magnesium alloy by electrochemical impedance spectroscopy. Surface & Coatings Technology, 2008, 202: 3513-3518.
    [110] Jin F Y, Chu K P, Xu G D, et al. Structure and mechanical properties of magnesium alloy treated by microarc discharge oxidation using direct current and high frequency bipolar pulsing modes. Materials Science & Engineering A, 2006, 435-436-123-126.
    [111] Su P B, Wu X H, Jiang Z H. Plasma electrolytic oxidation of a low friction casting on ZK60 magnesium alloy. Materials Letters, 2008, 62: 3124-3126.
    [112] Srinivasan P Bala, Blawert C, Dietzel W. Effect of plasma electrolytic oxidation coating on the stress corrosion cracking behaviour of wrought AZ61 magnesium alloy. Corrosion Science, 2008, 50: 2415-2418.
    [113] Srinivasan P Bala, Liang J, Blawert C, et al. Effect of current density on the microstructure and corrosion behaviour of plasma electrolytic oxidation treated AM50 magnesium alloy. Applied Surface Science, 2009, 255: 4212-4218.
    [114] Song Y L, Liu Y H, Yu S R, et al. Plasma electrolytic oxidation coating on AZ91 magnesium alloy modified by neodymium and its corrosion resistance. Applied Surface Science, 2008, 254: 3014-3020
    [115] Wang L, Chen L, Yan Z C, et al. Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy. Journal of alloys & Compounds (in press).
    [116] Guo H F, An M Z, Huo H B, et al. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions. Applied Surface Science, 2006, 252: 7911-7916.
    [117] Wang Y Q, Wu K, Zheng M Y. Effects of reinforcement phases in magnesium matrix composites on microarc discharge behavior and characteristics of microarc oxidation coatings. Surface & Coatings Technology. 2006, 201: 353-360.
    [118] Arrabal R, Matykina E, Skeldon P, et al. Coating formation by plasma electrolytic oxidation on ZC71/SiC/12p-T6 magnesium metal matrix composite. Applied Surface Science, 2009, 255: 5071-5078.
    [119] Hsiao H, Tsai W. Characterization of anodic films formed on AZ91D magnesium alloy.Surface & Coatings Technology, 2005, 190: 299-308.
    [120] Arrabal R, Matykina E, Viejo F, et al. AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles. Applied Surface Science, 2008, 254: 6937-6942.
    [121] Liang J, Srinivasan P Bala, Blawert C, et al. Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes. Electrochimica Acta, 2009, 54:3842-3850.
    [122] Duan H P, Du K Q, Yan C W, et al. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D. Electrochimica Acta, 2006,51: 2898-2908.
    [123] Shen D J, Wang Y L, Nash P, et al. Microstructure, temperature estimation and thermal shock resistance of PEO ceramic coatings on aluminum. Journal of materials processing technology, 2008, 205:477-481.
    [124] 马晋.铝合金微弧氧化工艺研究:[硕士学位论文].武汉:武汉理工大学图书馆,2005.
    [125] 龚建飞.铸造Al-Si合金微等离子体氧化陶瓷膜的获得及其特性:[硕士学位论文].武汉:武汉理工大学图书馆,2005.
    [126] Yao Z P, Gao H H, Jiang Z H, et al. Structure and properties of ZrO_2 ceramic coatings on AZ91D Mg alloy by plasma electrolytic oxidation. Journal of the American Ceramic Society, 2008, 91(2): 555-558.
    [127] 李炳.AZ91D镁合金耐磨性及其表面微弧氧化膜的制备与性能研究:[硕士学位论文].兰州:兰州理工大学图书馆,2007.
    [128] Ding J, Liang J, Hu L T, et al. Effects of sodium tungstate on characteristics of microarc oxidation coatings formed on magnesium alloy in silicate-KOH electrolyte.Transactions of Nonferrous Metals Society of China, 2007, 17: 244-249.
    [129] Huang W J, Liu M, Li Z F, et al. Thickness effects on corrosion and wear resistance properties of micro-arc discharge oxide coatings on AZ91D magnesium alloys.Transactions of Nonferrous Metals Society of China, 2006, 16: s1827-s1830.
    [130] Woirgard J, Tromas C, Girard J C, et al. Study of the mechanical properties of ceramic materials by the nanoindentation technique. Journal of the European Ceramic Society,1998, 18(15): 2297-2305.
    [131] 王艳秋.镁基材料微弧氧化涂层的组织性能与生长行为研究:[博士学位论文].哈尔滨:哈尔滨工业大学图书馆,2007.
    [132] 张继红,徐加有,程柏松等.镁合金微弧氧化陶瓷层结合强度与耐蚀性的研究.汽车工艺与材料,2006,12:9-11.
    [133] 夏天.镁合金微弧氧化陶瓷层的结合强度及其致密性的研究:[硕士学位论文].西安:西安理工大学图书馆,2005.
    [134] Yerokhin A L, Snizhko L O, Gurevina N L, et al. Discharge characterization in plasma electrolytic oxidation of aluminum. Journal of Physics D: Applied Physics, 2003, 36:2110-2120.
    [135] Yang G L, Lu X Y, Bai Y Z, et al. Characterization of microarc oxidation discharge process for depositing ceramic coating. Chinese Physics Letters, 2001, 18(8):1141-1143.
    [136] 李颂.镁合金微弧氧化膜的制备、表征及性能研究:[博士学位论文].吉林:吉林大学图书馆,2007.
    [137] 吴汉华.铝、钛合金微弧氧化陶瓷膜的制备表征及其特性研究:[博士学位论文].吉林:吉林大学图书馆,2004.
    [138] Kishenyev B S. Universal Variable-Frequency Resonant Power Supply. WO03/090003A1, 2003.
    [139] 曹楚南.腐蚀电化学.北京:化学工业出版社,1994.
    [140] 蒋永锋,李均明,蒋百灵等.铝合金微弧氧化陶瓷层形成因素的分析.表面技术,2001,30(2):37-39.
    [141] Bulyshev S I, Fedorov V A. The kinetic of coating formation in microarc oxidation process. Fiziko-Khimicheskaya obraten Materialov, 1993, 6: 93-95.
    [142] 骆海贺,蔡启舟,魏伯康.AZ91D镁合金微弧氧化工艺参数的优化.特种铸造及有色合金,2007,27(7):554-557.
    [143] 于凤荣,吴汉华,龙北玉等.处理液浓度对铝合金微弧氧化陶瓷膜成膜速率和硬度的影响.吉林大学学报(理学版),2005,43(6):825-829.
    [144] Li W P, Zhu L Q, Liu H C. Effects of silicate concentration on anodic films formed on AZ91D magnesium alloy in solution containing silica sol. Surface & Coatings Technology, 2006, 201:2505-2511.
    [145] 蒋百灵,张先锋.不同电导率溶液中镁合金微弧氧化陶瓷层的生长规律及耐蚀性.稀有金属材料与工程,2005,34(3):393-396.
    [146] Xue W B, Deng Z W, Chen R Y, et al. Growth regularity of ceramic coatings formed by microarc oxidation on Al-Cu-Mg alloy. Thin Solid Films, 2000, 372:114-117,
    [147] Guo H F, An M Z, Xu S, et al. Microarc oxidation of ceramic resistant ceramic coating on a magnesium alloy. Materials letters, 2006, 60: 1538-1541.
    [148] 蒋百灵,张淑芬,吴国建等.镁合金微弧氧化陶瓷层显微缺陷与相组成及其耐蚀性.中国有色金属学报,2002,12(3):454-457.
    [149] Urquidi-Macdonald M, Macdonald D D. Theoretical distribution functions for the breakdown of passive films. Journal of The Electrochemical Society, 1987, 134: 41-46.
    [150] 胡岳华,陈湘清,王毓华.磷酸盐对一水硬铝石和高岭石浮选的选择性作用.中国有色金属学报,2003,13(1):222-228.
    [151] 王亚明,蒋百灵,雷廷权等.电参数对Ti6Al4V合金微弧氧化陶瓷膜特性的影响.无机材料学报,2003,18(6):1325-1330.
    [152] 林玉华,杜荣归,胡融刚等.不锈钢钝化膜耐蚀性与半导体特性的关联研究.物理化学学报,2005,21(7):740-745.
    [153] Guo G Y, Chen Y L. A nearly pure monoclinic nanocrystalline zirconia. Journal of Solid State Chemistry, 178: 1675-1682.
    [154] Shi J Y, Verweij H. Preparation and characterization of nanostructured ZrO_2 coatings on dense and porous substrates. Thin Solid Films, 2008, 516: 3919-3923.
    [155] Nishizawa K, Miki T, Fukaya H, et al. Surface morphology control of zirconia thin films prepared using novel photochromic molecules. Thin Solid Films, 2008, 516:2635-2638.
    [156] Mu W Y, Han Y. Characterization and properties of the MgF_2/ZrO_2 composite coatings on magnesium prepared by micro-arc oxidation. Surface & Coatings Technology, 2008,202: 4278-4284.
    [157] Wu S G, Zhang H Y, Tian G L, et al. Y_2O_3 stabilized ZrO_2 thin films deposited by electron beam evaporation: Structural, morphological characterization and laser induced damage threshold. Applied Surface Science, 2006, 253:1561-1565.
    [158] 宫文彪.等离子喷涂三元纳米ZrO_2-Y_2O_3/CeO_2热障涂层的组织与性能研究:[博士学位论文].吉林:吉林大学图书馆,2007.
    [159] Chang L M. Growth regularity of ceramic coating on magnesium alloy by plasma electrolytic oxidation. Journal of Alloys & Compounds, 2009, 468: 462-465.
    [160] 许煜汾,范文元.陶瓷微滤膜分离Zr(OH)_4悬浮液的研究.中国粉体技术,2000,(6):251-53.
    [161] Ji Z, Haynes J A, Ferber M K, et al. Metastable tetragonal zirconia formation and transformation in reactively sputter deposited zirconia coatings. Surface and Coatings Technology, 2001, 135: 109-117.
    [162] 赵麦群,雷阿丽.金属的腐蚀与防护.北京:国防工业出版社,2002:83-84.
    [163] Creus J, Mazille H, Idrissi H. Porosity evaluation of protective coatings onto steel,through electrochemical techniques. Surface and Coatings Technology, 2000, 130:224-232.
    [164] 张国英,张辉,方戈亮等.Bi,Sb合金化对AZ91镁合金组织、性能影响机理研究. 物理学报,2005,54(11):5288-5292
    [165] Ghali E, Dietzel W, Kainer K U. General and Localized Corrosion of Magnesium Alloys:A Critical Review. Journal of Materials Engineering & Performance, 2004, 13(1): 7-23.
    [166] Wang Q D, Lu Y Z, Zeng X Q, et al. Effects of RE on microstructure and properties of AZ91 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2000, 10 (2): 235-239.
    [167] 黄正华,郭学峰,张忠明.合金化对AZ91D镁合金组织于力学性能的影响.稀有金属材料与工程,2006,35(3):363-366.
    [168] 张静,潘复生,李忠胜.耐热镁合金材料的研究和应用现状.铸造,2004,53(10):770-774.
    [169] 闫蕴琪,张廷杰,邓炬等.耐热镁合金的研究现状与发展方向.稀有金属材料与工程2004,33(6):561-565.
    [170] 叶宏,孙智富,张津等.AZ91D镁合金表面热喷涂陶瓷涂层研究.现代制造工程,2004,(11):61-62.
    [171] Spencer K, Zhang M X. Heat treatment of cold spray coatings to form protective intermetaliic layers. Scripta Materialia, 2009, 61: 44-47.
    [172] 时海芳,吕文涛,马壮等.镁合金表面纳米Al_2O_3基陶瓷涂层的制备及其性能研究.材料保护,2008,41(8):49-51.
    [173] 高亚丽,王存山,姚曼等.镁合金表面激光熔覆Al_2O_3陶瓷涂层的组织分析及数值模拟.应用激光,2006,26(6):393-397.
    [174] Wang X M, Zeng X Q, Wu G S, et al. The effect of Y-ion implantation on the oxidation of AZ31 magnesium alloy. Materials Letters, 2007, 61: 968-970.
    [175] Ding W J, Wang X M, Zeng X Q, et al. Cyclic oxidation behaviour of cerium implanted AZ31 magnesium alloys. Materials Letters, 2007, 61: 1429-1432.
    [176] Sharma A K, Rani R U, Giri K. Studies on anodization of magnesium alloy for thermal control applications. Metal Finishing, 1997, 3:43-51.
    [177] Curran J A, Clyne T W. The thermal conductivity of plasma electrolytic oxide coatings on aluminium and magnesium. Surface & Coatings Technology, 2005, 199:177-183.
    [178] Khan N, Dollimore D, Alexander K, et al. The origin of the exothermic peak in the thermal decomposition of basic magnesium carbonate. Thermochimica Acta, 2001,367-368: 321-333.
    [179] Czerwinski F. The oxidation behaviour of an AZ91D magnesium alloy at high temperatures. Acta Materialia, 2002, 50: 2639-2654.
    [180] 阎峰云,强旭东,张玉海等.AZ91D镁合金半固态触变成形压铸工艺.中国有色金属学报,2008,18(4):595-600.
    [181] Liu X B, Osawa Y, Takamori S, et al. Grain refinement of AZ91 alloy by introducing ultrasonic vibration during solidification. Materials Letters, 2008, 62: 2872-2875.
    [182] Stumphy B, Mudryk Y, Russell A, et al. Oxidation resistance of B2 rare earth-magnesium intermetallic compounds. Journal of Alloys & Compounds, 2008, 460:363-367.
    [183] 王雪敏.镁合金高温氧化及表面改性研究:[博士学位论文].上海:上海交通大学图书馆,2007.
    [184] 游国强.新型镁熔体气体保护技术基础研究:[博士学位论文].重庆:重庆大学图书馆,2007.
    [185] 李美栓.金属的高温腐蚀.北京:冶金工业出版社,2001.
    [186] Takeno T, Yuasa S. Ignition of Magnesium and Magnesium-Aluminum alloy by impinging hot-air stream. Combustion Science & Technology, 1980, 21: 109-121.
    [187] 李铁藩.金属高温氧化和热腐蚀.北京:化学工业出版社,2003:51-53.
    [188] Curran J A, Clyne T W. Thermo-physical properties of plasma electrolytic oxide coatings on aluminium. Surface & Coatings Technology, 2005:199:168- 176.
    [189] 孙学通,姜兆华,李延平.钛合金表面原位生长含α-Al_2O_3相高硬度陶瓷膜的研究.无机材料学报,2004,19(4):881-886.
    [190] Xin S G, Song L X, Zhao R G, et al. Composition and thermal properties of the coating containing mullite and alumina. Materials Chemistry & Physics, 2006, 97: 132-136.
    [191] 祁庆琚.含稀土镁合金的摩擦磨损性能.中国有色金属学报,2006,16(7):1219-1226.
    [192] Tian J, Luo Z Z, Qi S K, et al. Structure and antiwear behavior of micro-arc oxidized coatings on aluminum alloy. Surface & Coatings Technology, 2002, 154: 1-7.
    [193] Wu X H, Qin W, Guo Y, et al. Self-lubricative coating grown by micro-plasma oxidation on aluminum alloys in the solution of aluminate-graphite. Applied Surface Science,2008, 254: 6395-6399.
    [194] Ceschini C, Lanzoni E, Martini C, et al. Comparison of dry sliding friction and wear of Ti6Al4V alloy treated by plasma electrolytic oxidation and PVD coating. Wear, 2008,264: 86-95.
    [195] Yerokhin A L, Nie X, Leyland A, et al. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti6Al4V alloy. Surface& Coatings Technology, 2000,130: 195-206.
    [196] Liang J, Hu L T, Hao J C. Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes. Applied Surface Science, 2007, 253: 4490-4496.
    [197] Wu K, Wang Y Q, Zheng M Y. Effects of microarc oxidation surface treatment on the mechanical properties of Mg alloy and Mg matrix composites. Materials Science & Engineering A, 2007, 447: 227-232.
    [198] 王立世,潘春旭,蔡启舟等.微弧氧化膜层对压铸镁合金拉伸性能的影响.特种铸造及有色合金,2007,27(3):165-167.
    [199] Shigematsu I, Nakamura M, Saitou N, et al. Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating. Journal of Materials Science Letter, 2004, 19:473-475.
    [200] Khan R H U, Yerokhin A L, Pilkington T, et al. Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current. Surface & Coatings Technology, 2005, 200: 1580-1586.
    [201] 陈融生,王元发.材料物理性能检验.北京:中国计量出版社,2005:18-21.
    [202] 宋波.AM60镁合金的稀土改性及摩擦磨损行为研究:[博士学位论文].吉林:吉林大学图书馆,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700