稻瘟病菌过氧化物酶体的定位分析及MGBIR1基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘟病菌(Magnaporthe grisea)引起水稻的重要病害--稻瘟病,了解其致病分子机制对稻瘟病的防治意义重大。
     1、稻瘟病菌过氧化物酶体的发生与增殖的研究
     过氧化物酶体是真核细胞中一类单层膜包裹的细胞器,参与并调节脂肪代谢过程。过氧化物酶体基质蛋白在细胞质中合成,靠自身序列所具有的过氧化物酶体定位信号(Peroxisome targeting signal,PTS)(PTS1与PTS2)而被识别和转运进入基质内部。本文利用嵌合引物,通过构建融合载体,利用GFP与RFP对PTS1与PTS2进行了共定位,并且通过荧光定位研究了过氧化物酶体的发生与增殖。研究结果如下:
     (1)以MPG1、ATG4及GPD基因启动子为绿色荧光蛋白启动子,构建了双元表达载体pHGpdGFPA、pHAtg4GFPA与pHMpg1GFPA。在共聚焦显微镜下观测转化子的荧光表达,筛选了强启动子MPG1启动子作为GFP和RFP表达启动子。
     (2)以MPG1基因启动子调控表达,分别构建GFP、GFP-PTS1与GFP-PTS2的双元表达载体;以及RFP和RFP-PTS1的双元表达载体。
     (3)通过农杆菌介导的转化,将GFP、GFP-PTS1、GFP-PTS2、RFP和RFP-PTS1转入稻瘟病菌野生型菌株Guy11中。结果显示,GFP-PTS1、GFP-PTS2及RFP-PTS1转化子细胞中荧光呈点状,多位于细胞周围,而不含PTS的GFP和RFP转化子中荧光均匀分散于细胞质。利用绿色荧光蛋白和红色荧光蛋白对过氧化物酶体进行了共定位。在相同条件下,GFP-PTS2转化子的荧光背景高于GFP-PTS1;孢子中荧光点的密度高于菌丝和附着胞中;孢子萌发与附着胞形成过程,荧光点密度会产生相应的规律性变化。
     (4)将GFP-PTS2转入已经得到的稻瘟病菌PEX6突变体中,发现PTS2信号途径被阻断。
     (5)通过GFP表达转化子,研究了稻瘟病菌过氧化物酶体的发生与增殖等动态变化过程。
     2、稻瘟病菌MGBIR1基因的克隆
     了解M. grisea侵入后病菌的定殖、菌丝的分化和扩展等过程的分子机制是目前M. grisea致病机理研究的重点。凋亡抑制蛋白(Inhibition of apoptosis proteins, IAPs)在许多模式系统中抑制细胞凋亡。BIR(Baculoviral inhibition of apoptosis protein repeat domain)为凋亡抑制蛋白(IAPs)的重复结构域。本文克隆了BIR1在M. grisea中的序列同源基因MGBIR1,并成功构建了同源基因置换载体。研究结果如下:
     (1)利用裂殖酵母菌(Schizosaccharomyces pombe )BIR1p (NP_587866.3)蛋白序列在M. grisea基因组数据库中进行同源序列检索,检索到1个假设基因MGG_04912,结合基因的保守区段分析,定名为MGBIR1。
     (2)利用MGBIR1基因编码的蛋白序列,通过Blast P程序在GeneBank中进行同源基因查找,并进行了序列比对。
     (3)构建了MGBIR1基因置换载体p1300-MGBIR1::HPH。
     (4)进行了五次ATMT敲除转化,已获得130个潮霉素抗性转化子,通过PCR扩增的方法对已获得的转化子进行基因敲除PCR验证。
     明确M. grisea中是否存在BIR1的同源基因,有助于深入理解M. grisea菌丝的分化与扩展过程。
Magnaporthe grisea is a well-known ascomycete that causes rice blast. A better understanding of molecular basis of rice blast is beneficial for rice blast control.
     1. Localizated Analysis of Peroxisome in Magnaporthe grisea
     Peroxisome is one class of eukaryotic cell organelle, with single-layer membrane,that regulated the metabolism process of lipids. The peroxisome mechanism in yeast and mammals have been researched thoroughly.The targeting and import of proteins depended on their two peroxisomal targeting signals (PTS1 and PTS2) in sequences as we have known. In this study, the vectors of the fluorescent fusions with PTS were constructed and introduced into Magnaporthe oryzea Guy11 cells. In addition, using these transformants, the inducement of peroxisomes and the dynamic of peroxisomal amounts during the pre-penetration processes were investigated as well. The results are as follows:
     1. MPG1, ATG4 and GPD were selected as promoters of GFP , with which we have constructed the binary vectors p1300BMGFPA, p1300BMGFPA and p1300BMGFPA respectively. Strong expression promoter of GFP and RFP, MPG1 promoter has been screened by fluorescence microscopy.
     2. MPG1 as promoter of GFP and RFP, binary vectors GFP, GFP-PTS1 and GFP-PTS2 were constructed in the pCAMBIA1300. MPG1 as promoter of GFP and RFP, the binary vectors RFP and RFP-PTS1 were constructed in pCAMBIA1300 as well.
     3. Co-location transformants were obtained with GFP and RFP by fungal ATMT transformation twice. The results showed that, PTS1 and PTS2 could be located into peroxisome by GFP and RFP. Moreover, the fluorescence background of GFP-PTS2 transformants is higher than that of GFP-PTS1; the density of fluorescent spots in spores is higher than that in the mycelium and appressorium; there is a corresponding regularity change of fluorescence-point density in the germination of spores and the formation of appressorium.
     4. Through importing GFP-PTS2 into the Magnaporthe grisea PEX6 mutant, the PTS2 signal pathway’s being blocked as same as PTS1 was found.
     5. Using the transformants of with GFP, the inducement of peroxisomes and the dynamic of peroxisome amounts during the pre-penetration processes were investigated.
     2. Cloning of MGBIR1 in Magnaporthe grisea
     The pre-penetration processes of M. grisea, especially appressorium differentiation and formation, have been studied throughly; the post-penetration processes which is essential for infection cycle of M. girsea, including hypha differentiation and colonization, still left much to be studied. The inhibitor of apoptosis (IAP) family of proteins contains a subset of members characterized by the presence of highly conserved baculoviral IAP repeat domains. BIR(Baculoviral inhibition of apoptosis protein repeat domain)domain were found in inhibitor of apoptosis proteins and other proteins, acting as a direct inhibitor of caspase enzymes. In this study, MGBIR1 gene from M. grisea, a sequence homologue of BIR1 was cloned. The role of MGBIR1 gene was analyzed by gene replacement. The results are as follows:
     (1) MGG_04912,a hypothetical gene was found by blast with the amino acid sequence of BIR1 in M. grisea genome database, and was assigned MGBIR1.
     (2) The homology sequence of MGBIR1 protein was studied in GeneBank by Blast P, and the alignment analysis was done.
     (3) The replacement vector p1300-MGBIR1::HPH of MGBIR1 gene was constructed.
     (4) After 5 transformations, One hundred and thirty hygromycin-resistance transformants were obtained. The transformants were identified by PCR, and MGBIR1 gene knocked out mutants have not been obtained.
     The clarification of homologues to BIR1 and its function in M. grisea will benefit the understanding of the molecular metabolism in post-penetration of M. grisea.
引文
[1] Ou S., Rice Disease. 2nd ed. 1985: Kew, Uk: Commonwealth Mycological Institute.
    [2] Baker B., Zambryski P., Staskawicz B., et al. Signaling in plant-microbe interactions. Science, 1997. 276(5313): 726-33.
    [3] Sesma A. and Osbourn A.E.. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 2004. 431(7008): 582-6.
    [4] Talbot N.J. Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends Microbiol, 1995. 3(1): 9-16.
    [5] Hamer J.E., Howard R.J., Chumley F.G., et al. A Mechanism for Surface Attachment in Spores of a Plant Pathogenic Fungus. Science, 1988. 239(4837): 288-290.
    [6] Howard R.J. and Valent B.. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol, 1996. 50: 491-512.
    [7] Nacka F., Cansell M., Gouygou J.P., et al. Physical and chemical stability of marine lipid-based liposomes under acid conditions. Colloids Surf B Biointerfaces, 2001. 20(3): 257-266.
    [8] Koga H. and Nakayachi O.. Morphological studies on attachment of spores of Magnaporthe grisea to the leaf surface of rice. J Gen Plant Pathol, 2004. 70: 11-5.
    [9] Bourett T.M. and Howard R.. In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea. Can. J. Bot., 1990. 69: 329-42.
    [10] De Jong J.C., Mccormack J., Sminoff N., et al. Glycerol generates turgor in rice blast. Nature, 1997. 389: 244-55.
    [11] Howard R.J., Ferrari M.A., Roach D.H., et al. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci U S A, 1991. 88(24): 11281-4.
    [12] Zacharuk R.Y. Fine structure of the fungus Metarhizium anisopliae infection three species of larval Elateridae. III. Penetration of the host integument. J Invertebr Pthol, 1970. 15: 372-96.
    [13] Berisford Y.C. and Tsao C.H.. Ann Entomol Soc Amer, 1975. 68: 1111-12.
    [14] Money N.P. and Howard R.J.. Confirmation of a link between fungal pigmentation,turgor pressure,and pathogenicity using a new method o turgor measurement. Fungal Gent Biol, 1996. 20: 217-27.
    [15] Bourett T.M. and Howard R.J.. Actin in penetration pegs of the fungal rice blast pathogen, Magnaporthe grisea. Protoplasma, 1992. 168: 20-26.
    [16] Heath M.C., Valent B., Howard R.J., et al. Interactions of two strains of Magnaporthe grisea with rice, goosegrass and weeping lovegrass. Can J. Bot., 1990. 68(1627-37).
    [17] Talbot N.J., Ebbole D.J., and Hamer J.E.. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 1993. 5(11): 1575-90.
    [18] Urban M., Bhargava T., and Hamer J.E.. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J, 1999. 18(3): 512-21.
    [19] Lau G.W. and Hamer J.E.. Acropetal: a genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genet Biol, 1998. 24(1-2): 228-39.
    [20] Silue D., Tharreau D., Talbot N.J., et al. Identification and characterization of apf1(-) in a non~pathogenic mutant of the rice blast fungus Magnaporthe grisea which is unable to differentiate appressoria. Physiol Mol Plant Pathol, 1998. 53(239-51).
    [21] Zhu H., Whitehead D.S., Lee Y.H., et al. Genetic analysis of developmental mutants and rapid chomosome mapping of APP1,a gene required for appressorium formation in Magnaporthe grisea. Mol Plant Microbe Interact, 1996. 9(767-74).
    [22] Chumley F.G. and Valent B.. Genetic analysis of a mutation on appressorium formation in Magnaporthe grisea. Mol. Plant-Microbe Interact, 1990. 3(135-43).
    [23] Chumley F.G. and Valent B.. Genetic analysis of melanin deficient,nonpathogenic mutants of Magnaporthe grisea. Mol. Plant-Microbe Interact, 1990. 3: 135-43.
    [24] Vidal-Cros A., Viviani F., Labesse G., et al. Polyhydroxynaphthalene reductase involved in melanin biosynthesis in Magnaporthe grisea. Purification, cDNA cloning and sequencing. Eur J Biochem, 1994. 219(3): 985-92.
    [25] Kamakura T., Yamaguchi S., Saitoh K., et al. A novel gene, CBP1, encoding a putative extracellular chitin-binding protein, may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium differentiation. Mol Plant Microbe Interact, 2002. 15(5): 437-44.
    [26] Lo S.C., Hamer L., and Hamer J.E.. Molecular characterization of a cystathionine beta-synthase gene, CBS1, in Magnaporthe grisea. Eukaryot Cell, 2002. 1(2): 311-4.
    [27] Shi Z., Chistian D., and Leung H.. Enhanced transformation in Magnaporthe grisea by restriction enzyme mediated integration of plasmid DNA. Phytopathology, 1995. 85(329-33).
    [28] Mitchell T.K. and Dean R.A.. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell, 1995. 7(11): 1869-78.
    [29] Viaud M.C., Balhadere P.V., and Talbot N.J.. A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell, 2002. 14(4): 917-30.
    [30] Ahn N., Kim S., Choi W., et al. Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe grisea. Mol Cells, 2004. 17(1): 166-73.
    [31] Xue C., Park G., Choi W., et al. Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell, 2002. 14(9): 2107-19.
    [32] Balhadère P.V., Foster A.J., and Talbot N.J.. Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Mol. Plant-Microbe Interact, 1999. 12: 129–42.
    [33] Wang Z.Y., Thornton C.R., Kershaw M.J., et al. The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol Microbiol, 2003. 47(6): 1601-12.
    [34] Choi W. and Dean R.A.. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell, 1997. 9(11): 1973-83.
    [35] Liu S. and Dean R.A.. G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol Plant Microbe Interact, 1997. 10(9): 1075-86.
    [36] Nishimura M., Park G., and Xu J.R.. The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol Microbiol, 2003. 50(1): 231-43.
    [37] Saitoh K., Arie T., Teraoka T., et al. Targeted gene disruption of the neuronal calcium sensor 1homologue in rice blast fungus, Magnaporthe grisea. Biosci Biotechnol Biochem, 2003. 67(3): 651-3.
    [38] Talbot N.J., Kershaw M.J., Wakley G.E., et al. MPG1 Encodes a Fungal Hydrophobin Involved in Surface Interactions during Infection-Related Development of Magnaporthe grisea. Plant Cell, 1996. 8(6): 985-999.
    [39] Xu J.R., Staiger C.J., and Hamer J.E.. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc Natl Acad Sci U S A, 1998. 95(21): 12713-8.
    [40] Frederick O.A., Choi W., Jeong J.S., et al. Cloning, sequencing and functional analysis of Magnaporthe grisea MVP1 gene, a hex-1 homolog encoding a putative 'woronin body' protein. FEMS microbiology letters, 2004. 230(1): 85-90.
    [41] Lau G. and Hamer J.E.. Regulatory Genes Controlling MPG1 Expression and Pathogenicity in the Rice Blast Fungus Magnaporthe grisea. Plant Cell, 1996. 8(5): 771-781.
    [42] Foster A.J., Jenkinson J.M., and Talbot N.J.. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J, 2003. 22(2): 225-35.
    [43] Villalba F., Lebrun M.H., Hua-Van A., et al. Transposon impala, a novel tool for gene tagging in the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact, 2001. 14(3): 308-15.
    [44] Dixon K.P., Xu J.R., Smirnoff N., et al. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell, 1999. 11(10): 2045-58.
    [45] Fujimoto T., Chikahira M., Yoshida S., et al. Outbreak of central nervous system disease associated with hand, foot, and mouth disease in Japan during the summer of 2000: detection and molecular epidemiology of enterovirus 71. Microbiol Immunol, 2002. 46(9): 621-7.
    [46] Balhadere P.V. and Talbot N.J.. PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell, 2001. 13(9): 1987-2004.
    [47] Clergeot P.H., Gourgues M., Cots J., et al. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci U S A, 2001. 98(12): 6963-8.
    [48] Zhu H., Choi S., Johnston A.K., et al. A large-insert (130 kbp) bacterial artificial chromosome library of the rice blast fungus Magnaporthe grisea: genome analysis, contig assembly, and gene cloning. Fungal Genet Biol, 1997. 21(3): 337-47.
    [49] Sweigard J.A., Carroll A.M., Farrall L., et al. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact, 1998. 11(5): 404-12.
    [50] DeZwaan T.M., Carroll A.M., Valent B., et al. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell, 1999. 11(10): 2013-30.
    [51] Sweigard J.A., Carroll A.M., Kang S., et al. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell, 1995. 7(8): 1221-33.
    [52] Wang R., Hong G., and Han B.. Transcript abundance of rml1, encoding a putative GT1-like factor in rice, is up-regulated by Magnaporthe grisea and down-regulated by light. Gene, 2004. 324: 105-15.
    [53] Hamer J.E., Valent B., and Chumley F.G.. Mutations at the Smo Genetic Locus Affect the Shape of Diverse Cell Types in the Rice Blast Fungus. Genetics, 1989. 122(2): 351-361.
    [54] Adachi K. and Hamer J.E.. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell, 1998. 10(8): 1361-74.
    [55] Thines E., Weber R.W., and Talbot N.J.. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell, 2000. 12(9): 1703-18.
    [56] McCafferty H.R. and Talbot N.J.. Identification of three ubiquitin genes of the rice blast fungus Magnaporthe grisea, one of which is highly expressed during initial stages of plant colonisation. Curr Genet, 1998. 33(5): 352-61.
    [57] Soundararajan S., Jedd G., Li X., et al. Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell, 2004. 16(6): 1564-74.
    [58] Schirawski J., Heinze B., Wagenknecht M., et al. Mating Type Loci of Sporisorium reilianum: Novel Pattern with Three a and Multiple b Specificities Eukaryotic Cell, 2005. 4(8): 1317-27.
    [59] Wang Z.Y., Soanes D.M., Kershaw M.J., et al. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection. Mol Plant Microbe Interact, 2007. 20(5): 475-91.
    [60] Wang Z.Y. and Chen Z.. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood, 2008. 111(5): 2505 - 15.
    [61] McCollum D., Monosov E., and Subramani S.. The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells--the PAS8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal, and is a member of the TPR protein family. J Cell Biol, 1993. 121(4): 761-74.
    [62] Sauma L., Franck N., Paulsson J.F., et al. Peroxisome proliferator activated receptor gamma activity is low in mature primary human visceral adipocytes. Diabetologia, 2007. 50(1): 195-201.
    [63] Parsons M., Furuya T., Pal S., et al. Biogenesis and function of peroxisomes and glycosomes. Mol Biochem Parasitol, 2001. 115(1): 19-28.
    [64] Motley A.M., Hettema E.H., and Ketting R.. Caenorhabditis elegans has a single pathway to target matrix proteins to peroxisomes. 1, 2000. 1(40-6).
    [65] Holroyd C. and Erdmann R.. Protein translocation machineries of peroxisomes. FEBS Lett, 2001. 501(1): 6-10.
    [66] Otera H., Harano T., Honsho M., et al. The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p.PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J Biol Chem, 2000. 275(28): 21703-14.
    [67] Woodward A.W. and Bartel B.. The Arabidopsis peroxisomal targeting signal type 2 receptor PEX7 is necessary for peroxisome function and dependent on PEX5. Mol Biol Cell, 2005. 16(2): 573-83.
    [68] Yu X.X., Odle J., and Drackley J.K.. Differential induction of peroxisomal beta-oxidation enzymes by clofibric acid and aspirin in piglet tissues. Am J Physiol Regul Integr Comp Physiol, 2001. 281(5): R1553-61.
    [69] Issemann I. and Green S.. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature, 1990. 347(6294): 645-50.
    [70] Aquila S., Bonofiglio D., Gentile M., et al. Peroxisome proliferator-activated receptor (PPAR)gamma is expressed by human spermatozoa: its potential role on the sperm physiology. JCell Physiol, 2006. 209(3): 977-86.
    [71] Yoneda M., Fujita K., Nakajima A., et al. PPAR gamma ligand pioglitazone as a therapeutic strategy in nonalcoholic steatohepatitis (NASH). Nippon Yakurigaku Zasshi, 2006. 128(4): 235-8.
    [72] Rottensteiner H., Kal A.J., Filipits M., et al. Pip2p: a transcriptional regulator of peroxisome proliferation in the yeast Saccharomyces cerevisiae. EMBO J, 1996. 15(12): 2924-34.
    [73] Karpichev I.V., Luo Y., Marians R.C., et al. A complex containing two transcription factors regulates peroxisome proliferation and the coordinate induction of beta-oxidation enzymes in Saccharomyces cerevisiae. Mol Cell Biol, 1997. 17(1): 69-80.
    [74] Gurvitz A., Hiltunen J.K., Erdmann R., et al. Saccharomyces cerevisiae Adr1p governs fatty acid beta-oxidation and peroxisome proliferation by regulating POX1 and PEX11. J Biol Chem, 2001. 276(34): 31825-30.
    [75] Thoms S. and Erdmann R.. Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation. FEBS J, 2005. 272(20): 5169-81.
    [76] Kiel J.A., van der Klei I.J., van den Berg M.A., et al. Overproduction of a single protein, Pc-Pex11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum. Fungal Genet Biol, 2005. 42(2): 154-64.
    [77] Tam Y.Y., Torres-Guzman J.C., Vizeacoumar F.J., et al. Pex11-related proteins in peroxisome dynamics: a role for the novel peroxin Pex27p in controlling peroxisome size and number in Saccharomyces cerevisiae. Mol Biol Cell, 2003. 14(10): 4089-102.
    [78] Kimura A., Takano Y., and Furusawa I.. Peroxisomal metabolic function is required for appressorium-mediated plant infection by Colletotrichum lagenarium. Plant Cell, 2001. 13(8): 1945-57.
    [79] Ramos-Pamplona M. and Naqvi N.I.. Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA. Mol Microbiol, 2006. 61(1): 61-75.
    [80] Asakura M., Okuno T., and Takano Y.. Multiple contributions of peroxisomal metabolic function to fungal pathogenicity in Colletotrichum lagenarium. Appl Environ Microbiol, 2006. 72(9): 6345-54.
    [81] Solomon P.S., Lee R.C., Wilson T.J., et al. Pathogenicity of Stagonospora nodorum requires malate synthase. Mol Microbiol, 2004. 53(4): 1065-73.
    [82] Weber R.W.S., Wakley G.E., and Thines E.. The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe grisea. Protoplasma, 2001. 216(1): 101-12.
    [83] Bhambra G.K., Wang Z.Y., Soanes D.M., et al. Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea. Mol Microbiol, 2006. 61(1): 46-60.
    [84] Tsai H.F., Wheeler M.H., Chang Y.C., et al. A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J Bacteriol, 1999. 181(20): 6469-77.
    [85] Lee J.R., Jang H.H., Park J.H., et al. Cloning of two splice variants of the rice PTS1 receptor, OsPex5pL and OsPex5pS, and their functional characterization using pex5-deficient yeast and Arabidopsis. Plant J, 2006. 47(3): 457-66.
    [86]汪恒英,周守标,常志州.绿色荧光蛋白(GFP)研究进展.生物技术, 2004. 14: 70-3.
    [87] Liu X.H., Lu J.P., Zhang L., et al. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell, 2007. 6(6): 997-1005.
    [88] Rajagopalan S. and Balasubramanian M.K.. Schizosaccharomyces pombe Bir1p, a nuclear proteinthat localizes to kinetochores and the spindle midzone, is essential for chromosome condensation and spindle elongation during mitosis. Genetics, 2002. 160(2): 445-56.
    [89] Fraser A.G., James C., Evan G.I., et al. Caenorhabditis elegans inhibitor of apoptosis protein (IAP) homologue BIR-1 plays a conserved role in cytokinesis. Curr Biol, 1999. 9(6): 292-301.
    [90] Speliotes E.K., Uren A., Vaux D., et al. The survivin-like C. elegans BIR-1 protein acts with the Aurora-like kinase AIR-2 to affect chromosomes and the spindle midzone. Mol Cell, 2000. 6(2): 211-23.
    [91] Notteghem B., Mesnard B., Delesalle J.C., et al. Intramural hematoma of the duodenum complicating acute pancreatitis. Contribution of magnetic resonance imaging. Gastroenterol Clin Biol, 1992. 16(5): 481.
    [92] Baerends R.J., Faber K.N., Kiel J.A., et al. Sorting and function of peroxisomal membrane proteins. FEMS Microbiol Rev, 2000. 24(3): 291-301.
    [93] Fransen M., Wylin T., Brees C., et al. Human pex19p binds peroxisomal integral membrane proteins at regions distinct from their sorting sequences. Mol Cell Biol, 2001. 21(13): 4413-24.
    [94] Kiel J.A., Hilbrands R.E., Bovenberg R.A., et al. Isolation of Penicillium chrysogenum PEX1 and PEX6 encoding AAA proteins involved in peroxisome biogenesis. Appl Microbiol Biotechnol, 2000. 54(2): 238-42.
    [95] Gould S.J. and Valle D.. Peroxisome biogenesis disorders: genetics and cell biology. Trends Genet, 2000. 16(8): 340-5.
    [96] Kiel J.A., Veenhuis M., and van der Klei I.J.. PEX genes in fungal genomes: common, rare or redundant. Traffic, 2006. 7(10): 1291-303.
    [97] Sichting M., Schell-Steven A., Prokisch H., et al. Pex7p and Pex20p of Neurospora crassa function together in PTS2-dependent protein import into peroxisomes. Mol Biol Cell, 2003. 14(2): 810-21.
    [98] Kiel J.A., van den Berg M., Bovenberg R.A., et al. Penicillium chrysogenum Pex5p mediates differential sorting of PTS1 proteins to microbodies of the methylotrophic yeast Hansenula polymorpha. Fungal Genet Biol, 2004. 41(7): 708-20.
    [99] Xu J.R. and Hamer J.E.. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev, 1996. 10(21): 2696-706.
    [100] Dean R.A., Talbot N.J., Ebbole D.J., et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005. 434(7036): 980-6.
    [101] Yu J.H., Hamari Z., Han K.H., et al. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol, 2004. 41(11): 973-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700